
Constructive Computer Architecture:

Multirule systems and
Concurrent Execution of Rules

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

September 22, 2014 http://csg.csail.mit.edu/6.175 L07-1

Rewriting Elastic pipeline
as a multirule system

x

fifo1 inQ

f1 f2 f3

fifo2 outQ

rule stage1;

 if(inQ.notEmpty && fifo1.notFull)

 begin fifo1.enq(f1(inQ.first)); inQ.deq; end endrule

rule stage2;

 if(fifo1.notEmpty && fifo2.notFull)

 begin fifo2.enq(f2(fifo1.first)); fifo1.deq; end endrule

rule stage3;

 if(fifo2.notEmpty && outQ.notFull)

 begin outQ.enq(f3(fifo2.first)); fifo2.deq; end endrule

How does such a system function?

September 22, 2014 http://csg.csail.mit.edu/6.175 L07-2

Bluespec Execution Model

Repeatedly:

Select a rule to execute

Compute the state updates

Make the state updates

One-rule-at-a-time-semantics: Any legal
behavior of a Bluespec program can be
explained by observing the state updates
obtained by applying only one rule at a time

Highly non-
deterministic;
User annotations
can be used in
rule selection

However, for performance we need to execute
multiple rules concurrently if possible

September 22, 2014 http://csg.csail.mit.edu/6.175 L07-3

Multi-rule versus single rule
elastic pipeline

x

fifo1 inQ

f1 f2 f3

fifo2 outQ

rule ArithPipe;

 if(inQ.notEmpty && fifo1.notFull)

 begin fifo1.enq(f1(inQ.first)); inQ.deq; end

 if(fifo1.notEmpty && fifo2.notFull)

 begin fifo2.enq(f2(fifo1.first)); fifo1.deq; end

 if(fifo2.notEmpty && outQ.notFull)

 begin outQ.enq(f3(fifo2.first)); fifo2.deq; end

endrule

How are these two systems the same (or different)?
September 22, 2014 http://csg.csail.mit.edu/6.175 L07-4

rule stage1;

 if(inQ.notEmpty && fifo1.notFull)

 begin fifo1.enq(f1(inQ.first)); inQ.deq; end endrule

rule stage2;

 if(fifo1.notEmpty && fifo2.notFull)

 begin fifo2.enq(f2(fifo1.first)); fifo1.deq; end endrule

rule stage3;

 if(fifo2.notEmpty && outQ.notFull)

 begin outQ.enq(f3(fifo2.first)); fifo2.deq; end endrule

Elastic pipeline
Do the system see all the same state
changes?

 The single rule system – fills up the pipeline and
then processes a message at every pipeline stage for
every rule firing – no more than one slot in any fifo
would be filled unless the OutQ blocks

 The multirule system has many more possible states.
It can mimic the behavior of one-rule system but one
can also execute rules in different orders, e.g.,
stage1; stage1; stage2; stage1, stage3,
stage2,stage3, … (assuming stage fifos have more
than one slot)

When can some or all the rules in a multirule
system execute concurrently?

September 22, 2014 http://csg.csail.mit.edu/6.175 L07-5

Evaluating or applying a rule
The state of the system s is defined
as the value of all its registers

An expression is evaluated by
computing its value on the current
state

An action defines the next value of
some of the state elements based on
the current value of the state

A rule is evaluated by evaluating the
corresponding action and
simultaneously updating all the
affected state elements

x y z ...

rule

x’ y’ z’ ...

  

Given action a and state S, let a(S) represent
the state after the application of action a

September 22, 2014 http://csg.csail.mit.edu/6.175 L07-6

One-rule-at-a-time semantics

Given a program with a set of rules {rule ri ai}
and an initial state S0 , S is a legal state if and
only if there exists a sequence of rules rj1,….,
rjn such that S= ajn(…(aj1(S0))…)

September 22, 2014 http://csg.csail.mit.edu/6.175 L07-7

Concurrent scheduling of
rules

rule r1 a1 and rule r2 a2 can be scheduled
concurrently, preserving one-rule-at-a-time
semantics, if and only if

 Either S. (a1; a2)(S) = a2(a1(S))

 or S. (a1; a2)(S) = a1(a2(S))

rule r1 a1 to rule rn an can be scheduled
concurrently, preserving one-rule-at-a-time
semantics, if and only if there exists a
permutation (p1,…,pn) of (1,…,n) such that

 for all S. (a1;…;an)(S) = apn(…(ap1(S))

September 22, 2014 http://csg.csail.mit.edu/6.175 L07-8

Extending CM to rules
CM between two rules is computed exactly the
same way as CM for the methods of a module

 Given rule r1 a1 and rule r2 a2 such that

 mcalls(a1)={g11,g12...g1n}

 mcalls(a2)={g21,g22...g2m}

Compute

 CM[r1,r2] = conflict(g11,g21)  conflict(g11,g22) ...

  conflict(g12,g21)  conflict(g12,g22) ...

 …

  conflict(g1n,g21)  conflict(g12,g22) ...

 Conflict(x,y) = if x and y are methods of the same

 module then CM[x,y] else CF

Conflict relation is not transitive

 m1.g1 < m2.g2, m2.g2 < m3.g3 does not imply m1.g1
< m3.g3

September 22, 2014 http://csg.csail.mit.edu/6.175 L07-9

Using CMs for concurrent
scheduling of rules

Theorem: Given rule r1 a1 … rule rn an, if there
exists a permutation p1, p2 … pn such that

  i < j. CM(api, apj) is CF or <

then  S. (a1|…|an)(S) = apn(…(ap1(S)).

Thus rules r1, r2 … rn can be scheduled concurrently with
the effect  i, j. rpi happens before rpj

September 22, 2014 http://csg.csail.mit.edu/6.175 L07-10

Example 1: Compiler Analysis
rule ra;

 if (z>10)

 x <= x+1;

endrule

rule rb;

 if (z>20)

 y <= y+2;

endrule

mcalls(ra) = {z.r, x.w, x.r}
mcalls(rb) = {z.r, y.w, y.r}

CM(ra, rb) =
 conflict(z.r, z.r)  conflict(z.r, y.w)
 conflict(z.r, y.r)  conflict(x.w, z.r)
 conflict(x.w, y.w)  conflict(x.w, y.r)
 conflict(x.r, z.r)  conflict(x.r, y.w)
 Conflict(x.r, y.r)
= CF  CF  CF  CF … = CF

Rules ra and rb can be scheduled together without violating
the one-rule-at-a-time-semantics. We say rules ra and rb
are CF

September 22, 2014 http://csg.csail.mit.edu/6.175 L07-11

Example 2: Compiler Analysis

Rules ra and rb cannot be scheduled together without violating the
one-rule-at-a-time-semantics. Rules ra and rb are C

rule ra;

 if (z>10)

 x <= y+1;

endrule

rule rb;

 if (z>20)

 y <= x+2;

endrule

mcalls(ra) = {z.r, x.w, y.r}
mcalls(rb) = {z.r, y.w, x.r}

CM(ra, rb) =
 conflict(z.r, z.r)  conflict(z.r, y.w)
 conflict(z.r, x.r)  conflict(x.w, z.r)
 conflict(x.w, y.w)  conflict(x.w, x.r)
 conflict(y.r, z.r)  conflict(y.r, y.w)
 Conflict(y.r, x.r)
= CF  CF
 CF  CF
 CF  >
 CF  <
 CF = C

September 22, 2014 http://csg.csail.mit.edu/6.175 L07-12

Example 3: Compiler Analysis

Rules ra and rb can be scheduled together without violating
the one-rule-at-a-time-semantics. Rule ra < rb

rule ra;

 if (z>10)

 x <= y+1;

endrule

rule rb;

 if (z>20)

 y <= y+2;

endrule

mcalls(ra) = {z.r, x.w, y.r}
mcalls(rb) = {z.r, y.w, y.r}

CM(ra, rb) =
 conflict(z.r, z.r)  conflict(z.r, y.w)
 conflict(z.r, y.r)  conflict(x.w, z.r)
 conflict(x.w, y.w)  conflict(x.w, y.r)
 conflict(y.r, z.r)  conflict(y.r, y.w)
 Conflict(y.r, y.r)
= CF  CF
 CF  CF
 CF  CF
 CF  <
 CF = <

September 22, 2014 http://csg.csail.mit.edu/6.175 L07-13

Multi-rule versus single rule
elastic pipeline

rule stage1;

 if(inQ.notEmpty && fifo1.notFull)

 (fifo1.enq(f1(inQ.first) ; inQ.deq) endrule;

rule stage2;

 if(fifo1.notEmpty && fifo2.notFull)

 (fifo2.enq(f2(fifo1.first) ; fifo1.deq) endrule;

rule stage3;

 if(fifo2.notEmpty && outQ.notFull)

 (outQ.enq(f3(fifo2.first) ;fifo2.deq) endrule;

x

fifo1 inQ

f1 f2 f3

fifo2 outQ

rule ArithPipe;

 if(inQ.notEmpty && fifo1.notFull)

 (fifo1.enq(f1(inQ.first) ; inQ.deq)

; if(fifo1.notEmpty && fifo2.notFull)

 (fifo2.enq(f2(fifo1.first) ; fifo1.deq)

; if(fifo2.notEmpty && outQ.notFull)

 (outQ.enq(f3(fifo2.first) ;fifo2.deq)

If we do concurrent scheduling in the multirule system then
the multi-rule system behaves like the single rule system

September 22, 2014 http://csg.csail.mit.edu/6.175 L07-14

Concurrency when the FIFOs do
not permit concurrent enq and deq

x

fifo1 inQ

f1 f2 f3

fifo2 outQ

not
empty

not
empty

&
not full

not
empty

&
not full

not full

At best alternate stages in the pipeline will
be able to fire concurrently

September 22, 2014 http://csg.csail.mit.edu/6.175 L07-15

some insight into

Concurrent rule firing

There are more intermediate states in the rule
semantics (a state after each rule step)

 In the HW, states change only at clock edges

Rules

HW

Ri Rj Rk

clocks

rule

steps

Ri

Rj

Rk

September 22, 2014 http://csg.csail.mit.edu/6.175 L07-16

Parallel execution
reorders reads and writes

In the rule semantics, each rule sees (reads)
the effects (writes) of previous rules

In the HW, rules only see the effects from
previous clocks, and only affect subsequent
clocks

Rules

HW
clocks

rule

steps
reads writes reads writes reads writes reads writes reads writes

reads writes reads writes

September 22, 2014 http://csg.csail.mit.edu/6.175 L07-17

Correctness

The compiler will schedule rules concurrently
only if the net state change is equivalent to
sequential rule execution (which is what our
theorem ensures)

Rules

HW

Ri Rj Rk

clocks

rule

steps

Ri

Rj

Rk

September 22, 2014 http://csg.csail.mit.edu/6.175 L07-18

