
6.175 Final Project
Part 0: Understanding Non-Blocking

Caches and Cache Coherency

Answers

Notation

• Addresses are ordered triples:

– (tag, index, offset)

• Cache lines are addressed with ordered pairs:

– (tag, index)

• Cache slots are addressed by index

• Reading a cache line from memory:

– M[(tag, index)]

Non-Blocking Cache

• Given: Processor requests and memory
responses

• Assignment: Complete the following tables
(not all cells should be filled)

– We will focus on Loads first and Stores second

– In later tables we integrate Loads and stores
together

Multiple Requests in Flight – Part 1

Processor Memory Slot 0 Slot 1 Slot 2 Slot 3

Req Resp Req Resp V W V W V W V W

0 0 0 0 0 0 0 0

1: Ld (0,0,0) Ld(0,0) 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

2: Ld (0,1,0) Ld (0,1) 0 1 0 1 0 0 0 0

0 1 0 1 0 0 0 0

3: Ld (0,2,0) Ld (0,2) 0 1 0 1 0 1 0 0

0 1 0 1 0 1 0 0

4: Ld (0,3,0) Ld (0,3) 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

Multiple Requests in Flight – Part 2

Processor Memory Slot 0 Slot 1 Slot 2 Slot 3

Req Resp Req Resp V W V W V W V W

0 1 0 1 0 1 0 1

M[(0,0)] 1 0 0 1 0 1 0 1

Ld 1 – data 1 0 0 1 0 1 0 1

M[(0,1)] 1 0 1 0 0 1 0 1

Ld 2 – data 1 0 1 0 0 1 0 1

M[(0,3)] 1 0 1 0 0 1 1 0

Ld 4 – data 1 0 1 0 0 1 1 0

M[(0,2)] 1 0 1 0 1 0 1 0

Ld 3 – data 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

Out of order resp

Same Cache Line, Different Offset
Processor Memory Slot 0 other

Req Resp Req Resp V W # elem in LdQ

0 0 0

1: Ld (0,0,0) Ld (0,0) 0 1 1

0 1 1

2: Ld (0,0,1) 0 1 2

0 1 2

M[(0,0)] 1 0 2

Ld 1 – data 1 0 1

Ld 2 – data 1 0 0

3: Ld (0,0,2) Ld 3 – data 1 0 0

1 0 0

4: Ld (0,0,3) Ld 4 – data 1 0 0

1 0 0

Ld Hit

Ld Hit

Same Index, Different Tag
Processor Memory Slot 0

Req Resp Req Resp V W Tag

0 0 ?

1: Ld (0,0,0) Ld (0,0) 0 1 0

0 1 0

2: Ld (1,0,0) 0 1 0

0 1 0

M[(0,0)] 1 0 0

Ld 1 – data 1 0 0

Ld (1,0) 0 1 1

0 1 1

M[(1,0)] 1 0 1

Ld 2 – data 1 0 1

1 0 1

Search LdQ for next Req

Stores
Processor Memory Slot 0 # elements in

Req Resp Req Resp V W D StQ

0 0 0 0

1: St x (0,0,0) Ld (0,0) 0 1 0 1

0 1 0 1

2: St y (0,0,1) 0 1 0 2

0 1 0 2

M[(0,0)] 1 0 ? 2

St 1 – ACK 1 0 x 1

3: St z (0,0,2) St 2 – ACK 1 0 x 0

3: St z (0,0,2) 1 0 x 0

3: St z (0,0,2) St 3 - ACK 1 0 x 0

1 0 x 0

1 0 x 0

Cache can’t accept
Req while handling

memory Resp

Store Bypassing
Processor Memory Slot 0 # elements in

Req Resp Req Resp V W D Data(0) StQ LdQ

0 0 0 - 0 0

1: Ld (0,0,0) Ld (0,0) 0 1 0 - 0 1

0 1 0 - 0 1

2: St y (0,0,0) 0 1 0 - 1 1

3: St z (0,0,0) 0 1 0 - 2 1

4: Ld (0,0,0) Ld 4 – z 0 1 0 - 2 1

0 1 0 - 2 1

M[(0,0)] 1 0 0 ? 2 1

Ld 1 – ? 1 0 0 ? 2 0

St 2 – ACK 1 0 1 y 1 0

St 3 – ACK 1 0 1 z 0 0

1 0 1 z 0 0

Hit from StQ

Resending Requests
Processor Memory Slot 0 # elements in

Req Resp Req Resp V W D Tag StQ LdQ

0 0 0 ? 0 0

1: St y (0,1,0) Ld (0,1) 0 0 0 ? 1 0

2: St z (0,0,0) Ld (0,0) 0 1 0 0 2 0

M[(0,0)] 1 0 0 0 2 0

3: Ld (1,0,0) Ld (1,0) 0 1 0 1 2 1

0 1 0 1 2 1

M[(0,1)] 0 1 0 1 2 1

St 1 – ACK 0 1 0 1 1 1

M[(1,0)] 1 0 0 1 1 1

Ld 3 – data 1 0 0 1 1 0

Ld (0,0) 0 1 0 0 1 0

M[(0,0)] 1 0 0 0 1 0

St 2 – ACK 1 0 1 0 0 0

Req sent from head of StQ

Cache Coherency

• Given: Initial cache states for a single address
and a cache request for that address

• Assignment: Write the rules each module
needs to execute to perform the cache
request

– You may have to keep track of what messages are
still in the message network. Unfortunately there
is not enough space to include it in the table.

No Contest: Cache 0 - Ld
Cache 0 Cache 1 Parent

Cache 0 Cache 1 rule

state waitp rule state waitp rule state waitc state waitc

I I I I

I S 1 I I I

I S I S I 2

S 3 I S I

Other Cache is Writing: Cache 0 – Ld

Cache 0 Cache 1 Parent

Cache 0 Cache 1 rule

state waitp rule state waitp rule state waitc state waitc

I M I M

I S 1 M I M

I S M I M S 4

I S S 5 I M S

I S S I S 6

I S S S S 2

S 3 S S S

Lots of Downgrading: Cache 0 – St

Cache 0 Cache 1 Parent

Cache 0 Cache 1 rule

state waitp rule state waitp rule state waitc state waitc

M M M M

I M 8, 1 M M M

I M M I M 6

I M M I M I 4

I M I 5 I M I

I M I I I 6

I M I M I 2

M 3 I M I

M state for different tag. Need to first evict this line, and then upgrade to M for the desired tag

Bonus: Both want to write

Cache 0 Cache 1 Parent

Cache 0 Cache 1 rule

state waitp rule state waitp rule state waitc state waitc

S S S S

S M 1 S M 1 S S

S M S M S S I 4 (from 0)

S M I M 5 S S I

S M I M S I 6

S M I M M I 2

M 3 I M M I I 4 (from 1)

I 5 I M M I I

I I M I I 6

I I M I M 2

I M 4 I M

The Rest of the Project – Part 1

• Building a non-blocking cache hierarchy and
testing with simulated use cases

– This includes designing modules for Message
FIFOs, the Message Network, the Cache Parent
Processor, and the Non-blocking Caches

– Some of the included tests are identical to the
executions shown in Part 0

• It is important to know what the modules are supposed
to do when debugging!

Part 1: Non-Blocking Coherent Cache
Summary

• Request from processor:
– If Ld request:

• If in StQ – return data

• If in cache – return data

• Otherwise:
– Enqueue into LdQ

– Send downgrade response* and upgrade request if possible

– If St request:
• If cache hit and StQ empty – write to cache

• Otherwise:
– Enqueue into StQ

– Send downgrade response* and upgrade request if possible

*Downgrade responses are not always necessary

Part 1: Non-Blocking Coherent Cache
Summary

• Message from Parent:
– If upgrade response:

• Update cache line
• Search LdQ and return responses until no more hits

(multiple cycles)
• Write to cache for head of StQ until cache miss (multiple

cycle)
• Send upgrade to M request for head of StQ (if possible)
• Send upgrade to S request for LdQ entry with index

matching the response (if possible)

– If downgrade request:
• Update cache line (if necessary)
• Send response (if necessary)

The Rest of the Project – Part 2

• Integrating the Non-Blocking Cache with an
out-of-order processor core to create a
multicore SMIPS processor

– Requires adding support for LL (load-link) and SC
(store-conditional) instruction and memory
fences.

– This will also include

The Rest of the Project – Timeline

• Part 1:
– Distributed in waves this weekend
– Finish before checkpoint meetings

• Checkpoint Meetings:
– Wednesday, December 3rd and Friday, December 5th during class

time
– You will sign up for slots soon

• Part 2:
– Distributed around the time of the checkpoint meetings
– Due December 10th at 3 PM – Strict deadline!

• Presentations:
– December 10th from 3 PM to 6 PM in 32-D463 (Star)
– Includes Pizza!

