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Contents

N

# FFT and IFFT: Another complex combinational
circuit and its folded implementations

m FFT: Converts signals from time domain to frequency
domain

s IFFT: Converts signals from frequency domain to
time domain

= Two calculations are identical- the same hardware
can be used
# New BSV concepts
m Structure type
= overloading
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Combinational IFFT
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All numbers are complex
and represented as two
sixteen bit quantities.
Fixed-point arithmetic is
used to reduce area,
POWEr, ...

t
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4 -way Butterﬂy Node

f‘\

function Vector# (4,Complex) bfly4
(Vector# (4,Complex) t, Vector#(4,Complex) Xx);

# t's (twiddle coefficients) are mathematically
derivable constants for each bfly4 and depend
upon the position of bfly4 the in the network

#® FFT and IFFT calculations differ only in the use
of Twiddle coefficients in various butterfly
nodes
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BSV code: 4-way Butterfly

function Vector# (4,Complex# (s)) bfly4
(Vector# (4,Complex#(s)) t, Vector#(4,Complex#(s)) x);

N

Vector# (4,Complex#(s)) m, vy, z;

m[0] = x[0] * £[0]; m[1l] = x[1]

mi2] = x[2] * t[2]; m[3] = x[3]

y[0] = m[O0] + m[2]; y[1] = m[O]

vI2] = m[l] + m[3]; y[3] = 1*(m[1]

z[0] = y[0] + vy[2]; z[1] = y[1l] + yI[3]; Polymorphic code:

z[2] = y[0] - y[2]; 2[3] = y[1] - y[3]; works on any type
of numbers for
which *, + and -
have been defined

return(z) ;
endfunction

Note: Vector does not mean storage; just
a group of wires with names
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Language notes: Sequential
assignments

# Sometimes it is convenient to reassign a variable
(X is zero every where except in bits 4 and 8):

N

Bit#(32) x = 0;
x[4] = 1; x[8] = 1;

# This will usually result in introduction of muxes in
a circuit as the following example illustrates:

Bit#(32) x = 0; +1-—37+
let v = x+1; 0O |

if(p) x = 100; 100 % +1-—§—+
let z = x+1;
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Complex Arithmetic
! # Addition

m Zp = Xgt YR
m Z =Xt Y

N

# Multiplication

m Zp = Xg ¥ Yr- X1 *Y;
m Z; = Xg *yr+ X *yg
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Representing complex
numbers as a struct

L/

N

typedef struct{
Int#(t) r;
Int#(t) 1;
} Complexi# (numeric type t) deriving (Eg,Bits);

Notice the Complex type is parameterized by the size of
Int chosen to represent its real and imaginary parts

If x isda struct then its fields can be selected by writing x.r
and X.i
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BSV code for Addition

N

typedef struct{
Int#(t) r;
Int#(t) 1;
} Complexi# (numeric type t) deriving (Eg,Bits);

function Complex# (t) cAdd
(Complex# (t) x, (L) v);
Int#(t) real = x.r + yv.r;
Int#(t) imag = x.i + v.i;
return (Complex{r:real, 1:1mag})
endfunction

What is the type of this + ?
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Overloading (Type classes)

# The same symbol can be used to represent
different but related operators using Type
classes

# A type class groups a bunch of types with
similarly named operations. For example, the
type class Arith requires that each type
belonging to this type class has operators +,-,
* [ etc. defined

# We can declare Complex type to be an
instance of Arith type class

N
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Overloading +, *

instance Arith# (Complex# (t));
function Complex# (t) \+
(Complex# (t) x, Complex# (t) vy):;
Int#(t) real = x.r + y.r;
Int#(t) imag = x.1i + vy.1i;
return (Complex{r:real, i:1mag})
endfunction

N

function Complex# (t) \*
(Complex# (t) x, Complex# (t) vy):;

Int#(t) real = x.r*y.r — x.i*y.i;

Int#(t) imag = xXx.r*y.i + x.i*y.r;

return (Complex{r:real, 1:1mag})
endfunction

The context allows the compiler to pick the
appropriate definition of an operator

endinstance
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Combinational IFFT
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function Vector# (64, Complex# (n)) stage f
(Bit# (2) stage, Vector# (64, Complex#(n)) stage in);

function Vector# (64, Complex#(n)) ifft repeat stage f
(Vector# (64, Complex#(n)) in data); |three times
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BSV Code: Combinational
IFFT

function Vector# (64, Complex#(n)) ifft
(Vector# (64, Complex# (n)) in data);

£

//Declare vectors

Vector# (4,Vector# (64, Complex#(n))) stage data;

stage data[0] = in data;

for (Bit#(2) stage = 0; stage < 3; stage = stage + 1)
stage data[stage+l] = stage f(stage,stage datal[stage]);

return (stage datal[3]);
endfunction

The for-loop is unfolded and stage_ f

is inlined during static elaboration

Note: no notion of loops or procedures during execution
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BSV Code: Combinational
IFFT- Unfolded

p
1" function Vector# (64, Complex# (n)) ifft
(Vector# (64, Complex#(n)) in data);
//Declare vectors
Vector# (4,Vector# (64, Complex#(n))) stage data;
stage data[0] = in data;
— stage data[l] = stage f(0,stage data[0]); stage =+ 1)
— stage data[2] = stage f(1,stage data[l]); datalstagel);
stage data[3] = stage f(2,stage datalZ2]);
return (stage datal[3]);
endfunction

Stage_f can be inlined now; it could have been inlined
before loop unfolding also.

Does the order matter?
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BSV Code for stage f

N

“function Vector# (64, Complex# (n)) stage f

(Bit# (2) stage, Vector# (64, Complex# (n)) stage in);
Vector# (64, Complex# (n)) stage temp, stage out;
for (Integer 1 = 0; 1 < 16; 1 = 1 + 1)
begin
Integer 1dx = 1 * 4;
Vector# (4, Complex# (n)) x;
x[0] = stage 1in[idx]; x[1] = stage in[idx+1];
x[2] = stage in[idx+2]; x[3] = stage in[i1dx+3];
let getTwiddle (stage, fromInteger (i)):;
let v = bflyd{twid, x);
stage temp[i1dx] — stage temp[idx+1l] = yI[1l];
stage temp[idx+2] = y[2]; stage temp[idx+3] = yI[3];
end
//Permutation D
SRS - twid’s are
for (Integer i1 = 0; 1 < 64; 1 =1 + 1) :
4L ... | mathematically
stage out[1] = stage temp[permute[i]]; i
- , - derivable
return(stage out); tant
endfunction e constants
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Higher-order functions:
Stage functions f1, f2 and {3

p
UV
function f0(x)= stage f(0,x);
function fl(x)= stage f(1,x);
function f2(x)= stage f(2,x);

What is the type of £0 (x) ?

function Vector# (64, Complex) £0
(Vector# (64, Complex) Xx);
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Suppose we want to reduce
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Reuse the same circuit three times
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Reusing a combinational
block

N

@ N ___ Introduce state
— f 9 elements to hold
intermediate
values

we expect:
Throughput to decrease - less parallelism

Area to decrease - reusing a block

The clock needs to run faster for the
same throughput
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Folded IFFT: Reusing the stage
mcombinational circuit
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Input and Output FIFOs

N

L/

inQ
#® FIFO operations:

= eng — when the FIFO is not full

A 4

IFFT

# If IFFT is implemented as a sequential circuit it
may take several cycles to process an input

# Sometimes it is convenient to think of input
and output of a combinational function being
connected to FIFOs

outQ

s deq, first — when the FIFO is not empty
s These operations can be performed only when the

guard condition is satisfied
http://csg.csail.mit.edu/6.175
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Folded implementation
rules

| B e
X . r/ 1

N

Each rule has some
= additional implicit
_‘ guard conditions

associated with FIFO

inQ [Istage outQ operations
sReg

8 rule foldedE 1f (stage==0);
-8 sReg <= £ inQ.first()); stage <= stage+l;
O inQ.deq() notice stage is a dynamic
Q |endrule parameter now!
o | rule foldedCirculate if (stage!=0)&(stage<(n-1));
g sReg <= f(stage, sReg); stage <= stage+l;
& | endrule
_E rule foldedExit 1f (stage==n-1); Nno
.% outQ.enqg(f (stage, sReg)); stage <= 0; for-
A | endrule loop
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Folded implementation

expressed as a single rule

L/

N

A .
A

INQ  Hstage outQ
SReg
rule folded-pipeline (True);
let sxIn = ?;
i1f (stage==0)

else sxIn= sReg;

let sxOut = f(stage,sxIn);

if (stage==n-1) outQ.eng(sxOut) ;
else sReg <= sxOut;

stage <= (stage==n-1)7? 0 : stage+tl;
endrule

begin sxIn= 1nQ.first(); 1InQ.deq();

end
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Shared Circuit

getTWdeleO—w _
twid

getTwiddlel) — —>

getTwiddleZ—J é

stage

N

The rest of
stage_f, i.e.
Bfly-4s and

permutations

(shared

SX

# The Twiddle constants can be expressed in a
table or in a case or nested case expression
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Pipelining Combinational

IFF I 3 different datasets

) in the pipeline
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in63//I i R
# Lot of area and long combinational delay

# Folded or multi-cycle version can save area
and reduce the combinational delay but
throughput per clock cycle gets worse

outO

outl
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T

ut63

# Pipelining: a method to increase the circuit Next

throughput by evaluating multiple IFFTs

lecture
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Design comparison

&
Combinational
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inQ outQ
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Clock: C< P=~F Area: F<C<P Throughput: F< C< P
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Area estimates
Tool: Synopsys Design Compiler

N

%

¢ Comb. FFT Are the results
» Combinational area: 16536  surprising?
= Noncombinational area: 9279

¢ Folded FFT Why is folded
= Combinational area: 29330 implementation
= Noncombinational area: 11603 not smaller?

# Pipelined FFT
= Combinational area: 20610
= Noncombinational area: 18558

Explanation: Because of constant propagation
optimization, each bfly4 gets reduced by 60% when
twiddle factors are specified. Folded design disallows this
optimization because of the sharing of bfly4’s
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Syntax: Vector of Registers

N

# Register
m Ssuppose x and y are both of type Reg. Then
x <= y mMeans x. write(y. read())

# Vector of 1nt
m X[1] Means sel (x,1)
m x[1] = y[J] Mmeans x = update(x, 1, sel(y,]))

# Vector of Registers

s x[i] <= y[]j] does not work. The parser thinks it means
(sel(x,1). read). write(sel(y,Jj) . read), which will
not type check

m (x[1]) <= y[j] parses as
sel(x,1). write(sel(y,Jj). read), and works correctly

Don’t ask me why
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Optional: Superfolded FFT

N
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Superfolded IFFT: Just one
Bfly-4 node! Optional

in0 \ / outO
n1 7 Eg.—: Bfly4 :g_ 2 ® L out1
3 P
in2 / f . -l = oy § out2
P _’ > = P
in3 / =3 I‘ Stage ’g : z \outB
in4 0t 2 2 outd
N | Rl
- o |
= D —_
/ § o) Index: 2o
in63 D = 0to 15 G < _ ut63
? 9 o) 5 >

Index == 157

#® f will be invoked for 48 dynamic values of stage; each
invocation will modify 4 numbers in sReg

# after 16 invocations a permutation would be done on
the whole sReg
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Superfolded IFFT:

v

Bit# (2+4) (stage, i)

stage function f

functio mplex) stage f

N

Vector# (64, Complex) stage 1in);
Vecto , ot (n)) stage temp, stage out;
for (Integer—1+—=0;——1 < 16,1 =1+ 1)
begin Bit#(2) stage
Integer 1dx = 1 * 4;

let twid = getTwiddle (stage, fromInteger(i));
let y = bfly4 (twid, stage in[idx:1dx+3]);

stage temp[idx] = y[0]; stage temp[idx+l] = y[1l];
stage temp[idx+2] = y[2]; stage temp[idx+3] = y[3];
end

(Integer 1 = 0; 1 < 64; 1 =1 + 1)
stage out[i] = stage temp[permutel[l]];

rn(stage out);

endfunction

should be done only when i=15
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Code for the Superfolded
stage function

Function Vector# (64, Complex) £
(Bit# (6) stagei, Vector# (64, Complex) stage 1in);
let i = stagei "mod 16;
let twid = getTwiddle(stagei "div 16, 1i);
let y = bfly4 (twid, stage in[1:1+3]);

N
\J

let stage temp = stage in;

stage temp[1] v[i0];

stage_temp[i+l] = y[1]; One Bfly-4 case
stage temp[i+2] = y[2

stage temp[i+3] = y[3

e

1:
17
17

let stage out = stage temp;
if (i == 15)
for (Integer 1 = 0; 1 < 64; 1 =1 + 1)

stage out[i] = stage temp[permute[i]];
return (stage out);
endfunction

September 22, 2014 http://csg.csail.mit.edu/6.175 LOx-32



