X
““Constructive Computer Architecture:

Multirule systems and
Concurrent Execution of Rules

Arvind
Computer Science & Artificial Intelligence Lab.

Massachusetts Institute of Technology C

September 22, 2014 http://csg.csail.mit.edu/6.175 L07-1

Rewriting Elastic pipeline
as a multirule system

—Jafete-

inQ fifol fifo2 outQ

N

rule stagel;
if (inQ.notEmpty && fifol.notFull)
begin fifol.eng(fl(inQ.first)); inQ.deqg; end endrule

rule stage2;
if(fifol.notEmpty && fifoZ2.notFull)
begin fifoZ2.enqg(f2(fifol.first)); fifol.deg; end endrule

rule stage3;
if (fifo2.notEmpty && outQ.notFull)
begin outQ.eng(f3(fifo2.first)); fifo2.deqg; end endrule

How does such a system function?

September 22, 2014 http://csg.csail.mit.edu/6.175 LO7-2

Bluespec Execution Model

Repeatedly: Highly non-

Select a rule to execute -« deterministic;
User annotations

Compute the state updates can be used in

Make the state updates rule selection

One-rule-at-a-time-semantics: Any legal
behavior of a Bluespec program can be
explained by observing the state updates
obtained by applying only one rule at a time

However, for performance we need to execute
multiple rules concurrently if possible

September 22, 2014 http://csg.csail.mit.edu/6.175 LO7-3

Multi-rule versus single rule
elastic pipeline

p
“rule ArithPipe; 7 ’<:>*+<:>’%::“
X

if (1nQ.notEmpty && fifol.notFull) nQ fifol fifo2 outD
begin fifol.eng(fl(inQ.first)); inQ.deqg; end
if(fifol.notEmpty && fifo2.notFull)
begin fifoZ.enqg(f2(fifol.first)); fifol.deqg; end
if(fifo2.notEmpty && outQ.notFull)
begin outQ.enqg(f3(fifo2.first)),; fifo2.deqg; end
endrule

A

rule stagel;
if (inQ.notEmpty && fifol.notFull)
begin fifol.eng(fl(inQ.first)),; inQ.deqg; end endrule
rule stage?2;
if(fifol.notEmpty && fifoZ.notFull)
begin fifoZ2.enqg(f2(fifol.first)); fifol.deg; end endrule
rule stage3;
if (fifo2.notEmpty && outQ.notFull)
begin outQ.eng(f3(fifo2.first)); fifo2.deqg; end endrule

How are these two systems the same (or different)?
September 22, 2014 http://csg.csail.mit.edu/6.175 LO7-4

Elastic pipeline

'@ Do the system see all the same state
changes?

= The single rule system - fills up the pipeline and
then processes a message at every pipeline stage for
every rule firing — no more than one slot in any fifo
would be filled unless the OutQ blocks

= The multirule system has many more possible states.
It can mimic the behavior of one-rule system but one
can also execute rules in different orders, e.q.,
stagel; stagel; stage2; stagel, stage3,
stage2,stage3, ... (assuming stage fifos have more
than one slot)

When can some or all the rules in a multirule
system execute concurrently?

N

September 22, 2014 http://csg.csail.mit.edu/6.175

LO7-5

Evaluating or applying a rule

@ The state of the system s is defined

as the value of all its registers)*(3’ 3
An expression is evaluated by
computing its value on the current
state Wy
: : A RA N
An action defines the next value of Al AT A
some of the state elements based on 2 2 ;
the current value of the state x'|y'|z’

A rule is evaluated by evaluating the
corresponding action and
simultaneously updating all the
affected state elements

Given action a and state S, let a(S) represent
the state after the application of action a

September 22, 2014 http://csg.csail.mit.edu/6.175 LO7-6

One-rule-at-a-time semantics

Given a program with a set of rules {ruler, a;}
and an initial state S, , S is a legal state if and
only if there exists a sequence of rules ry,,....,
rin such that S= a;,(...(8;1(Sp))---)

N

September 22, 2014 http://csg.csail.mit.edu/6.175 LO7-7

Concurrent scheduling of
rules

rule r; a, and rule r, a, can be scheduled
concurrently, preserving one-rule-at-a-time
semantics, if and only if
s Either VS. (ay; a,)(S) = a,(a(S))

or VS. (ay; a,)(S) = a4(ax(S))

N

rule r; a, to rule r, a, can be scheduled
concurrently, preserving one-rule-at-a-time
semantics, if and only if there exists a
permutation (p4,...,p,) of (1,...,n) such that
o forall S. (a;...;a,)(S) = ap,(...(ap1(S))

September 22, 2014 http://csg.csail.mit.edu/6.175

LO7-8

'Extending CM to rules

N

CM between two rules is computed exactly the
same way as CM for the methods of a module
Given rule r1 al and rule r2 a2 such that

mcalls(al)={gl1,g12...gln}
mcalls(a2)={g21,g22...g2m}
Compute
= CM[r1,r2] = conflict(gl1,g21) n conflict(gl11,g22) ...
n conflict(g12,921) n conflict(gl12,922) ...

n conflict(gln,g21) n conflict(gl12,g22) ...
s Conflict(x,y) = if x and y are methods of the same
module then CM[x,y] else CF

September 22, 2014 http://csg.csail.mit.edu/6.175 LO7-9

Using CMs for concurrent
scheduling of rules

Theorem: Given rule r; a; ... rule r, a,, if there
exists a permutation p4, p, ... p, such that

Vi <j. CM(ay, ay) is CFor <
then Vv S. (a;]...1a,)(S) = apa(...(a,1(S)).

N

Thus rules ry, 1, ... r, can be scheduled concurrently with
the effect V i, j. r, happens before r;

September 22, 2014 http://csg.csail.mit.edu/6.175 LO7-10

Example 1: Compiler Analysis

p
\J
rule ra; mcalls(ra) = {z.r, x.w, x.r}
if (z>10) mcalls(rb) = {z.r, y.w, y.r}
x <= x+1;
endrule CM(ra, rb) =
conflict(z.r, z.r) n conflict(z.r, y.w)
rule rb; n conflict(z.r, y.r) n conflict(x.w, z.r)
if (z>20) n conflict(x.w, y.w) n conflict(x.w, y.r)
y <= y+2; n conflict(x.r, z.r) n conflict(x.r, y.w)
endrule N Conflict(x.r, y.r)

=CFNCFNCFnCF..=CF

Rules ra and rb can be scheduled together without violating
the one-rule-at-a-time-semantics. We say rules ra and rb
are CF

September 22, 2014 http://csg.csail.mit.edu/6.175 LO7-11

Example 2: Compiler Analysis

p
T rule ra: mcalls(ra) = {z.r, Xx.w, y.r}
if (z>10) mcalls(rb) = {z.r, y.w, X.r}
x <= y+l;
endrule CM(ra, rb) =
conflict(z.r, z.r) n conflict(z.r, y.w)
rule rb; n conflict(z.r, x.r) n conflict(x.w, z.r)
if (z>20) n conflict(x.w, y.w) n conflict(x.w, x.r)
y <= x+2; n conflict(y.r, z.r) n conflict(y.r, y.w)
endrule N Conflict(y.r, x.r)
= CF n CF
N CFn CF
N CFn >
N CFn <
N CF=C

Rules ra and rb cannot be scheduled together without violating the
one-rule-at-a-time-semantics. Rules ra and rb are C

September 22, 2014 http://csg.csail.mit.edu/6.175 LO7-12

Example 3: Compiler Analysis

p
T rule ra: mcalls(ra) = {z.r, Xx.w, y.r}
if (z>10) mcalls(rb) = {z.r, y.w, y.r}
x <= y+l;
endrule CM(ra, rb) =
conflict(z.r, z.r) n conflict(z.r, y.w)
rule rb; n conflict(z.r, y.r) »n conflict(x.w, z.r)
if (z>20) n conflict(x.w, y.w) n conflict(x.w, y.r)
y <= y+2; n conflict(y.r, z.r) n conflict(y.r, y.w)
endrule N Conflict(y.r, y.r)
= CF n CF
N CFn CF
N CFn CF
N CFn <
N CF =<

Rules ra and rb can be scheduled together without violating
the one-rule-at-a-time-semantics. Rule ra < rb

September 22, 2014 http://csg.csail.mit.edu/6.175 LO7-13

Multi-rule versus single rule
elastic pipeline

X

1if(inQ.notEmpty && fifol.notFull) inQ fifo1 fifo2 outd
(fifol.eng(fl(inQ.first) ; inQ.deq)
if(fifol.notEmpty && fifo2Z2.notFull)
(fifo2.eng(f2(fifol.first) ,; fifol.deq)
(
(

.
4

; 1f(fifo2.notEmpty && outQ.notFull)
outQ.enqg (f3(fifo2.first) ;fifo2.deq)

rule stagel;
if (inQ.notEmpty && fifol.notFull)
(fifol.eng(fl(inQ.first) ; inQ.deq) endrule;
rule stage?2;
if(fifol.notEmpty && fifoZ2.notFull)
(fifo2.enqg(f2(fifol.first) ; fifol.deq) endrule;
rule stage3;
if(fifo2.notEmpty && outQ.notFull)
(outQ.eng (f3 (fifo2.first) ;fifo2.deqg) endrule;

If we do concurrent scheduling in the multirule system then
the multi-rule system behaves like the single rule system

September 22, 2014 http://csg.csail.mit.edu/6.175 LO7-14

Concurrency when the FIFOs do

not permit concurrent eng and deg

N

L/

—Jafete-

X
inQ fifol fifo2 outQ
not not not not full
empty empty empty
& &
not full not full

At best alternate stages in the pipeline will
be able to fire concurrently

September 22, 2014 http://csg.csail.mit.edu/6.175

LO7-15

some insight into
Concurrent rule firing

N

J
C Rj
W L
: b

There are more intermediate states in the rule
semantics (a state after each rule step)

In the HW, states change only at clock edges

September 22, 2014 http://csg.csail.mit.edu/6.175 LO7-16

Parallel execution
reorders reads and writes

p
N
Rules . : rule
Ireads write§I reads write$lreads writeslreads writesI reads write'sI steps
Ireads writegl reads writegl
I HW 1 =| clocks

In the rule semantics, each rule sees (reads)
the effects (writes) of previous rules

In the HW, rules only see the effects from
previous clocks, and only affect subsequent
clocks

September 22, 2014 http://csg.csail.mit.edu/6.175 LO7-17

Correctness

N

/

Rules o Aot 40t 4 4t 4 e (2
R

W ImmI

The compiler will schedule rules concurrently
only if the net state change is equivalent to
sequential rule execution (which is what our
theorem ensures)

September 22, 2014 http://csg.csail.mit.edu/6.175 LO7-18

