
Constructive Computer Architecture

Sequential Circuits - 2

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

September 10, 2014 http://csg.csail.mit.edu/6.175 L04-1

Content
So far we have seen modules with methods
which are called by rules outside the body.

Now we will see examples where a module
may also contain rules

 gcd

A common way to implement large
combinational circuits is by folding where
registers hold the state from one iteration to
the next

 Implementing imperative loops

 Mutliplication

September 10, 2014 L04-2 http://csg.csail.mit.edu/6.175

Reg#(Bit#(32)) x <- mkReg(0);

Reg#(Bit#(32)) y <- mkReg(0);

rule gcd;

 if (x > y) begin

 x <= x – y;

 end else if (x != 0) begin

 x <= y; y <= x;

 end

endrule

method Action start(Bit#(32) a, Bit#(32) b);

 x <= a; y <= b; endmethod

method Bit#(32) result; return y; endmethod

method Bool resultRdy; return x == 0; endmethod

method Bool busy; return x != 0; endmethod

GCD module
Euclidean Algorithm

A rule inside a module
may execute anytime

If x is 0 then the rule
has no effect

Start method should be called only if busy is False.

The result is available only when resultRdy is True.

September 10, 2014 http://csg.csail.mit.edu/6.175 L04-3

Circuits for GCD

x y

- >

x-y (s2) x>y (s3)

!=0

x!=0 (s1)

1 0 startEn 1 0

0 1 x>y(s3)

x-y(s2)

0 1 x!=0(s1)

x y

0 1

x>y(s3) x!=0(s1)

x y

startEn

b a

Busy

ResultRdy

Result

A

September 10, 2014 http://csg.csail.mit.edu/6.175 L04-4

Expressing a loop using
registers
int s = s0;
for (int i = 0; i < 32; i = i+1) {
 s = f(s);
 }
return s; C-code

sel

< 32

0

notDone

+1

i
en sel = start

en = start | notDone

s0 f

sel

s
en

We need two registers
to hold s and i values
from one iteration to
the next.
These registers are
initialized when the
computation starts and
updated every cycle
until the computation
terminates

September 10, 2014 http://csg.csail.mit.edu/6.175 L04-5

Expressing a loop in BSV

< 32

notDone

+1

sel

0

i
en

sel = start
en = start | notDone

f s0

sel

s
en

Reg#(Bit#(32)) s <- mkRegU();

Reg#(Bit#(6)) i <- mkReg(32);

rule step;

 if (i < 32) begin

 s <= f(s); i <= i+1;

 end

endrule

When a rule executes:
 all the registers are read

at the beginning of a
clock cycle

 computations to
evaluate the next value
of the registers are
performed

 Registers that need to
be updated are updated
at the end of the clock
cycle

Muxes are need to
initialize the registers

September 10, 2014 http://csg.csail.mit.edu/6.175 L04-6

Multiplication by repeated
addition

 1101 (13)
 1011 (11)

 0000

 + 1101

 01101

 + 1101

 100111

 + 0000

 0100111

 + 1101

 10001111 (143)

b Multiplicand
a Muliplier *

tp
m0
tp
m1
tp
m2
tp
m3
tp

mi = (a[i]==0)? 0 : b;

a1 m1

a2 m2

a3 m3

add4

0

add4

add4

a0 m0

September 10, 2014 http://csg.csail.mit.edu/6.175 L04-7

Combinational 32-bit multiply
function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);

 Bit#(32) tp = 0;

 Bit#(32) prod = 0;

 for(Integer i = 0; i < 32; i = i+1)

 begin

 Bit#(32) m = (a[i]==0)? 0 : b;

 Bit#(33) sum = add32(m,tp,0);

 prod[i:i] = sum[0];

 tp = sum[32:1];

 end

 return {tp,prod};

endfunction

Combinational
circuit uses 31
add32 circuits

We can reuse the same add32 circuit if we store
the partial results in a register

September 10, 2014 http://csg.csail.mit.edu/6.175 L04-8

Design issues with
combinational multiply

Lot of hardware

 32-bit multiply uses 31 add32 circuits

Long chains of gates

 32-bit ripple carry adder has a 31-long
chain of gates

 32-bit multiply has 31 ripple carry adders in
sequence! Total delay ?

The speed of a combinational circuit is
determined by its longest input-to-output path

Can we do better? Yes – Sequential Circuits;
Circuits with state

2(n-1) FAs?

September 10, 2014 http://csg.csail.mit.edu/6.175 L04-9

Multiply using registers
function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);

 Bit#(32) prod = 0;

 Bit#(32) tp = 0;

 for(Integer i = 0; i < 32; i = i+1)

 begin

 Bit#(32) m = (a[i]==0)? 0 : b;

 Bit#(33) sum = add32(m,tp,0);

 prod[i:i] = sum[0];

 tp = sum[32:1];

 end

 return {tp,prod};

endfunction

Need registers to hold a, b, tp, prod and i

Update the registers every cycle until we are done

Combinational
version

September 10, 2014 http://csg.csail.mit.edu/6.175 L04-10

Sequential Circuit for Multiply
 Reg#(Bit#(32)) a <- mkRegU();

 Reg#(Bit#(32)) b <- mkRegU();

 Reg#(Bit#(32)) prod <-mkRegU();

 Reg#(Bit#(32)) tp <- mkReg(0);

 Reg#(Bit#(6)) i <- mkReg(32);

 rule mulStep if (i < 32);

 Bit#(32) m = (a[i]==0)? 0 : b;

 Bit#(33) sum = add32(m,tp,0);

 prod[i] <= sum[0];

 tp <= sum[32:1];

 i <= i+1;

 endrule

state
elements

a rule to
describe

the
dynamic
behavior

So that the rule has
no effect until i is set
to some other value

similar to the
loop body in the
combinational
version

September 10, 2014 http://csg.csail.mit.edu/6.175 L04-11

Dynamic selection
requires a mux

a[i] a

i

a[0],a[1],a[2],…

a

>>

0

when the selection
indices are regular then
it is better to use a shift
operator (no gates!)

September 10, 2014 http://csg.csail.mit.edu/6.175 L04-12

Replacing repeated
selections by shifts
 Reg#(Bit#(32)) a <- mkRegU();

 Reg#(Bit#(32)) b <- mkRegU();

 Reg#(Bit#(32)) prod <-mkRegU();

 Reg#(Bit#(32)) tp <- mkReg(0);

 Reg#(Bit#(6)) i <- mkReg(32);

 rule mulStep if (i < 32);

 Bit#(32) m = (a[0]==0)? 0 : b;

 a <= a >> 1;

 Bit#(33) sum = add32(m,tp,0);

 prod <= {sum[0], prod[31:1]};

 tp <= sum[32:1];

 i <= i+1;

 endrule

September 10, 2014 http://csg.csail.mit.edu/6.175 L04-13

Circuit for Sequential
Multiply

bIn

b

a i

== 32

0

done

+1

prod

result (low)

[30:0]

aIn

<<

31:0

tp

s1 s1

s1

s2 s2 s2 s2

s1

s1 = start_en
s2 = start_en | !done

result (high)

31

0

 add

0

0

32:1

0

<<

September 10, 2014 http://csg.csail.mit.edu/6.175 L04-14

Circuit analysis
Number of add32 circuits has been reduced
from 31 to one, though some registers and
muxes have been added

The longest combinational path has been
reduced from 62 FAs to to one add32 plus a
few muxes

The sequential circuit will take 31 clock cycles
to compute an answer

September 10, 2014 http://csg.csail.mit.edu/6.175 L04-15

Observations

These programs are not very complex and yet
it would have been tedious to express these
programs in a state table or as a circuit
directly

BSV method calls are not available in
Verilog/VHDL, and thus such programs
sometimes require tedious programming

Even the meaning of double-write errors is not
standardized across tool implementations in
Verilog

September 10, 2014 http://csg.csail.mit.edu/6.175 L04-16

A subtle problem

done

 ?

workQ

doneQ

 let x = workQ.first;

 workQ.deq;

 if (isDone(x)) begin

 doneQ.enq(x);

 end else begin

 workQ.enq(doStep(x));

 end

while(!isDone(x)) {
 x = doStep(x);
}

Double write problem
for 1-element Fifo

doStep

stay tuned!

September 10, 2014 http://csg.csail.mit.edu/6.175 L04-17

