
Lab 2: Multipliers 6.175: Constructive Computer Architecture – Fall 2014

Lab 2: Multipliers

Due: Monday September 22, 2014

1 Introduction

In this lab you will be building different multiplier implementations and testing them using custom instanti-
ations of provided test bench templates. First you will implement multipliers using repeated addition. Next
you will implement a Booth Multiplier using a folded architecture. Finally you will build a faster multiplier
by implementing a radix-4 Booth Multiplier.

The output of all of these modules will be tested with test benches that compare the output of the
modules to BSV’s * operator for functionality.

All of the materials for this lab are in the git repository $GITROOT/lab2.git. All discussion questions
asked throughout this lab should be answered in discussion.txt. When you have completed the lab,
commit your changes to the repository and push the changes.

2 Built-in Multiplication

BSV has a built-in operation for multiplication: *. It is either a signed or unsigned multiply depending on
the types of the operands. For Bit#(n) and UInt#(n), the * operator performs unsigned multiplication. For
Int#(n), it performs signed multiplication. Just like the + operator, the * operator assumes the inputs and
the output are all the same type. If you want a 2n-bit result from n-bit operands, you have to first extend
the operands to be 2n-bit values.

Multipliers.bsv contains functions for signed and unsigned multiplication on Bit#(n) inputs. Both
functions return Bit#(TAdd#(n,n)) outputs. The code for these functions are shown below: 1

1 f unc t i on Bit#(TAdd#(n , n)) mul t ip ly uns igned (Bit#(n) a , Bit#(n) b) ;
UInt#(n) a u in t = unpack (a) ;

3 UInt#(n) b u int = unpack (b) ;
UInt#(TAdd#(n , n)) product u int = zeroExtend (a u in t) ∗ zeroExtend (b u int) ;

5 r e turn pack (product u int) ;
endfunct ion

7

f unc t i on Bit#(TAdd#(n , n)) mu l t i p l y s i gned (Bit#(n) a , Bit#(n) b) ;
9 Int#(n) a i n t = unpack (a) ;

Int#(n) b i n t = unpack (b) ;
11 Int#(TAdd#(n , n)) p roduc t in t = signExtend (a i n t) ∗ s ignExtend (b i n t) ;

r e turn pack (p roduc t in t) ;
13 endfunct ion

These functions will be the benchmark functions that your multipliers in this lab will be compared to for
functionality.

3 Test Benches

This lab has two parameterized test bench templates that can be easily instantiated with specific parameters
to test two multiplication functions against each other, or to test a multiplier module against a multiplier
function. These parameters include functions and module interfaces. mkTbMulFunction compares the output
of two functions with the same random inputs, and mkTbMulModule compares the outputs of a test module
(the device under test or DUT) and a reference function with the same random inputs.

The following code shows how to implement test benches for specific functions and/or modules.

1 (∗ s y n t h e s i z e ∗)
module mkTbDumb() ;

3 f unc t i on Bit #(16) t e s t f u n c t i o n (Bit #(8) a , Bit #(8) b) = mul t ip ly uns igned (a , b) ;
Empty tb <− mkTbMulFunction (t e s t f u n c t i o n , mult ip ly uns igned , True) ;

1pack and unpack are built-in functions that convert to and from Bit#(n) respectively.

1

Lab 2: Multipliers 6.175: Constructive Computer Architecture – Fall 2014

5 r e turn tb ;
endmodule

7

(∗ s y n t h e s i z e ∗)
9 module mkTbFoldedMultiplier () ;

M u l t i p l i e r #(8) dut <− mkFoldedMult ip l ier () ;
11 Empty tb <− mkTbMulModule(dut , mu l t ip ly s i gned , True) ;

r e turn tb ;
13 endmodule

The two lines below instantiate a specific test bench using the test bench templates in TestBenchTemplates.bsv.

1 Empty tb <− mkTbMulFunction (t e s t f u n c t i o n , mult ip ly uns igned , True) ;
Empty tb <− mkTbMulModule(dut , mu l t ip ly s i gned , True) ;

The first parameter in each (test_function and dut) is the function or the module to test. The second
parameter (multiply_unsigned and multiply_signed) is the correctly implemented reference function. In
this case, the reference functions were created using BSV’s * operator. The last parameter is a boolean that
designates if you want a verbose output. If you just want PASSED or FAILED to be printed by the test
bench, set the last parameter to False.

These test benches (mkTbDumb and mkTbFoldedMultiplier) can be easily built using the provided Make-
file. To compile these examples, you would write make Dumb.tb for the first and make FoldedMultiplier.tb

for the second. The makefile will produce the executables simDumb and simFoldedMultiplier. To compile
your own test bench mkTb<name>, run

$ make <name>.tb

$./sim<name>

There are no .tb files produced by the compilation process, the extension is just used to signal what build
target should be used.

Exercise 1 (2 Points): In TestBench.bsv, write a test bench mkTbSignedVsUnsigned that tests if
multiply_signed produces the same output as multiply_unsigned. Compile this test bench as described
above and run it. (That is, run make SignedVsUnsigned.tb and then ./simSignedVsUnsigned.)

Discussion Question 1 (1 Point): Using evidence from the test bench, is unsigned multiplication the
same as signed multiplication?

Discussion Question 2 (2 Points): In mkTBDumb excluding the line

f unc t i on Bit #(16) t e s t f u n c t i o n (Bit #(8) a , Bit #(8) b) = mul t ip ly uns igned (a , b) ;

and modifying the rest of the module to have

1 (∗ s y n t h e s i z e ∗)
module mkTbDumb() ;

3 Empty tb <− mkTbMulFunction (mult ip ly uns igned , mult ip ly uns igned , True) ;
r e turn tb ;

5 endmodule

will result in a compilation error. What is that error? How does the original code fix the compilation error?
You could also fix the error by having two function definitions as shown below.

1 (∗ s y n t h e s i z e ∗)
module mkTbDumb() ;

3 f unc t i on Bit #(16) t e s t f u n c t i o n (Bit #(8) a , Bit #(8) b) = mul t ip ly uns igned (a , b) ;
f unc t i on Bit #(16) r e f f u n c t i o n (Bit #(8) a , Bit #(8) b) = mul t ip ly uns igned (a , b) ;

5 Empty tb <− mkTbMulFunction (t e s t f u n c t i o n , r e f f u n c t i o n , True) ;
r e turn tb ;

7 endmodule

Why is two function definitions not necessary? (i.e. why can the second operand to mkTbMulFunction have
variables in its type?) Hint: Look at the types of the operands of mkTbMulFunction in TestBenchTemplates.bsv.

2

Lab 2: Multipliers 6.175: Constructive Computer Architecture – Fall 2014

4 Implementing Multiplication by Repeated Addition

4.1 As a Combinational Function

In Multipliers.bsv there is skeleton code for a function to calculate multiplication using repeated addition.
Since this is a function, it must represent a combinational circuit.

Exercise 2 (3 Points): Fill in the code for multiply by adding so it calculates the product of a and b
using repeated addition in a single clock cycle. If you need an adder to produce an (n+1)-bit output from
two n-bit operands, follow the model of multiply_unsigned and multiply_signed and extend the operands
to (n+1)-bit before adding.

Exercise 3 (1 Point): Fill in the test bench mkTbEx3 in TestBench.bsv to test the functionality of
multiply_by_adding. Compile it with make Ex3.sim and run it with ./simEx3.

Discussion Question 3 (1 Point): Is your implementation of multiply_by_adding a signed multiplier
or an unsigned multiplier? (Note: if it does not match either multiply_signed or multiply_unsigned, it
is wrong).

4.2 As a Sequential Module

Multiplying two 32-bit numbers using repeated addition requires 31 32-bit adders. Those adders can take a
significant amount of area depending on the restrictions of your target and the rest of your design. In lecture,
a folded version of the repeated addition multiplier was presented to reduce the amount of area needed for a
multiplier. The folded version of the multiplier uses sequential circuitry to share a single 32-bit adder across
all of the required computations by doing one of the required computations each clock cycle and storing the
temporary result in a register.

In this lab we will create an n-bit folded multiplier. The register i will track how far the module is in
the computation of the result. If 0 <= i < n, then there is a computation going on and the rule mul_step

should be doing work and incrementing i. There are two ways to do this. The first way is to make a rule
with an if statement within it like this:

1 r u l e mul step ;
i f (i < f romInteger (valueOf (n))) begin

3 // Do s t u f f
end

5 endru le

This rule runs every cycle, but it only does stuff when i < n. The second way is to make a rule with a guard
like this:

1 r u l e mul step (i < f romInteger (valueOf (n))) ;
// Do s t u f f

3 endru le

This rule will not run every cycle. Instead, it will only run when its guard, i < fromInteger(valueOf(i)),
is true. While this does not make a difference functionally, it makes a difference in the semantics of the BSV
language and to the compiler. This difference will be covered later in the lectures 2 , but until then, you
should use guards in your designs for this lab. If not, you may encounter test benches failing because they
run out of cycles.

When i reaches n, there is a result ready for reading, so result_ready should return true. When the
action value method result is called, the state of i should increase by 1 to n+1. i == n+1 denotes that

2Or in a footnote: the BSV compiler prevents multiple rules from firing in the same cycle if they may write to the same
register (sort of. . .). The BSV compiler treats the rule mul step as if it writes to i every time it fires. There is a rule in the
test bench that feeds inputs to the multiplier module, and since it calls the start method, it also writes to i every time it fires.
The BSV compiler sees these conflicting rules and spits out a compiler warning that it is going to treat one as more urgent than
the other and never fire them together. It normally chooses mul step, and since that rule fires every cycle, it prevents the test
bench rule from ever feeding inputs to the module.

3

Lab 2: Multipliers 6.175: Constructive Computer Architecture – Fall 2014

the module is ready to start again, so start_ready should return true. When the action method start is
called, the states of all the registers in the module (including i) should be set to the correct value so the
computation can start again.

Exercise 4 (4 Points): Fill in the code for the module mkFoldedMultiplier to implement a folded
repeated addition multiplier.

Exercise 5 (1 Points): Fill in the test bench mkTbEx5 to test the functionality of mkFoldedMultiplier
against multiply_by_adding. They should produce the same outputs if you implemented mkFoldedMultiplier

correctly.

5 Booth’s Multiplication Algorithm

The repeated addition algorithm works well multiplying unsigned inputs, but it is not able to multiply (nega-
tive) numbers in two’s complement encoding. To multiply signed numbers, you need a different multiplication
algorithm.

Booth’s Multiplication Algorithm is an algorithm that works with signed two’s complement numbers.
This algorithm encodes one of the operands with a special encoding that enables its use with signed numbers.
This encoding is sometimes know as Booth encoding. A Booth encoding of a number is sometimes written
with the symbols +, -, and 0 in a series like this: 0+-0b. This encoded number is similar to a binary number
because each place in the number represents the same power of two. A + in the ith bit represents (+1) · 2i,
but a - in the ith bit correspond to (−1) · 2i.

The Booth encoding for a binary number can be obtained bitwise by looking at the current bit and
the previous (less significant) bit of the original number. When encoding the least significant bit, a zero is
assumed as the previous bit. The table below shows the conversion to Booth encoding.

Current Bit Previous Bit Booth Encoding
0 0 0
0 1 +1
1 0 -1
1 1 0

The Booth multiplication algorithm can best be described as the repeated addition algorithm using the
Booth encoding of the multiplier. Instead of switching between adding 0 or adding the multiplicand as in re-
peated addition, the Booth algorithm switches between adding 0, adding the multiplicand, or subtracting the
multiplicand, depending on the booth encoding of the multiplier. The example below shows a multiplicand
m is being multiplied by a negative number by converting the multiplier to its booth encoding.

−5 ·m = 1011b ·m
= -+0-b ·m
= (−m) · 23 + m · 22 + (−m) · 20

= −8m + 4m−m

= −5m

The Booth multiplication algorithm can be implemented efficiently in hardware using the following algo-
rithm. This algorithm assumes an n-bit multiplicand m is being multiplied by an n-bit multiplier r.

initialization:

// All 2n+1 bits wide

m_pos = {m, 0}

m_neg = {(-m), 0}

p = {0, r, 1’b0}

repeat n times:

4

Lab 2: Multipliers 6.175: Constructive Computer Architecture – Fall 2014

let pr = two least significant bits of p

if (pr == 2’b01): p = p + m_pos;

if (pr == 2’b10): p = p + m_neg;

if (pr == 2’b00 or pr == 2’b11): do nothing;

Arithmetically shift p one bit to the right;

res = 2n most significant bits of p;

The notation (-m) is the two’s complement inverse of m. Since the most negative number in two’s complement
has no positive counterpart, this algorithm does not work when m = 10...0b. Because of this restriction,
the test bench has been modified to avoid the most negative number when testing 3.

This algorithm also uses an arithmetic shift. This is a shift designed for signed numbers. When shifting
the number to the right, it shifts in the old value of the most significant bit back into the MSB place to
keep the sign of the value of the same. This is done in BSV when shifting values of type Int#(n). To do an
arithmetic shift for Bit#(n), you may want to write your own function similar to multiply_signed. This
function would convert Bit#(n) to Int#(n), do the shift, and then convert back.

Exercise 6 (4 Points): Fill in the implementation for a folded version of the Booth multiplication algo-
rithm in the module mkBooth. This module uses a parameterized input size n; your implementation will be
expected to work for all n ≥ 2.

Exercise 7 (1 Point): Fill in the test benches mkTbEx7a and mkTbEx7b for your Booth multiplier to test
different bit widths of your choice.

6 Radix-4 Booth Multiplier

One more advantage of the booth multiplier is that it can be sped up efficiently by performing two steps of the
original Booth algorithm at a time. This is equivalent to performing two bits worth of partial sum additions
per cycle. This method of speeding up the Booth algorithm is known as the radix-4 Booth multiplier.

The radix-4 Booth multiplier looks at two current bits at a time when encoding the multiplier. The
radix-4 multiplier is able to run faster than the original one because each two bit Booth encoding can be
reduced down to a Booth encoding with no more than one non-zero bit. For example, the bits 01 following a
previous (less significant) 0 bit is converted to +- with the original Booth encoding. +- represents 2i+1 − 2i

which is equal to 2i which is just 0+. The table below shows some cases for the radix-4 Booth encoding.
Current Bits Previous Bit Original Booth Encoding Radix-4 Booth Encoding

00 0
00 1
01 0 +- 0+

01 1
10 0
10 1
11 0
11 1

3This is not a good way to design hardware. Never remove tests from your test bench just because your hardware fails
them. One way around this problem is to implement an (n+1)-bit Booth multiplier to perform n-bit signed multiplication by
sign extending the inputs. If you zero extending the inputs instead of sign extending them, you can get the n-bit unsigned
product of the two inputs. If you add an extra input to the multiplier that allows you to switch between sign extending and
zero extending the inputs, then you have a 32-bit multiplier that you can switch between signed and unsigned multiplication.
This functionality would be useful for processors that have signed and unsigned multiplication instructions.

5

Lab 2: Multipliers 6.175: Constructive Computer Architecture – Fall 2014

Discussion Question 4 (1 Point): Fill in above table in discussion.txt. None of the Radix-4 booth
encodings should have more than one non-zero symbol in them.

Some pseudocode for a radix-4 Booth multiplier can be seen below:

initialization:

// All 2n + 2 bits wide

m_pos = {msb(m), m, 0}

m_neg = {msb(-m), (-m), 0}

p = {0, r, 1’b0}

repeat n/2 times:

let pr = three least significant bits of p

if (pr == 3’b000): do nothing;

if (pr == 3’b001): p = p + m_pos;

if (pr == 3’b010): p = p + m_pos;

if (pr == 3’b011): p = p + (m_pos << 1);

if (pr == 3’b100): ...

... fill in rest from table ...

Arithmetically shift p two bits to the right;

res = p with MSB and LSB chopped off;

Exercise 8 (2 Points): Fill in the implementation for a radix-4 Booth multiplier in the module mkBoothRadix4.
This module uses a parameterized input size n; your implementation will be expected to work for all even
n ≥ 2.

Exercise 9 (1 Point): Fill in test benches mkTbEx9a and mkTbEx9b for your radix-4 Booth multiplier to
test different even bit widths of your choice.

Discussion Question 5 (1 Point): Now consider extending your Booth multiplier even further to a
radix-8 Booth multiplier. This would be like doing 3 steps of the radix-2 Booth multiplier in a single step.
Can all radix-8 Booth encodings be represented with only one non-zero symbol like the radix-4 Booth mul-
tiplier? Do you think it would still make sense to make a radix-8 Booth multiplier?

When you have completed all the exercises and your code works, commit your changes to the repository,
and push your changes back to the source.

6

