
Final Project: Part 1 6.175: Constructive Computer Architecture – Fall 2014

Final Project: Part 1
Developing a Non-Blocking Cache Hierarchy

1 Multi-Core SMIPS Processor

Figure 1 shows a diagram of a processor without cache coherency. All of the caches talk directly with DRAM
with minimal coordination. The only coordination performed in the network between the L1 caches and the
DRAM is making sure DRAM responses make it back to the right L1 cache.

Core 0 Core 1
Inst
L1

Data L1 Data L1

Inst
L1

DRAM

Figure 1: The initial flawed multi-core design.

With this limited amount of coordination, if core 0 writes to an address that is contained in the cache
for core 1, core 1 will not see that update until the line is evicted and read again. If core 1’s program is in a
loop that is waiting for that address to be changed, then core 1 may never see the change because the cache
line may never be evicted.

To fix this problem, you will implement the MSI protocol for cache coherency. The MSI protocol will
allow core 1 to see the update from core 0 in the previously described case by forcing an eviction in core 1.
Figure 2 shows a diagram of your non-blocking cache hierarchy with the MSI protocol implemented for the
data caches.

2 Message Network

In order to get the MSI protocol to work, we need a message network for communications between the two
caches and the parent protocol processor. This network will be made up of multiple message FIFOs and a
message router module. A diagram of the network can be seen in Figure 2.

2.1 Message Structure

The messages sent between caches and the protocol processor contain information about the type of message,
the source/destination cache (child), the address, the MSI state to upgrade/downgrade to, and data (only
used for some responses). The code given with the lab provides a tagged union CacheMemMessage for these
messages. A CacheMemMessage is either tagged as a Req with a value of CacheMemReq, or it is tagged as a
Resp with a value of CacheMemResp. The associated typedefs are shown below:

1 typedef 2 NumCaches;
typedef Bit#(TLog#(NumCaches)) CacheID;

3 typedef struct{
CacheID child ;

5 Addr addr;
MSI state ;

1

Final Project: Part 1 6.175: Constructive Computer Architecture – Fall 2014

Message
Router

Message FIFOs

Non-
Blocking

Cache

Non-
Blocking

Cache

Cache
Parent

To/From DRAM

To/From Core 0 To/From Core 1

Figure 2: The protocol processors and the message network that implement the MSI protocol for cache
coherency.

7 CacheLine data;
} CacheMemResp deriving(Eq, Bits, FShow);

9 typedef struct{
CacheID child ;

11 Addr addr;
MSI state ;

13 } CacheMemReq deriving(Eq, Bits, FShow);
typedef union tagged {

15 CacheMemReq Req;
CacheMemResp Resp;

17 } CacheMemMessage deriving(Eq, Bits, FShow);

2.2 Message FIFOs – MessageFifo.bsv

In order for the MSI protocol to work, the message FIFO needs to give priority to responses over requests.
One way to implement this is to have two FIFOs, one for responses and one for requests as shown in Figure 3.
Each FIFO has its own enqueue method, but the dequeue logic choses the right FIFO to dequeue from (giving
priority to the response FIFO if it is not empty). The message FIFO’s interface is shown below:

1 interface MessageFifo#(numeric type size);
method Action enq resp(CacheMemResp d);

3 method Action enq req(CacheMemReq d);
method Bool hasResp;

5 method Bool hasReq;
method Bool notEmpty;

7 method CacheMemMessage first;
method Action deq;

9 endinterface

2

Final Project: Part 1 6.175: Constructive Computer Architecture – Fall 2014

Response FIFO

Request FIFO

deq
logic

Figure 3: Detailed view of the message FIFO.

2.3 Message Router – MessageRouter.bsv

The message router module will take messages from the two caches and send them to the protocol processor
one at a time giving priority to responses over requests. The message router module will also have to take
messages from the parent and send them to the right cache.

3 MSI protocol

The MSI protocol is a method to preserve cache coherency. MSI refers to the three states a cache line can
be in: Modified, Shared, and Invalid. I means the current cache line is not valid for reading or writing. S

means the current cache line is valid for reading, but it may be in other caches too, so it is not valid for
writing. M means the current cache line is only in this cache, so it is valid for reading and writing. The states
M, S, and I can be thought of as an order M > S > I. A transition from a lower state to a higher state is an
upgrade. A transition from a higher state to a lower state is called a downgrade.

3.1 MSI enumeration in Bluespec

The provided code includes an enumeration type for MSI status values. Part of its definition is shown below.

1 typedef enum { M, S, I } MSI deriving(Bits, Eq, FShow);
instance Ord#(MSI);

3 function Bool \< (MSI x, MSI y);
function Bool \<= (MSI x, MSI y);

5 function Bool \> (MSI x, MSI y);
function Bool \>= (MSI x, MSI y);

7 function Ordering compare(MSI x, MSI y);
function MSI min(MSI x, MSI y);

9 function MSI max(MSI x, MSI y);
endinstance

Like usual, the MSI enumeration is derived as an instance of Bits and Eq, but there are two other type
classes that MSI is in: FShow and Ord. FShow allows for the name of a value of MSI to be printed using the
fshow function as shown in the following two examples.

MSI y = req.y;
2 // displaying simple message

$display(”Processing downgrade−to−”, fshow(y), ” request”);
4 // displaying more complicated message

Int number = 7;

3

Final Project: Part 1 6.175: Constructive Computer Architecture – Fall 2014

6 String message = ”Hello World”
$display(”number: %d state: ”, number, fshow(y), ” message: %s”, message);

Having MSI as an instance of the Ord typeclass allows you to compare MSI values in the same way as shown in
lecture. The comparison y < M is valid and returns true for y == S and y == Y. MSI was made an instance
of Ord by defining the comparison operators on values of MSI.

3.2 Protocol communications

The MSI protocol involves communications between each of the L1 cache’s protocol processors and the
parent protocol processor at the memory as shown in Figure 2. In practice, the L1 cache is combined with
its protocol processor, but the parent protocol processor is implemented separately from the DRAM. Also
the children protocol processors have different functionality than the parent protocol processor.

The caches and the parent protocol processor can each issue requests and responses. Upgrade requests are
initiated in the L1 caches and sent to the parent protocol processor for processing, and downgrade requests
are sent by the parent protocol processor to the children caches. Each request will be answered by a response
message once the request has been fulfilled.

The slides from lecture 22 have a detailed description of the 8 different situations that need to be handled
for both incoming and outgoing messages.

3.3 Parent Protocol Processor – ParentProtocolProcessor.bsv

The parent protocol processor is in charge of coordinating memory messages to and from the children caches,
and it is in charge of communicating with the main memory. The parent protocol processor performs rules
2, 4, and 6 of the MSI protocol as introduced in class.

Your parent protocol processor will need to keep track of the state of each of the children caches. This
includes:

• child state[index][cache id] – The current state of the cache line index in cache number cache id.

• child tag[index][cache id] – The current tag for the cache line index in cache number cache id.

• waitc[index][cache id] – If the processor is waiting for a downgrade response for cache line index

from cache number cache id.

This module also needs to interact with main memory. When a cache is requesting an upgrade from I to
S or M, it will need data, so this module is in charge of sending a read request to main memory to get the
needed cache line. When a cache is sending a downgrade response from M to S or I, it will need to write
back data, so this module needs to send a write request to main memory to write back.

3.4 Child Protocol Processor

The child protocol processor will be integrated with the non-blocking cache. The non-blocking cache will be
in charge of performing rules 1, 3, 5, 7, and 8 of the MSI protocol as introduced in class.

The child protocol processor only needs to keep track of the state of its own cache. This includes

• state[index] – The current state of the cache line index.

• tag[index] – The current tag for the cache line index.

• waitp[index] – If the cache is waiting for an upgrade response for cache line index.

4

Final Project: Part 1 6.175: Constructive Computer Architecture – Fall 2014

4 Non-Blocking Cache – NBCache.bsv

A note about the code from class: Yes, you were given code in the lecture for implementing a non-blocking
cache, but for various reasons it didn’t work. Also, that code was for a single core processor; your non-blocking
cache will include cache coherency. For this project, you should first understand how the non-blocking cache
should work, and then you should start from scratch. When you are creating state elements for your cache,
make sure to use vectors of registers, not RegFiles (for the same reason you needed a vector of registers in
lab 7).

Below is some pseudo-code for the non-blocking cache you will be creating:

request method:

if ld request:

if hit in store queue -> return hit

if hit in data cache -> return hit

otherwise:

insert into load buffer

send upgrade request if necessary & possible

if st request:

if hit in data cache and empty store queue -> update data cache

otherwise:

insert into store queue

send upgrade request if necessary & possible

handling message from memory:

if response:

update cache according to response

save response to register

go to load hit state

load hit)

if hit in load buffer -> remove entry and return hit

if no hit in load buffer -> go to store hit state

store hit)

if hit at head of store queue -> dequeue hit and update data cache

if no hit at head of store queue -> go to store req state

store req)

resend request for head of store queue if necessary & possible

go to load req state

load req)

if conflicting address in load buffer -> resend request if possible

go to ready state

if request:

handle request according to rules 5 and 7

*each mention of sending an upgrade request (rule 1) implies sending a downgrade response

if necessary (rule 8).

4.1 Internal Modules

There are two internal modules used by the non-blocking cache to keep track of loads and stores. The first
is a load buffer, and the second is a store queue. Implementations of each are provided with the initial code.

4.1.1 Load Buffer – LdBuff.bsv

The load buffer is provided for you and it has the following interface:

5

Final Project: Part 1 6.175: Constructive Computer Architecture – Fall 2014

1 interface LdBuff#(numeric type size);
method Maybe#(Tuple2#(Bit#(TLog#(size)), LdBuffData)) searchHit(Addr x);

3 method Maybe#(LdBuffData) searchConflict(Addr x);
method Action remove(Bit#(TLog#(size)) x);

5 method Action enq(LdBuffData x);
endinterface

The methods do the following:

• searchHit(x) – looks for the next load hit corresponding to the cache line of address x. If there is a
hit, it returns a valid Tuple2 of the index in the load buffer and the LdBuffData corresponding to the
matching load. If there is no hit, it returns an invalid value. In order to remove this hit from the load
buffer, you need to use the index returned from this method in the remove method.

• searchConflict(x) – looks for a load request to the same index as address x but a different tag. This
is used to find new upgrade responses to send.

• remove(x) – removes an entry from the load buffer. This should only be used with indexes obtained
from the searchHit method.

• enq(x) – used for enqueuing new items into the load buffer. See LdBuff.bsv for the definition of the
type LdBuffData.

4.1.2 Store Queue – StQ.bsv

The store queue is provided for you and it has the following interface:

interface StQ#(numeric type size);
2 method Maybe#(Data) search(Addr x);

method Action enq(StQData x);
4 method Bool empty;

method Action deq;
6 method StQData first;

endinterface

The methods do the following:

• search(x) – looks for the most recent store to address x and returns the data if there is a match. If
there is no match it returns an invalid value.

• enq(x) – used for enqueuing new items into the store queue. See StQ.bsv for the definition of the type
StQData.

• empty – returns true if the store queue is empty. It is necessary to check this before updating the cache
for a store hit.

• deq – dequeues the first element from the store queue.

• first – returns the first element in the store queue.

4.2 Advice

4.2.1 Handling tagged union CacheMemMessage

Messages from the parent protocol processor come as values of the tagged union type CacheMemMessage. To
best handle these messages, use a case statement with pattern matching like shown below.

6

Final Project: Part 1 6.175: Constructive Computer Architecture – Fall 2014

1 case(cache mem message) matches
tagged Resp .resp:

3 begin
// handle CacheMemResp resp

5 end
tagged Req .req:

7 begin
// handle CacheMemReq req

9 end
endcase

4.2.2 Handling rules 1 and 8

Rules 1 (upgrade-to-y request) and 8 (downgrade-to-y request) work together to get a desired line in the
cache with a specified MSI state. If a different line is occupying the space where the desired line will be, then
rule 8 is used to remove that line. Rule 1 is used to send an upgrade for an invalid slot or a valid slot with
a lower state. Since rule 1 enqueues a request, rule 8 enqueues a response, and message FIFOs can handle a
request and a response in a same cycle, then rule 1 and rule 8 can be performed in the same cycle.

There are four different situations where rules 1 and 8 are used in the non-blocking cache: load miss,
store miss, resend request from head of store queue, and resend load request from load buffer. To reduce the
complexity of performing rules 1 and 8 and these four situations, you can write some functions to help you.
The following shows two function prototypes for sending an upgrade request with rules 1 and 8.

function Bool can send upgrade req(Addr a, MSI y);
2 // Returns true if the cache can send an upgrade to y request for address a.

// If a downgrade response is necessary, this includes if that downgrade is possible too.
4 endfunction

6 function Action send upgrade req(Addr a, MSI y);
return (action

8 // If rule 8 is necessary, this sends an downgrade response for the old cache line
// In all cases , this sends an upgrade request for the new cache line or for the new state

10 endaction);
endfunction

The function can send upgrade req should return true if it is possible to use rule 1 (and possibly rule 8) to
get the cache line corresponding to address a with state y. This function should return false if the cache line
is already in the desired state. The function send upgrade req sends the request for rule 1 (and possibly
the response for rule 8) to get the cache line corresponding to address a with state y. By using these two
functions, you can significantly reduce the complexity of your written design.

These two functions should be defined within the mkNBCache module so it can read and write the internal
state of that module.

4.2.3 Handling memory responses

One of the most complicated things in the non-blocking cache design is the state machine that is used to
handle memory responses. When a response comes back from memory, you need to first look for hits in the
load bufer, then look for hits in the store queue, and then send more requests if possible. The states in this
state machine can be expressed by the following enumeration:

1 typedef enum { Ready, LdHitState, StHitState, StReqState, LdReqState } NBCacheState deriving (Bits,
Eq);

7

Final Project: Part 1 6.175: Constructive Computer Architecture – Fall 2014

The actions for each of these states are described in the pseudo-code outline of the non-blocking cache above.
While the non-blocking cache is performing these actions, it needs to stop handling incoming requests

from the processor and all incoming messages from the memory. Therefore the state needs to be Ready in
order to do these actions.

This state machine has many optimizations that can be performed to trim some computation time from
it. For example, if a line is upgraded from I to S, then after the LdHitState you can skip the StHitState

go straight to the StReqStateState. Likewise, if a line is upgraded from S to M, then you can skip the
LdHitState and go straight to the StHitState when starting the FSM. Also, the two states StHitState

and StReqState can be combined into a single state that performs both tasks.

5 Part 1 Requirements

In this part, you are expected to implement the four modules listed below to create a coherent, non-blocking,
cache hierarchy.

1. Message FIFO

2. Message router

3. Parent protocol processor

4. Coherent non-blocking cache

Each of these modules have a test bench provided in the initial code. These (and possibly other) test benches
will be used to check the functionality of your implementations.

5.1 Initial Code

The initial code for this project is in your group’s git repository. You can get it by running the following
command:

git clone /mit/6.175/groups/group<N>/project-part1.git

where <N> is replaced with your group’s assigned number. If you are not part of a group, the initial code is
also available on the course website.

The root directory contains a BSV source file for each module to implement, and it contains various other
BSV source files for required typedefs, functions, and library modules. There are also folders containing tests
for the modules.

1. message-fifo-test – Tests the message FIFO in MessageFifo.bsv

2. message-router-test – Tests the message router in MessageRouter.bsv. This test also uses the
message FIFO.

3. ppp-test – Tests the Parent Protocol Processor in ParentProtocolProcessor.bsv. This test also
uses the message FIFO.

4. nb-cache-mini-test – Tests the non-blocking cache in NBCache.bsv with load/store hits/misses one
at a time. This test also uses the message FIFO.

5. nb-cache-test – Tests the non-blocking cache in NBCache.bsv with more advanced test cases. This
test also uses the message FIFO.

To test any of these tests, go into the directory, run make, and run the generated executable. If the test
passed, it will print PASSED. If it failed, it will print FAILED. To get more information about where your
processor is failing a test, change the debug variable inside the testing module to True, and recompile.

8

