
Lab 4: SMIPS Introduction 6.175: Constructive Computer Architecture – Fall 2014

Lab 5: SMIPS Introduction – Multi-Cycle and Two-Stage Pipeline

Due: Monday October 20, 2014

1 Introduction

This lab introduces the SMIPS processor and the toolflow associated with it. The lab begins with the
introduction of a single cycle implementation of a SMIPS processor. You will then create two and four cycle
implementations driven by memory structural hazards. You will finish by creating a two stage pipelined
implementation so fetch and execute are happening in parallel. This two stage pipeline will be the bases for
future pipelined implementations.

2 The Processor Infrastructure

A large amount of work has already been done for you in setting up the infrastructure to run, test, evaluate
performance, and debug your SMIPS processor in simulation and on the FPGA. The processor designs for
this lab cannot be run on FPGAs because of the type of memory used, but the next lab will be able to be
synthesized for an FPGA.

2.1 Initial Code

The code provided for this lab has three folders in it: programs/, scemi/, and src/. programs/ contains
SMIPS programs in assembly and C. scemi/ contains the infrastructure for compiling and simulating the
processors. src/ contains the BSV code for the SMIPS processors.

Within the BSV source folder, there is a folder src/includes/ which contains the BSV code for all the
modules used in the SMIPS processors. These files are briefly explained below.

Btb.bsv Implementations of a branch target buffer address predictor.

Cop.bsv Implementation of the coprocessor module.

DMemory.bsv Implementation of the data memory using a massive register file.

Decode.bsv Implementation of the instruction decoding.

Ehr.bsv Implementation of EHRs as described in the lectures.

Exec.bsv Implementation of the instruction execution.

Fifo.bsv Implementation of a variety of FIFOs using EHRs as described in the lectures.

IMemory.bsv Implementation of the instruction memory using a massive register file.

MemInit.bsv Modules for downloading the initial contents of instruction and data memories from the host
pc.

MemTypes.bsv Common types relating to memory.

ProcTypes.bsv Common types relating to the processor.

RFile.bsv Implementation of the register file.

Types.bsv Common types.

1



Lab 4: SMIPS Introduction 6.175: Constructive Computer Architecture – Fall 2014

SceMiLayer
Host

TestBench

Core

hostToCpu

dMemInit

Bridge

cpuToHost

HardwareSoftware

iMemInit

Figure 1: SceMi Setup

2.2 The SceMi Setup

Figure 1 shows the SceMi setup for the lab. The SceMiLayer instantiates the processor from the specified
processor BSV file and SceMi ports for the processors’s hostToCpu, cpuToHost, iMemInit, and dMemInit
interfaces. The SceMiLayer also provides a SceMi port for reseting the core from the test bench, allowing
multiple programs to be run on the Processor without reprogramming the FPGA or restarting the bluesim
executable.

Source code for the SceMiLayer and Bridge are in the scemi/ directory. The SceMi link goes over a TCP
bridge for simulation and a PCIe bridge when running on the actual FPGA.

2.3 Building the Project

The file scemi/sim/project.bld describes how to build the project using the build command which is
part of the Bluespec installation. Run build --doc for more information on the build command. The
full project, including hardware and testbench, can be rebuilt from scratch by running the command
build -v <proc_name> from the scemi/sim/ directory where <proc_name> is one of the processor names
specified in this lab handout1. This will overwrite the executable generated by any previous call to build.

Building a processor also generates the Bluespec Workstation project file <proc_name>.bspec which can
be used to debug the project using the schedule analysis tool or the module browser and waveform viewer.

2.4 Compiling the Assembly Tests and Benchmarks

Our SceMi test bench runs SMIPS programs specified in Verilog Memory Hex (vmh) format. The programs/
directory contains the source code for a number of assembly tests and benchmark programs you can try out
on your processor. A Makefile is provided for compiling the programs to the required .vmh format.

To compile all the assembly tests and benchmarks, go to the programs/ directory and run the make

command.
This will create a new directory under the programs/ directory called build/, which contains the gen-

erated .vmh files along with other intermediate results. Compile the assembly tests and benchmarks now.
Those files in the programs/build/ with the .asm.vmh extension are assembly tests. These are mi-

crobenchmarks written in assembly which test specific instructions or to give specific performance results
and are explained below:

baseline.asm.vmh Returns how many cycles it takes to run 100 consecutive NOP instructions2. This
microbenchmark returns 102 cycles for the one cycle processor because it takes a few cycles to set up
the measurement.

1Running build -v by itself will print an error message containing all valid processor names.
2NOP is short for No Operation.

2



Lab 4: SMIPS Introduction 6.175: Constructive Computer Architecture – Fall 2014

bpred *.asm.vmh Microbenchmarks that contain a lot of branches to test the performance of various branch
predictors. These benchmarks return the number of cycles required to run the benchmark. These
results should be compared relative to other processors with other branch predictors.

bpred bht.asm.vmh Contains many branches that a branch history table can predict well.

bpred btb.asm.vmh Contains many branches that a branch target buffer can predict well.

bpred jal.asm.vmh Contains many jump-and-link (JAL) instructions.

bpred j.asm.vmh Contains many jump (J) instructions.

bpred ras.asm.vmh Contains many jumps to registers that a return address stack (RAS) can predict well.

cache.asm.vmh Tests a cache by writing to and reading from addresses that would alias in a smaller memory.

smipsv<num> <op>.asm.vmh Tests a specific instruction and prints PASSED or FAILED depending on the
results of the test.

It is highly recommended you rerun all the assembly tests after making any changes to your processor to
verify you didn’t break anything. Also, run the assembly tests when trying to locate a bug, as they will
narrow down which instructions are problematic.

Those files in the programs/build/ directory with the extension .bench.vmh are benchmarks which
can be used to evaluate the performance of your processor. When completed, the benchmarks print out
the total number of instructions executed and the number of cycles required to execute those instructions.
Performance is measured in instructions-per-cycle (IPC). The greater the IPC the better. For our pipeline
we can never exceed an IPC of 1, but we should be able to get close to it with a good branch predictor and
proper bypassing.

2.5 Using the Test Bench

Our SceMi test bench is software run on the host processor which interacts with the SMIPS processor over
the SceMi link, as shown in figure 1. The test bench loads a program for the SMIPS processor to execute,
starts the processor, and handles toHost requests until the processor indicates it has completed, either
successfully or unsuccessfully.

The test bench takes .vmh files as arguments. These files are compiled SMIPS programs and are loaded
and run on the simulated processor in order.

To run the test bench, first build the project as described in section 2.3 and compile the SMIPS programs
as described in section 2.4. For simulation the executable bsim dut will be created, which should be running
when you start the test bench.

For example, to run the qsort benchmark on the processor in simulation you could use the commands:

./bsim_dut > qsort.out &

./tb ../../programs/build/qsort.bench.vmh

The test bench outputs the result of the program and statistics. The SMIPS program could either fail, or
pass, as determined by a value in the toHost register in the SMIPS Processor, which is set by the running
SMIPS program.

For your convenience, we have provided scripts run assembly and run benchmarks in the sim/ directory
which run all of the compiled assembly tests and benchmarks respectively.

2.6 Test Bench Output

There are three sources of outputs from SMIPS simulation. These include BSV display statements (both
messages and errors), SMIPS print statements, and VCD waveform dumps. Debugging the trickiest bugs
sometimes takes all three.

BSV $display statements are printed to stdout by bsim dut. BSV can also print to stderr using
$fwrite(stderr, ...) statements. The scripts run assembly and run benchmarks redirect the stdout of

3



Lab 4: SMIPS Introduction 6.175: Constructive Computer Architecture – Fall 2014

bsim dut to /dev/null so you will not see the output of $display statements, but you will still see errors
printed using $fwrite. The above example pipes stdout to qsort.out so you can find the output of BSV’s
display statements there.

SMIPS print statements are handled through moving characters and integers to coprocessor registers.
The testbench reads from the coprocessor interface and prints characters and integers to stdout when it sees
them.

VCD waveform dumps are saved only when bsim dut is called with the -V flag and a file name like this:

./bsim_dut -V qsort.vcd > qsort.out &

./tb ../../programs/build/qsort.bench.vmh

These waveforms can then be explored using gtkwave from the Bluespec Workstation module viewer.

Exercise 1 (0 Points): Compile the test programs by going to the programs/ directory and using the
make command. Compile the one-cycle SMIPS implementation and test it by going to the scemi/sim/

directory and using the following commands:

build -v onecycle

./run_assembly

./run_benchmarks

3 Multi-cycle SMIPS Implementations

The provided code, src/OneCycle.bsv, implements a one-cycle Harvard architecture3 SMIPS processor.
This processor is only able to do operations in a single cycle because it has separate instruction and data
memories, and each memory gives responses to loads in the same cycle. In this portion of the lab you will
make two different multicycle implementations motivated by more realistic memory structural hazards.

3.1 Two Cycle Von Neumann Architecture SMIPS implementation

An alternative to the Harvard architecture is the von Neumann architecture4. The von Neumann architecture
has instructions and data stored in the same memory. If there is only one memory that holds both instructions
and data, then there is a structural hazard (assuming the memory cannot be accessed twice in the same
cycle). To get around this hazard, you can split the processor into two cycles: instruction fetch and execute.

1. Instruction fetch reads the current instruction from the memory and decodes it.

2. Execute reads from the register file, does ALU operations, does memory operations, and writes back
to the register file.

When splitting the processor to a two cycle implementation, you will need a register to keep intermediate
data between the two stages, and you will need a state register to keep track of the current state. The
intermediate data register will be written to during fetch, and it will be read from during execute. The state
register will toggle between fetch and execute. You can use the provided Stage typedef as the type for the
state register to make things easier.

Exercise 2 (15 Points): Implement a two-cycle SMIPS processor in TwoCycle.bsv using a single memory
for instructions and data. The module mem has been provided for you to use as your single memory. Test
this processor by going to the scemi/sim/ directory and using the following commands:

build -v twocycle

./run_assembly

./run_benchmarks

3The Harvard architecture has separate instruction and data memories
4The von Neumann architecture is also called the Princeton architecture

4



Lab 4: SMIPS Introduction 6.175: Constructive Computer Architecture – Fall 2014

3.2 Four-cycle SMIPS implementation to support memory latency

The one and two-cycle SMIPS processors assume a memory that has combinational reads; that is, if you
set the read address, then the data from the read will be valid during the same clock cycle. Most memories
have reads with longer latencies: first you set the address bits, and then the read result is ready on the next
clock cycle. If we change the memory in the previous SMIPS processor implementations to a memory with
a read latency, then we introduce another structural hazard: results from reads cannot be used in the same
cycle as the reads are performed. This structural hazard can be avoided by further splitting the processor
into four cycles: instruction fetch, instruction decode, execute, and write back.

1. Instruction fetch sets the address lines on the memory to PC to read the current instruction.

2. Instruction decode gets the instruction from memory, decodes it, and reads registers.

3. Execute will perform ALU operations, write data to the memory for store instructions, and set memory
address lines for read instructions.

4. Write back will get any read results from the memory and it will write back to the register file (either
from the ALU or from the memory).

This processor will require more registers between stages and an expanded state register. You can use
the modified Stage typedef as the type for the state register.

A one-cycle read latency memory is implemented by mkDelayedMemory. This module has an interface,
DelayedMemory, that decouples memory requests and memory responses. Requests are still made in the
same way using req, but this method no longer returns the response at the same time. In order to get the
results of a requested load, you have to call the resp action value method in a later clock cycle to get the
memory response from the previous read. The resp method will not return anything for stores, so it should
not be called for them. More details can be found in the source file DelayedMemory.bsv in src/includes/.

Exercise 3 (15 Points): Implement a four-cycle SMIPS processor in FourCycle.bsv as described above.
Use the delayed memory module mem already included in FourCycle.bsv for both instruction and data
memory. Test this processor using the following command:

build -v fourcycle

./run_assembly

./run_benchmarks

4 Two-stage pipeline SMIPS Implementation

While the two-cycle and four-cycle implementations allow for processors that handle certain structural haz-
ards, they do not do well in performance. All processors today are pipelined to increase performance, and
they often have duplicated hardware to avoid structural hazards such as the memory hazards seen in the
two- and four-cycle SMIPS implementations. Pipelining introduces many more data and control hazards for
the processor to handle. To avoid data hazards for now, we will only look at a two-stage pipeline.

The two-stage pipeline uses the way the two-cycle implementation splits the work into two stages, and it
runs these stages in parallel using separate instruction and data memories. This means as one instruction
is being executed, the next instruction is being fetched. For branch instructions, the next instruction is not
always known. This is known as a control hazard.

To handle this control hazard, use a PC+4 predictor in the fetch stage and correct the PC when mispre-
dictions occur. Make sure to kill wrong path instructions as shown in lecture.

Exercise 4 (30 Points): Implement a two-cycle pipelined SMIPS processor in TwoStage.bsv using sepa-
rate instruction and data memories (with combinational reads, just like the memories from OneCycle.bsv).
Test this processor using the following command:

build -v twostage

./run_assembly

./run_benchmarks

5



Lab 4: SMIPS Introduction 6.175: Constructive Computer Architecture – Fall 2014

4.1 Instructions Per Cycle

Processor performance is often measured in instructions per cycle (IPC). This metric is a measure of through-
put, or how many instructions are completed per cycle on average. IPC is computed by dividing a number
of instructions by how many cycles it took to execute those instructions. The one-cycle implementation gets
1.0 IPC, but since the clock required for the one-cycle implementation to work is very slow, this is not as
fast as it sounds. The two-cycle and four-cycle implementations achieve 0.5 and 0.25 IPC respectively.

The pipelined implementation of the processor will achieve somewhere between 0.5 IPC and 1.0 IPC.
Since the only thing keeping your processor from an IPC of 1.0 is branch misprediction, the actual IPC of
your processor depends only on the accuracy of your PC+4 next address predictor.

Discussion Question 1 (5 Points): What is the IPC for the two-stage pipelined processor for each
benchmark tested by the run benchmarks script?

Discussion Question 2 (5 Points): What is the formula to compute the next address predictor accuracy
from the IPC? (Hint, how many cycles does it take to execute an instruction when the PC+4 prediction
is correct? What about when it is incorrect?) Using this formula, what is the accuracy of the PC+4 next
address predictor for each benchmark?

4.2 Next Address Prediction

Now lets use a more advanced next address predictor. One such example is a branch target buffer (BTB).
A BTB keeps track of previously used next addresses that were not PC+4, and it is used to compute the
next address instead of PC+4 whenever it contains a next PC for the current PC.

Btb.bsv contains an implementation of a BTB. Its interface has two methods: predPc and update. The
method predPc takes the current program counter and it returns a prediction. The method update takes a
program counter and the next address for the instruction at that program counter and adds it as a prediction
if it is not PC+4.

The predPc method should be called in the first pipeline stage, and the update method should be called
in the last pipeline stage. Since update takes in the program counter for the current instruction, you will
need to store the PC for the instruction that is currently in the execute stage of the pipeline. You will also
need to use this PC in the Exec function so it can compute branch targets correctly (PC-4 will not work
anymore to compute the PC of that instruction).

The mispredict field of ExecInst will be very useful here.

Exercise 5 (10 Points): Add a BTB to your two-cycle pipelined SMIPS processor and save the results
in TwoStageBTB.bsv. Test this processor using the following command:

build -v twostagebtb

./run_assembly

./run_benchmarks

Discussion Question 3 (5 Points): What is the IPC for the two-stage pipelined processor with a BTB
for each benchmark tested by the run benchmarks script? How much has it improved over the previous
version?

Discussion Question 4 (5 Points): How does adding the BTB change the performance of the bpred *

microbenchmarks? (Hint: the number of cycles for bpred btb should go down.)

Bonus Discussion Questions

Discussion Question 5 (5 Bonus Points): Look at the assembly source for the bpred * benchmarks
and explain why each benchmark improved, stayed the same, or got worse.

6



Lab 4: SMIPS Introduction 6.175: Constructive Computer Architecture – Fall 2014

Discussion Question 6 (5 Bonus Points): How would you improve the BTB to improve the results of
bpred bht?

7


