Lecture from 6.s195 taught in Fall 2103

X
““Constructive Computer Architecture

FFT: An example of complex
combinational circuits

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

N

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-1

Contributors to the course

material

" @ Arvind, Rishiyur S. Nikhil, Joel Emer,
Muralidaran Vijayaraghavan

Staff and students in 6.375 (Spring 2013),
6.S195 (Fall 2012), 6.S078 (Spring 2012)
= Asif Khan, Richard Ruhler, Sang Woo Jun, Abhinav
Agarwal, Myron King, Kermin Fleming, Ming Liu, Li-
Shiuan Peh
External
= Prof Amey Karkare & students at IIT Kanpur
= Prof Jihong Kim & students at Seoul Nation University
= Prof Derek Chiou, University of Texas at Austin
= Prof Yoav Etsion & students at Technion

N

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-2

Contents

N

FFT and IFFT: Another complex combinational
circuit and its folded implementations

m FFT: Converts signals from time domain to frequency
domain

s IFFT: Converts signals from frequency domain to
time domain

= Two calculations are identical- the same hardware
can be used
New BSV concepts
m Structure type
= overloading

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-3

Combinational IFFT

p
N
in0 \ outO
. » 45 —_— > /——
inl —"1 Bfly4 > | Bfly4 |—3))| Bfly4 > —s|outl
Rl Bfly4 > 3 -] Bfly4 3 3 | Bfly4 =] 3 Oufe
in3 1 & i 1 & ' 1 = t3
x16 ® ° ? -
in4
Bfly4 — | Bfly4 e s Bflya > S
in63/l \Eut62

All numbers are complex
and represented as two
sixteen bit quantities.
Fixed-point arithmetic is
used to reduce area,
POWEr, ...

t
September 2%, 2014 http://csg.csail.mit.edu/6.175 LOx-4

4 -way Butterﬂy Node

f‘\

function Vector# (4,Complex) bfly4
(Vector# (4,Complex) t, Vector#(4,Complex) Xx);

t's (twiddle coefficients) are mathematically
derivable constants for each bfly4 and depend
upon the position of bfly4 the in the network

#® FFT and IFFT calculations differ only in the use
of Twiddle coefficients in various butterfly
nodes

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-5

BSV code: 4-way Butterfly

function Vector# (4,Complex# (s)) bfly4
(Vector# (4,Complex#(s)) t, Vector#(4,Complex#(s)) x);

N

Vector# (4,Complex#(s)) m, vy, z;

m[0] = x[0] * £[0]; m[1l] = x[1]

mi2] = x[2] * t[2]; m[3] = x[3]

y[0] = m[O0] + m[2]; y[1] = m[O]

vI2] = m[l] + m[3]; y[3] = 1*(m[1]

z[0] = y[0] + vy[2]; z[1] = y[1l] + yI[3]; Polymorphic code:

z[2] = y[0] - y[2]; 2[3] = y[1] - y[3]; works on any type
of numbers for
which *, + and -
have been defined

return(z) ;
endfunction

Note: Vector does not mean storage; just
a group of wires with names

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-6

Language notes: Sequential
assignments

Sometimes it is convenient to reassign a variable
(X is zero every where except in bits 4 and 8):

N

Bit#(32) x = 0;
x[4] = 1; x[8] = 1;

This will usually result in introduction of muxes in
a circuit as the following example illustrates:

Bit#(32) x = 0; +1-—37+
let v = x+1; 0O |

if(p) x = 100; 100 % +1-—§—+
let z = x+1;

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-7

Complex Arithmetic
! # Addition

m Zp = Xgt YR
m Z =Xt Y

N

Multiplication

m Zp = Xg ¥ Yr- X1 *Y;
m Z; = Xg *yr+ X *yg

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-8

Representing complex
numbers as a struct

L/

N

typedef struct{
Int#(t) r;
Int#(t) 1;
} Complexi# (numeric type t) deriving (Eg,Bits);

Notice the Complex type is parameterized by the size of
Int chosen to represent its real and imaginary parts

If x isda struct then its fields can be selected by writing x.r
and X.i

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-9

BSV code for Addition

N

typedef struct{
Int#(t) r;
Int#(t) 1;
} Complexi# (numeric type t) deriving (Eg,Bits);

function Complex# (t) cAdd
(Complex# (t) x, (L) v);
Int#(t) real = x.r + yv.r;
Int#(t) imag = x.i + v.i;
return (Complex{r:real, 1:1mag})
endfunction

What is the type of this + ?

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-10

Overloading (Type classes)

The same symbol can be used to represent
different but related operators using Type
classes

A type class groups a bunch of types with
similarly named operations. For example, the
type class Arith requires that each type
belonging to this type class has operators +,-,
* [etc. defined

We can declare Complex type to be an
instance of Arith type class

N

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-11

Overloading +, *

instance Arith# (Complex# (t));
function Complex# (t) \+
(Complex# (t) x, Complex# (t) vy):;
Int#(t) real = x.r + y.r;
Int#(t) imag = x.1i + vy.1i;
return (Complex{r:real, i:1mag})
endfunction

N

function Complex# (t) *
(Complex# (t) x, Complex# (t) vy):;

Int#(t) real = x.r*y.r — x.i*y.i;

Int#(t) imag = xXx.r*y.i + x.i*y.r;

return (Complex{r:real, 1:1mag})
endfunction

The context allows the compiler to pick the
appropriate definition of an operator

endinstance

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-12

Combinational IFFT

p
N
ﬂ\ /outO
. » —> —_—) > ———
inl —*1 Bfly4 > o Bflyd |——3 » Bfly4 > —|outl
—— > > —_—D P >
in2 =+ o e 3 0 > 3 2 \outZ
e Bfly4 = 3 —| Bfly4 3 3 3| Bfly4 = 3
In3 1 & 1 & 1 3 \outB
x16
in4
Bflyd |— 3| Bfly4 > 2 Bfiy4 = i
in63//I stage f function \LRE

function Vector# (64, Complex# (n)) stage f
(Bit# (2) stage, Vector# (64, Complex#(n)) stage in);

function Vector# (64, Complex#(n)) ifft repeat stage f
(Vector# (64, Complex#(n)) in data); |three times

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-13

BSV Code: Combinational
IFFT

function Vector# (64, Complex#(n)) ifft
(Vector# (64, Complex# (n)) in data);

£

//Declare vectors

Vector# (4,Vector# (64, Complex#(n))) stage data;

stage data[0] = in data;

for (Bit#(2) stage = 0; stage < 3; stage = stage + 1)
stage data[stage+l] = stage f(stage,stage datal[stage]);

return (stage datal[3]);
endfunction

The for-loop is unfolded and stage_ f

is inlined during static elaboration

Note: no notion of loops or procedures during execution

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-14

BSV Code: Combinational
IFFT- Unfolded

p
1" function Vector# (64, Complex# (n)) ifft
(Vector# (64, Complex#(n)) in data);
//Declare vectors
Vector# (4,Vector# (64, Complex#(n))) stage data;
stage data[0] = in data;
— stage data[l] = stage f(0,stage data[0]); stage =+ 1)
— stage data[2] = stage f(1,stage data[l]); datalstagel);
stage data[3] = stage f(2,stage datalZ2]);
return (stage datal[3]);
endfunction

Stage_f can be inlined now; it could have been inlined
before loop unfolding also.

Does the order matter?

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-15

BSV Code for stage f

N

“function Vector# (64, Complex# (n)) stage f

(Bit# (2) stage, Vector# (64, Complex# (n)) stage in);
Vector# (64, Complex# (n)) stage temp, stage out;
for (Integer 1 = 0; 1 < 16; 1 = 1 + 1)
begin
Integer 1dx = 1 * 4;
Vector# (4, Complex# (n)) x;
x[0] = stage 1in[idx]; x[1] = stage in[idx+1];
x[2] = stage in[idx+2]; x[3] = stage in[i1dx+3];
let getTwiddle (stage, fromInteger (i)):;
let v = bflyd{twid, x);
stage temp[i1dx] — stage temp[idx+1l] = yI[1l];
stage temp[idx+2] = y[2]; stage temp[idx+3] = yI[3];
end
//Permutation D
SRS - twid’s are
for (Integer i1 = 0; 1 < 64; 1 =1 + 1) :
4L ... | mathematically
stage out[1] = stage temp[permute[i]]; i
- , - derivable
return(stage out); tant
endfunction e constants
September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-16

Higher-order functions:
Stage functions f1, f2 and {3

p
UV
function f0(x)= stage f(0,x);
function fl(x)= stage f(1,x);
function f2(x)= stage f(2,x);

What is the type of £0 (x) ?

function Vector# (64, Complex) £0
(Vector# (64, Complex) Xx);

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-17

Suppose we want to reduce

N

in0
inl
in2
in3

™\

>

Bfly4

the area of the circuit

Bfly4

7

in4

X16

Bfly4

in63

ay.

September 22, 2014

outO
- — , - S f—
3| Bflyda | —= 3 Bfly4 > —lout1
— — g >
o —> s] 3 0 \outZ
3 —| Bfly4 | 3 Bfly4 | 3
c > | < p=
T o ® \outB
> > > > out4
T — =]
uté3
Reuse the same circuit three times
to reduce area
http://csg.csail.mit.edu/6.175 LOx-18

Reusing a combinational
block

N

@ N ___ Introduce state
— f 9 elements to hold
intermediate
values

we expect:
Throughput to decrease - less parallelism

Area to decrease - reusing a block

The clock needs to run faster for the
same throughput

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-19

Folded IFFT: Reusing the stage
mcombinational circuit

in0
inl

in2

in3
in4

outO

— Bfly4 < - —

outl

out2

Bfly4 > Y —= out3

. ‘ o
. C
—
AN

Stage
Counter

TR
|
A/Al//ll\

in63 ut63

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-20

Input and Output FIFOs

N

L/

inQ
#® FIFO operations:

= eng — when the FIFO is not full

A 4

IFFT

If IFFT is implemented as a sequential circuit it
may take several cycles to process an input

Sometimes it is convenient to think of input
and output of a combinational function being
connected to FIFOs

outQ

s deq, first — when the FIFO is not empty
s These operations can be performed only when the

guard condition is satisfied
http://csg.csail.mit.edu/6.175

September 22, 2014

LOx-21

Folded implementation
rules

| B e
X . r/ 1

N

Each rule has some
= additional implicit
_‘ guard conditions

associated with FIFO

inQ [Istage outQ operations
sReg

8 rule foldedE 1f (stage==0);
-8 sReg <= £ inQ.first()); stage <= stage+l;
O inQ.deq() notice stage is a dynamic
Q |endrule parameter now!
o | rule foldedCirculate if (stage!=0)&(stage<(n-1));
g sReg <= f(stage, sReg); stage <= stage+l;
& | endrule
_E rule foldedExit 1f (stage==n-1); Nno
.% outQ.enqg(f (stage, sReg)); stage <= 0; for-
A | endrule loop

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-22

Folded implementation

expressed as a single rule

L/

N

A .
A

INQ Hstage outQ
SReg
rule folded-pipeline (True);
let sxIn = ?;
i1f (stage==0)

else sxIn= sReg;

let sxOut = f(stage,sxIn);

if (stage==n-1) outQ.eng(sxOut) ;
else sReg <= sxOut;

stage <= (stage==n-1)7? 0 : stage+tl;
endrule

begin sxIn= 1nQ.first(); 1InQ.deq();

end

September 22,2014 nhttp://csg.csall.mit.edu/6.1/5

LOx-23

Shared Circuit

getTWdeleO—w _
twid

getTwiddlel) — —>

getTwiddleZ—J é

stage

N

The rest of
stage_f, i.e.
Bfly-4s and

permutations

(shared

SX

The Twiddle constants can be expressed in a
table or in a case or nested case expression

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-24

Pipelining Combinational

IFF I 3 different datasets

) in the pipeline

\V]]
in0 N IFFTi 1y IFFT, IFFT, 4
inl —1 Bfly4 > g o Bflya [— g Bfly4 . :::
in2 > 8 HEl o = 7 | = 7 N
in3 = = P~ o
in4 -4 = — R 1 R >

Bfly4 = 0 53| Bfly4 = 5] Bfly4 =

in63//I i R
Lot of area and long combinational delay

Folded or multi-cycle version can save area
and reduce the combinational delay but
throughput per clock cycle gets worse

outO

outl

out2

out3

out4

T

ut63

Pipelining: a method to increase the circuit Next

throughput by evaluating multiple IFFTs

lecture

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-25

Design comparison

&
Combinational
Cl— fl |—— f2 f3 > >
inQ outQ
H Folded
R > R
F g — f U g
inQ outQ
Pipeline
> > f1 - f2 f3 > >
inQ outQ

Clock: C< P=~F Area: F<C<P Throughput: F< C< P

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-26

Area estimates
Tool: Synopsys Design Compiler

N

%

¢ Comb. FFT Are the results
» Combinational area: 16536 surprising?
= Noncombinational area: 9279

¢ Folded FFT Why is folded
= Combinational area: 29330 implementation
= Noncombinational area: 11603 not smaller?

Pipelined FFT
= Combinational area: 20610
= Noncombinational area: 18558

Explanation: Because of constant propagation
optimization, each bfly4 gets reduced by 60% when
twiddle factors are specified. Folded design disallows this
optimization because of the sharing of bfly4’s

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-27

Syntax: Vector of Registers

N

Register
m Ssuppose x and y are both of type Reg. Then
x <= y mMeans x. write(y. read())

Vector of 1nt
m X[1] Means sel (x,1)
m x[1] = y[J] Mmeans x = update(x, 1, sel(y,]))

Vector of Registers

s x[i] <= y[]j] does not work. The parser thinks it means
(sel(x,1). read). write(sel(y,Jj) . read), which will
not type check

m (x[1]) <= y[j] parses as
sel(x,1). write(sel(y,Jj). read), and works correctly

Don’t ask me why

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-28

Optional: Superfolded FFT

N

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-29

Superfolded IFFT: Just one
Bfly-4 node! Optional

in0 \ / outO
n1 7 Eg.—: Bfly4 :g_ 2 ® L out1
3 P
in2 / f . -l = oy § out2
P _’ > = P
in3 / =3 I‘ Stage ’g : z \outB
in4 0t 2 2 outd
N | Rl
- o |
= D —_
/ § o) Index: 2o
in63 D = 0to 15 G < _ ut63
? 9 o) 5 >

Index == 157

#® f will be invoked for 48 dynamic values of stage; each
invocation will modify 4 numbers in sReg

after 16 invocations a permutation would be done on
the whole sReg

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-30

Superfolded IFFT:

v

Bit# (2+4) (stage, i)

stage function f

functio mplex) stage f

N

Vector# (64, Complex) stage 1in);
Vecto , ot (n)) stage temp, stage out;
for (Integer—1+—=0;——1 < 16,1 =1+ 1)
begin Bit#(2) stage
Integer 1dx = 1 * 4;

let twid = getTwiddle (stage, fromInteger(i));
let y = bfly4 (twid, stage in[idx:1dx+3]);

stage temp[idx] = y[0]; stage temp[idx+l] = y[1l];
stage temp[idx+2] = y[2]; stage temp[idx+3] = y[3];
end

(Integer 1 = 0; 1 < 64; 1 =1 + 1)
stage out[i] = stage temp[permutel[l]];

rn(stage out);

endfunction

should be done only when i=15

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-31

Code for the Superfolded
stage function

Function Vector# (64, Complex) £
(Bit# (6) stagei, Vector# (64, Complex) stage 1in);
let i = stagei "mod 16;
let twid = getTwiddle(stagei "div 16, 1i);
let y = bfly4 (twid, stage in[1:1+3]);

N
\J

let stage temp = stage in;

stage temp[1] v[i0];

stage_temp[i+l] = y[1]; One Bfly-4 case
stage temp[i+2] = y[2

stage temp[i+3] = y[3

e

1:
17
17

let stage out = stage temp;
if (i == 15)
for (Integer 1 = 0; 1 < 64; 1 =1 + 1)

stage out[i] = stage temp[permute[i]];
return (stage out);
endfunction

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-32

