X
““Constructive Computer Architecture

Sequential Circuits - 2

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

N

September 10, 2014 http://csg.csail.mit.edu/6.175 L04-1

Content

So far we have seen modules with methods
which are called by rules outside the body.

Now we will see examples where a module
may also contain rules
= gcd

A common way to implement large
combinational circuits is by folding where
registers hold the state from one iteration to
the next
= Implementing imperative loops
= Mutliplication

N

September 10, 2014 http://csg.csail.mit.edu/6.175

L04-2

GCD module

Euclidean Algorithm

</Reg#(Bit#(BZ)) x <- mkReg (0) ;
Reg# (Bit#(32)) y <- mkReg(0);
rule gcd;
if (x > y) begin
X <=x -V

end else if (x != 0) begin
X <=vy; v <= x;
end
endrule

A rule inside a module
may execute anytime

If x is O then the rule
has no effect

method Action start (Bit#(32) a, Bit#(32) b);

X <= a; y <= b;
method Bit# (32) result; return y;
method Bool resultRdy; return x
method Bool busy; return x

14

0;

endmethod
endmethod
endmethod
endmethod

Start method should be called only if busy is False.
The result is available only when resultRdy is True.

September 10, 2014 http://csg.csail.mit.edu/6.175

LO4-3

Circuits for GCD

p
T J, x!=0(s;) X>Y(S3)
x1=0(s,) —\0 L/ ! ol
| % y(s2) 1 |
X>Y(53) —\° 1t/ LO L/
i b——m |
startEn —\1__0/ startEn —\ ! 0/

—> X ——*:> y

Result
>
Busy

| =
ResuIthy xI=0(s1) xy(sy) x>y (s;)

A

September 10, 2014 http://csg.csail.mit.edu/6.175

L04-4

Expressing a loop using
registers

)
N
int s = s0; We need two registers
for (inti=0;i<32;i=i+1){ to hold s and i values
s = f(s); from one iteration to
¥ the next.
return s; C-code These registers are
initialized when the
: computation starts and
+1| 0 f | sO updated every cycle
é:fk é_;‘ until the computation
sel sel terminates
en S sel = start
e v en = start | notDone
'
notDone

September 10, 2014 http://csg.csail.mit.edu/6.175 LO4-5

Expressing a loop in BSV

p
N : _ .
When a rule executes: Regﬁ (E?tﬁ (22)) S i m]]iiegU3()2, .
= all the registers are read Regi (Bity (6)) + mkReg (32) ;
at the beginning of a rule step;
clock cycle if (1 < 32) begin
= computations to s <= f(s); 1 <= 1+1;
evaluate the next value end
of the registers are drul
performed endru'e
m Registers that need to
be updated are updated +1| O f sO
at the end of the clock \;"—":7
cycle =] I
se
4 Muxes are need to _ v
initialize the registers en s
< 32
] sel = start
notDone | €N = start | notDone

September 10, 2014 http://csg.csail.mit.edu/6.175 LO4-6

Multiplication by repeated
addition

§
4

b Multiplicand 1101 (13) 1 — N

a Muliplier * 1011 (11) . m1 aOOl m0

tp 0000 I add4

mO + 1101

tp 01101 32— -mi2

m1 + 1101 l l l l

tp 100111 :

m2 + 0000 1 add4

tp 0100111 23 = m3

m3 + 1101 l l l l

tp 10001111 (143)

(add4
mi = (a[i]==0)2 0 : b; l l l l l vy

September 10, 2014 http://csg.csail.mit.edu/6.175 LO4-7

Combinational 32-bit multiply

p
T function Bit# (64) mul32 (Bit#(32) a, Bit#(32) b);
Bit#(32) tp = 0;
Bit# (32) prod = 0;
for(Integer i = 0; 1 < 32; 1 = 1i+1) Combinational
begin circuit uses 31
Bit#(32) m = (al[i]==0)2? 0 : b; add32 circuits
Bit#(33) sum = add32(m,tp,0);
prod[i:1] = sum[0];
tp = sum[32:1];
end
return {tp,prod};
endfunction

We can reuse the same add32 circuit if we store
the partial results in a register

September 10, 2014 http://csg.csail.mit.edu/6.175 LO4-8

Design issues with
combinational multiply

Lot of hardware
s 32-bit multiply uses 31 add32 circuits

Long chains of gates

s 32-bit ripple carry adder has a 31-long
chain of gates

s 32-bit multiply has 31 ripple carry adders in
sequence! Total delay ? 2(n-1) FAs?

N

The speed of a combinational circuit is

determined by its longest input-to-output path

Yes - Sequential Circuits;

Circuits with state
September 10, 2014 http://csg.csail.mit.edu/6.175 LO4-9

Can we do better?

N

Multiply using registers

funetion- Bit#{(64)--mual32{Bit#432)a;-BiE#(32)r-b);

)
Bit#(32) prod = 0;
Bit#-(32)-itp-=-0;
for(Integer i = 0; 1 < 32; 1 = 1i+1)
begin

Bit#{32)--m-=-{aftl==0)2-0-+b;

Bit# (33) sum = add32(m, tp,0);

E;Oi [;;][32 : ?ﬁ[o] ' Com.binational
end version
return {tp,prod};

endfunction

Need registers to hold a, b, tp, prod and i

Update the registers every cycle until we are done

September 10, 2014 http://csg.csail.mit.edu/6.175

LO4-10

Sequential Circuit for Multiply

tp <= sum[32:1];
1 <= 1i+1;
endrule
similar to the
loop body in the

combinational
version

p
T Reg# (Bit# (32)) a <- mkRegU();
Reg# (Bit# (32)) b <- mkRegU{() ;
Reg# (Bit# (32)) prod <-mkReqgU() ;
Reg# (Bit# (32)) tp <- mkReg(0);
Reg# (Bit# (6)) 1 <- mkReg(32);
rule mulStep if (1 < 32); o
Bit#(32) m = (a[i1i]==0)? 0 : Db
Bit# (33) sum = add32(m, tp,0);
prod[i] <= sum[0]; -

state
elements

a rule to
describe
the
dynamic
behavior

So that the rule has

to some other value

no effect until i is set

September 10, 2014 http://csg.csail.mit.edu/6.175

LO4-11

Dynamic selection
requires a mux
when the selection

iy
indices are regular then
> afi] it is better to use a shift

operator (no gates!)
% ..

| 0 ., al0],alll,al2],..

N

VVVVVVYVYYVYYY

September 10, 2014 http://csg.csail.mit.edu/6.175 LO4-12

Replacing repeated
selectlons by shifts

F‘\

rule mulStep if (1 < 32);
Bit#(32) m = (a[0]==0)? 0 : Db;
a <= a >> 1;
Bit#(33) sum = add32 (m, tp,0);
prod <= {sum[0], prod[31:1]};
tp <= sum[32:1];
i <= 1i+1;

endrule

September 10, 2014 http://csg.csail.mit.edu/6.175

Reg# (Bit#(32)) a <- mkRegU();
Reg# (Bit#(32)) b <- mkRegU() ;
Reg# (Bit# (32)) prod <-mkReqgU() ;
Reg# (Bit# (32)) tp <- mkReg(0);
Reg# (Bit# (6)) 1 <- mkReg(32);

LO4-13

Circuit for Sequential
Multiply

N

aln

+1 uk

sl

[30:0]

s2 | s2

O | Il
)

v

result (high) result (low)

sl = start_en
s2 = start_en | !done

September 10, 2014 http://csg.csail.mit.edu/6.175 LO4-14

Circuit analysis

Number of add32 circuits has been reduced
from 31 to one, though some registers and
muxes have been added

The longest combinational path has been
reduced from 62 FAs to to one add32 plus a
few muxes

The sequential circuit will take 31 clock cycles
to compute an answer

N

September 10, 2014 http://csg.csail.mit.edu/6.175 LO4-15

Observations

N

These programs are not very complex and yet
it would have been tedious to express these
programs in a state table or as a circuit
directly

BSV method calls are not available in
Verilog/VHDL, and thus such programs
sometimes require tedious programming

Even the meaning of double-write errors is not
standardized across tool implementations in
Verilog

September 10, 2014 http://csg.csail.mit.edu/6.175 LO4-16

A subtle problem

N

while(lisDone(x)) £
X = doStep(x);
b

doStep

workQ
d
> {5 doneQ

A

let x = workQ.first;

workQ.deq;

if (isDone (x))
doneQ.eng(x) ;

end else begin
workQ.enqg (doStep (%)) ;

end

begin Double write problem

for 1-element Fifo

stay tuned!

September 10, 2014 http://csg.csail.mit.edu/6.175 LO4-17

