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Processor interface

Testbench calls these methods to start

/‘\

processor execution and to query final status

N

cpuToHost

p—

hostToCpu

)

mkProc

o ) Comp )

interface Proc;

Initial memory contents
automatically loaded into memory
models by Bluesim simulator

method Action hostToCpu (Addr startpc);
method ActionValue# (Tuple2# (RIndx,

endinterface
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Coprocessor Registers

p
7@ MIPS allows extra sets of 32-registers each to support
system calls, floating point, debugging etc. These
registers are known as coprocessor registers
= The registers in the nth set are written and read using
instructions MTCn and MFCn, respectively

s Set 0 is used to get the results of program execution
(Pass/Fail), the number of instructions executed and the
cycle counts

m Type FullIndx is used to refer to the normal registers plus
the coprocessor set O registers

s function validRegValue (FullIndx r) returns index of r

typedef Bit# (5) RIndx;

typedef enum {Normal, CopReg} RegType deriving (Bits, Eq);
typedef struct {RegType regType; RIndx 1i1dx;} FulllIndx;
deriving (Bits, EQq);
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Code with coprocessor
calls

N

let copVal = cop.rd(validRegValue (dInst.srcl));
let elInst = exec(dInst, rVall, rvVal2, pc, copVal);

pass coprocessor register values to execute MFCO

cop.wr (eInst.dst, elnst.data);

write coprocessor registers (MTCO) and indicate
the completion of an instruction

We did not show these lines in our processor to
avoid cluttering the slides
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Single-Cycle SMIPS:

Clock Speed

N

zed]

Register File
AA
<
Decodeu___F:Execute

~

Inst

Vlemorzl

Data
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Memor

Lok = tv + tope + re + Taut Tyt tys

We can improve the clock speed if we execute each
instruction in two clock cycles

tooek > Max {ty, (tpec + tre + Loyt tyt tws )’

However, this may not improve the performance because

each instruction will now take two cycles to execute
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Structural Hazards

%

# Sometimes multicycle implementations are
necessary because of resource conflicts, aka,
structural hazards

s Princeton style architectures use the same memory
for instruction and data and consequently, require at
least two cycles to execute Load/Store instructions

s If the register file supported less than 2 reads and
one write concurrently then most instructions would
take more than one cycle to execute

# Usually extra registers are required to hold
values between cycles

N
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Two-Cycle SMIPS

N

Register File

D state AA

\ 4
PC f2d »| Decode Execute
A l I-I/\ _l
Inst Data
Memory Memory

dved

Introduce register “f2d” to hold a fetched
instruction and register “state” to remember the
state (fetch/execute) of the processor
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Two-Cycle SMIPS

module mkProc (Proc) ;
Reg# (Addr) pc <- mkRegU;

N

RFile rf <- mkRFile;
IMemory 1iMem <- mkIMemory;
DMemory dMem <- mkDMemory;

Reg# (Data) f2d <- mkRegU;
Reg# (State) state <- mkReg(Fetch);

rule doFetch (state == Fetch);
let inst = 1Mem.reqg(pc);
f2d <= 1inst;
state <= Execute;

endrule
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~Two-Cycle SMIPS

rule doExecute (stage==Execute);
let inst = f2d;

let dInst = decode(inst);

if (eInst.iType == Ld)
elnst.data <- dMem.reqg(MemReqg{op:
eInst.addr, data: ?});
else if(eInst.iType == St)
let d <- dMem.reqg(MemReqg{op: St,

if (isValid(eInst.dst))

Ld,

addr:

elnst.addr, data: elInst.data}l);

let rVall = rf.rdl(validRegValue (dInst.srcl));
let rVal?2 = rf.rd2(validRegValue (dInst.src2));
let eInst = exec(dInst, rVall, rVal2, pc)

o
14

addr:

rf.wr(validRegValue (eInst.dst), elInst.data);
pc <= elnst.brTaken ? elInst.addr : pc + 4;

state <= Fetch;

endrule endmodule I
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Two-Cycle SMIPS: analysis

Fetch j Execute Register File

+—
PC fr ,| Decode Execute
- l I_:

N

dved

|

Inst In any given clock Data
Memory cycle, lot of unused Memory
hardware !

Pipeline execution of instructions to increase
the throughput
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Problems in Instruction
pipelining

Inst,_ Inst;

N

Register File

Hit—]
PC % f2d »| Decode j Execute
|_>

Inst Data
Memory Memory

@ Control hazard: Inst, ; is not known until Inst;is at least
decoded. So which instruction should be fetched?

#® Structural hazard: Two instructions in the pipeline may
require the same resource at the same time, e.qg.,
contention for memory

@ Data hazard: Inst, may affect the state of the machine (pc,
rf, dMem) - Inst,.;must be fully cognizant of this change

none of these hazards were present in the FFT pipeline
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Arithmetic versus
Instruction pipelining

# The data items in an arithmetic pipeline, e.q.,
FFT, are independent of each other

N

A daoden

inQ sRegl  sReg2  OuUtQ

# The entities in an instruction pipeline affect
each other

= This causes pipeline stalls or requires other fancy
tricks to avoid stalls

s Processor pipelines are significantly more
complicated than arithmetic pipelines
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The power of computers comes
from the fact that the
iInstructions in a program are
not independent of each other

— must deal with hazard

N
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Control Hazards

A
\J
Inst, 4 Inst, Register File
J*A i |
PC f2d p| Decode _% Execute
PaN r)- fl
Memory Memory

# Inst_, is not known until Inst;is at least decoded. So
which instruction should be fetched?
# General solution - speculate, i.e., predict the next

instruction address

s requires the next-instruction-address prediction machinery; can
be as simple as pc+4

= prediction machinery is usually elaborate because it dynamically
learns from the past behavior of the program

# What if speculation goes wrong?
= machinery to kill the wrong-path instructions, restore the correct
processor state and restart the execution at the correct pc
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N

'\ 4 4 | | misprediction

Two-stage Pipelined SMIPS

Fetch stage J Decode-RegisterFetch-Execute-Memory-
WriteBack stage

Register File

PC » f2d »| Decode

correct pc J

Execute

-
Inst
Memory

dved

A 4

Data
Memory

Fetch stage must predict
the next instruction to

In case of a misprediction the
Execute stage must kill the

fetch to have any pipelining mispredicted instruction in f2d
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Pipelining Two-Cycle SMIPS -
singlerule

&
rule doPipeline ;

let newInst = iMem.reqg(pc):; fetch
let newPpc = nextAddr (pc); let newPc = ppc;

let newlIr=Valid (FetchZ2Decode{pc:newPc, ppc:newPpc,

inst:newlIinst});

if(1sValid(ir)) begin execute
let x = validvValue(ir); let irpc = x.pc;

let ppc = x.ppc; let inst = x.inst;

let dInst = decode(inst);

register fetch ...;
let eInst = exec(dInst, rVall, rVal2, irpc, ppc);
...memory operation
G rEiupdate
if (eInst.mispredict) begin newlr = Invalid;
newPc = elInst.addr; end
end
pc <= newPc; ir <= newlr;
endrule
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