
Constructive Computer Architecture:

Guards

Arvind

Computer Science & Artificial Intelligence Lab.

Massachusetts Institute of Technology

September 24, 2014 http://csg.csail.mit.edu/6.175 L08-1

Elastic pipeline

x

fifo1 inQ

f1 f2 f3

fifo2 outQ

rule stage1;

 if(inQ.notEmpty && fifo1.notFull)

 begin fifo1.enq(f1(inQ.first)); inQ.deq; end endrule

rule stage2;

 if(fifo1.notEmpty && fifo2.notFull)

 begin fifo2.enq(f2(fifo1.first)); fifo1.deq; end endrule

rule stage3;

 if(fifo2.notEmpty && outQ.notFull)

 begin outQ.enq(f3(fifo2.first)); fifo2.deq; end endrule

Proper use of FIFOs always involves checking
for emptiness or fullness conditions

September 24, 2014 http://csg.csail.mit.edu/6.175 L08-2

Easy mistakes

rule stage1E;

 if(inQ.notEmpty && fifo1.notFull)

 fifo1.enq(f1(inQ.first);

 if(inQ.notEmpty) inQ.deq;

endrule

rule stage1;

 if(inQ.notEmpty && fifo1.notFull)

 begin fifo1.enq(f1(inQ.first);

 inQ.deq; end

endrule

What is the difference?

stage1E may dequeue something even though the value
read has not been processed (ie enqueued into fifo1)

Guards is an
abstraction to deal
with such
“atomicity” issues

versus

September 24, 2014 http://csg.csail.mit.edu/6.175 L08-3

FIFO Module:
methods with guarded interfaces

Every method has a guard (rdy wire)

The compiler ensures that an action method is invoked
(en) only if the guard is true. Similarly the value returned
by a value method is meaningful only if its guard is true

Guards make it possible to transfer the responsibility of
the correct use of a method from the user to the compiler

Guards are extraordinarily convenient for programming
and also enhance modularity of the code

not full

not empty

not empty

n

n

rdy

enab

rdy

enab

rdy
e
n
q

d
e
q

fi
rs

t

FIFO

interface Fifo#(numeric type size,

 type t);

 method Action enq(t x);

 method Action deq;

 method t first;

endinterface

September 24, 2014 http://csg.csail.mit.edu/6.175 L08-4

module mkCFFifo (Fifo#(1, t));

 Reg#(t) d <- mkRegU;

 Reg#(Bool) v <- mkReg(False);

 method Action enq(t x) if (!v);

 v <= True; d <= x;

 endmethod

 method Action deq if (v);

 v <= False;

 endmethod

 method t first if (v);

 return d;

 endmethod

endmodule

One-Element FIFO
Implementation with guards

not full

not empty

not empty

n

n

rdy

enab

rdy

enab

rdy

e
n
q

d
e
q

fi
rs

t

FIFO

September 24, 2014 http://csg.csail.mit.edu/6.175 L08-5

Elastic pipeline
with guards

x

fifo1 inQ

f1 f2 f3

fifo2 outQ

rule stage1 (True);

 fifo1.enq(f1(inQ.first);

 inQ.deq(); endrule

rule stage2 (True);

fifo2.enq(f2(fifo1.first);

 fifo1.deq; endrule

rule stage3 (True);

 outQ.enq(f3(fifo2.first);

 fifo2.deq; endrule

When can stage1 rule fire?

The explicit guard is true
but the compiler lifts all
the implicit guards of the
methods to the top of the
rule

guard
- inQ has an element
- fifo1 has space

September 24, 2014 http://csg.csail.mit.edu/6.175 L08-6

Switch with guards

rule switch (True);

 if (inQ.first.color == Red)

 begin redQ.enq (inQ.first.value); inQ.deq; end

 else begin greenQ.enq(inQ.first.value); inQ.deq; end

endrule

inQ redQ

greenQ

rule switchRed (inQ.first.color == Red);

 redQ.enq(inQ.first.value); inQ.deq;

endrule;

rule switchGreen (inQ.first.color == Green);

 greenQ.enq(inQ.first.value); inQ.deq;

endrule;

September 24, 2014 http://csg.csail.mit.edu/6.175 L08-7

Reg#(Bit#(32)) x <- mkReg(0);

Reg#(Bit#(32)) y <- mkReg(0);

rule gcd (x != 0);

 if (x > y) begin

 x <= x – y; end

 else begin

 x <= y; y <= x; end

endrule

method Action start(Bit#(32) a, Bit#(32) b) if (x = 0);

 x <= a; y <= b; endmethod

method Bit#(32) result if (x = 0);

 return y; endmethod

GCD module
with Guards

If x is 0 then the rule
cannot fire

Start method can be invoked only if x is 0

The result is available only when x is 0 is True.

September 24, 2014 http://csg.csail.mit.edu/6.175 L08-8

All methods have implicit
guards

Every method call has an implicit guard
associated with it

 m.enq(x), the guard indicated whether one can
enqueue into fifo m or not

Methods of primitive modules like registers
and EHRs have their guards always set to True

Guards play an important role in scheduling; a
rule is considered for scheduling only if its
guard is true (“can fire”)

Nevertheless guards are merely syntactic
sugar and are lifted to the top of each rule by
the compiler

September 24, 2014 http://csg.csail.mit.edu/6.175 L08-9

Guard Elimination

September 24, 2014 http://csg.csail.mit.edu/6.175 L08-10

Making guards explicit in
compilation

Make the guards explicit in every method call
by naming the guard and separating it from
the unguarded body of the method call, i.e.,
syntactically replace m.g(e) by

 m.gB(e) when m.gG

 Notice m.gG has no parameter because the guard
value should not depend upon the input

September 24, 2014 http://csg.csail.mit.edu/6.175 L08-11

Lifting implicit guards

rule foo if (True);
 (if (p) fifo.enq(8)); x.w(7)

rule foo if (p & fifo.enqG | !p);
 if (p) fifo.enqB(8); x.w(7)

All implicit guards are made explicit, and lifted and
conjoined to the rule guard

rule foo if (fifo.enqG | !p);
 if (p) fifo.enqB(8); x.w(7)

September 24, 2014 http://csg.csail.mit.edu/6.175 L08-12

Make implicit guards explicit
<a> ::= <a> | <a>

 | if (<e>) <a>

 | m.g(<e>)

 | let t = <e> in <a>

m.gB(<e>) when m.gG

<a> ::= <a> | <a>

 | if (<e>) <a>

 | m.g(<e>)

 | let t = <e> in <a>

 | <a> when <e>

methods without guards

The new
kernel

language

guarded action

September 24, 2014 http://csg.csail.mit.edu/6.175 L08-13

Concrete syntax for
guards

rule x(g);

 a

 endrule

 is the same as rule x (a when g)

method foo(x, y) if (g);

 a

 endmethod

 is the same as

 method foo(x, y) (a when g) endmethod

If no guard is explicitly supplied, the guard is
assumed to be True

September 24, 2014 http://csg.csail.mit.edu/6.175 L08-14

Guards vs If’s

A guard on one action of a parallel group of
actions affects every action within the group

 (a1 when p1) | a2

 ==> (a1 | a2) when p1

A condition of a Conditional action only affects
the actions within the scope of the conditional
action

 (if (p1) a1) | a2

 p1 has no effect on a2 ...

Mixing ifs and whens
 (if (p) (a1 when q)) | a2

  ((if (p) a1) | a2) when ((p && q) | !p)

  ((if (p) a1) | a2) when (q | !p)

September 24, 2014 http://csg.csail.mit.edu/6.175 L08-15

Guard Lifting Axioms
without Let-blocks

All the guards can be “lifted” to the top of a rule

 (a1 when p) | a2 

 a1 | (a2 when p) 

 if (p when q) a 

 if (p) (a when q) 

 (a when p1) when p2 

 m.gB(e when p) 

similarly for expressions ...

 Rule r (a when p) 

(a1 | a2) when p

(a1 | a2) when p

(if (p) a) when q

(if (p) a) when (q | !p)

a when (p1 & p2)

m.gB(e) when p

Rule r (if (p) a)

We will call this guard lifting transformation WIF,
for when-to-if

A complete guard lifting procedure also requires
rules for let-blocks

September 24, 2014 http://csg.csail.mit.edu/6.175 L08-16

Scheduling with guards
At the top level a guard behaves just like an
“if”

A rule whose guard is False at a given cycle
will result in no state change even if it is
scheduled

The guards of all the rules can be evaluated in
parallel, often with small amount of
computation

The scheduler takes advantage of this fact by
considering only those rules for scheduling in
a given cycle whose guards are True

September 24, 2014 http://csg.csail.mit.edu/6.175 L08-17

Hierarchical scheduling
A method of scheduling is outside-in:

Rules of the outermost modules are scheduled
first, then the rules of subsequent inner
modules are scheduled, as long as they can be
scheduled concurrently with the called
methods

BSV also provides annotation to reverse this
priority on a module basis

It is because of scheduling complications that
current BSV doesn’t allow modular compilation
in the presence of interface parameters

September 24, 2014 http://csg.csail.mit.edu/6.175 L08-18

