
Constructive Computer Architecture:

Pipelined Processors

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

October 6, 2014 http://csg.csail.mit.edu/6.175 L11-1

Single-Cycle SMIPS:
Clock Speed

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

+4

tClock > tM + tDEC + tRF + tALU+ tM+ tWB

We can improve the clock speed if we execute each
instruction in two clock cycles

tClock > max {tM , (tDEC + tRF + tALU+ tM+ tWB
)}

However, this may not improve the performance because
each instruction will now take two cycles to execute

October 6, 2014 http://csg.csail.mit.edu/6.175 L11-2

Structural Hazards
Sometimes multicycle implementations are
necessary because of resource conflicts, aka,
structural hazards

 Princeton style architectures use the same memory
for instruction and data and consequently, require at
least two cycles to execute Load/Store instructions

 If the register file supported less than 2 reads and
one write concurrently then most instructions would
take more than one cycle to execute

Usually extra registers are required to hold
values between cycles

October 6, 2014 http://csg.csail.mit.edu/6.175 L11-3

Two-Cycle SMIPS

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

+4
f2d

state

Introduce register “f2d” to hold a fetched
instruction and register “state” to remember the
state (fetch/execute) of the processor

October 6, 2014 http://csg.csail.mit.edu/6.175 L11-4

Two-Cycle SMIPS
module mkProc(Proc);

 Reg#(Addr) pc <- mkRegU;

 RFile rf <- mkRFile;

 IMemory iMem <- mkIMemory;

 DMemory dMem <- mkDMemory;

 Reg#(Data) f2d <- mkRegU;

 Reg#(State) state <- mkReg(Fetch);

 rule doFetch (state == Fetch);

 let inst = iMem.req(pc);

 f2d <= inst;

 state <= Execute;

 endrule

October 6, 2014 http://csg.csail.mit.edu/6.175 L11-5

Two-Cycle SMIPS
rule doExecute(stage==Execute);

 let inst = f2d;

 let dInst = decode(inst);

 let rVal1 = rf.rd1(validRegValue(dInst.src1));

 let rVal2 = rf.rd2(validRegValue(dInst.src2));

 let eInst = exec(dInst, rVal1, rVal2, pc);

 if(eInst.iType == Ld)

 eInst.data <- dMem.req(MemReq{op: Ld, addr:

 eInst.addr, data: ?});

 else if(eInst.iType == St)

 let d <- dMem.req(MemReq{op: St, addr:

 eInst.addr, data: eInst.data});

 if (isValid(eInst.dst))

 rf.wr(validRegValue(eInst.dst), eInst.data);

 pc <= eInst.brTaken ? eInst.addr : pc + 4;

 state <= Fetch;

endrule endmodule
no change from single-cycle

October 6, 2014 http://csg.csail.mit.edu/6.175 L11-6

Two-Cycle SMIPS: Analysis

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

+4
fr

stage

Pipeline execution of
instructions to increase
the throughput

Execute Fetch

October 6, 2014 http://csg.csail.mit.edu/6.175 L11-7

Cycle time improved but now it takes two cycles to
execute each instruction

In any given clock cycle, lot of unused hardware !

Problems in Instruction
pipelining

Control hazard: Insti+1 is not known until Insti is at least
decoded. So which instruction should be fetched?

Structural hazard: Two instructions in the pipeline may
require the same resource at the same time, e.g.,
contention for memory in Princeton-style architecture

Data hazard: Insti may affect the state of the machine (pc,
rf, dMem) – Insti+1must be fully cognizant of this change

PC Decode

Register File

Execute

Data

Memory

Inst

Memory

+4
f2d

Insti Insti+1

 none of these hazards were present in the FFT pipeline
October 6, 2014 http://csg.csail.mit.edu/6.175 L11-8

Arithmetic versus
Instruction pipelining

The data items in an arithmetic pipeline, e.g.,
FFT, are independent of each other

The entities in an instruction pipeline affect
each other

 This causes pipeline stalls or requires other fancy
tricks to avoid stalls

sReg1 sReg2

x

inQ

f0 f1 f2

outQ

October 6, 2014 http://csg.csail.mit.edu/6.175 L11-9

Processor pipelines are significantly more
complicated than arithmetic pipelines

The power of computers comes
from the fact that the
instructions in a program are
not independent of each other

 must deal with hazard

October 6, 2014 http://csg.csail.mit.edu/6.175 L11-10

Control Hazards

General solution – speculate, i.e., predict the next
instruction address
 requires the next-instruction-address prediction machinery; can

be as simple as pc+4
 prediction machinery is usually elaborate because it dynamically

learns from the past behavior of the program

What if speculation goes wrong?
 machinery to kill the wrong-path instructions, restore the correct

processor state and restart the execution at the correct pc

PC Decode

Register File

Execute

Data

Memory

Inst

Memory

+4
f2d

Insti Insti+1

October 6, 2014 http://csg.csail.mit.edu/6.175 L11-11

Insti+1 is not known
until Insti is at least
decoded. So which
instruction should be
fetched?

Two-stage Pipelined SMIPS

PC Decode

Register File

Execute

Data

Memory

Inst

Memory

pred
f2d

Fetch stage must predict
the next instruction to
fetch to have any pipelining

Fetch stage Decode-RegisterFetch-Execute-Memory-
WriteBack stage

In case of a misprediction the
Execute stage must kill the
mispredicted instruction in f2d

kill
misprediction

correct pc

October 6, 2014 http://csg.csail.mit.edu/6.175 L11-12

Two-stage Pipelined SMIPS

PC Decode

Register File

Execute

Data
Memory

Inst
Memory

pred
f2d

Fetch stage Decode-RegisterFetch-Execute-Memory-
WriteBack stage

kill misprediction

correct pc

f2d must contain a Maybe type value because
sometimes the fetched instruction is killed

Fetch2Decode type captures all the information that
needs to be passed from Fetch to Decode, i.e.

 Fetch2Decode {pc:Addr, ppc: Addr, inst:Inst}

October 6, 2014 http://csg.csail.mit.edu/6.175 L11-13

Pipelining Two-Cycle SMIPS –
single rule
rule doPipeline ;

 let instF = iMem.req(pc);

 let ppcF = nextAddr(pc); let nextPc = ppcF;

 let newf2d = Valid (Fetch2Decode{pc:pc,ppc:ppcF,

 inst:instF});

 if(isValid(f2d)) begin

 let x = fromMaybe(?,f2d); let pcD = x.pc;

 let ppcD = x.ppc; let instD = x.inst;

 let dInst = decode(instD);

 ... register fetch ...;

 let eInst = exec(dInst, rVal1, rVal2, pcD, ppcD);

 ...memory operation ...

 ...rf update ...

 if (eInst.mispredict) begin nextPc = eInst.addr;

 newf2d = Invalid; end

 end

 pc <= nextPc; f2d <= newf2d;

endrule

fetch

execute

these values are
being redefined

October 6, 2014 http://csg.csail.mit.edu/6.175 L11-14

Inelastic versus Elastic
pipeline

The pipeline presented is inelastic, that is, it
relies on executing Fetch and Execute together
or atomically

In a realistic machine, Fetch and Execute
behave more asynchronously; for example
memory latency or a functional unit may take
variable number of cycles

If we replace ir by a FIFO (f2d) then it is
possible to make the machine more elastic,
that is, Fetch keeps putting instructions into
f2d and Execute keeps removing and
executing instructions from f2d.

October 6, 2014 http://csg.csail.mit.edu/6.175 L11-15

An elastic Two-Stage pipeline
rule doFetch ;

 let inst = iMem.req(pc);

 let ppc = nextAddr(pc); pc <= ppc;

 f2d.enq(Fetch2Decode{pc:pc, ppc:ppc, inst:inst});

endrule

rule doExecute;

 let x = f2d.first; let inpc = x.pc;

 let ppc = x.ppc; let inst = x.inst;

 let dInst = decode(inst);

 ... register fetch ...;

 let eInst = exec(dInst, rVal1, rVal2, inpc, ppc);

 ...memory operation ...

 ...rf update ...

 if (eInst.mispredict) begin

 pc <= eInst.addr; f2d.clear; end

 else f2d.deq;

endrule

Can these rules
execute concurrently
assuming the FIFO
allows concurrent enq,
deq and clear?

no –
double writes in pc

October 6, 2014 http://csg.csail.mit.edu/6.175 L11-16

An elastic Two-Stage pipeline:
for concurrency make pc into an EHR

rule doFetch ;

 let inst = iMem.req(pc[0]);

 let ppc = nextAddr(pc[0]); pc[0] <= ppc;

 f2d.enq(Fetch2Decode{pc:pc[0], ppc:ppc, inst:inst});

endrule

rule doExecute;

 let x = f2d.first; let inpc = x.pc;

 let ppc = x.ppc; let inst = x.inst;

 let dInst = decode(inst);

 ... register fetch ...;

 let eInst = exec(dInst, rVal1, rVal2, inpc, ppc);

 ...memory operation ...

 ...rf update ...

 if (eInst.mispredict) begin

 pc[1] <= eInst.addr; f2d.clear; end

 else f2d.deq;

endrule

These rules can
execute concurrently
assuming the FIFO has
(enq CF deq) and
(enq < clear)

October 6, 2014 http://csg.csail.mit.edu/6.175 L11-17

Correctness issue

<inst, pc, ppc>

Once Execute redirects the PC,
 no wrong path instruction should be executed
 the next instruction executed must be the redirected

one

This is true for the code shown because
 Execute changes the pc and clears the FIFO

atomically
 Fetch reads the pc and enqueues the FIFO atomically

Fetch Execute

PC

October 6, 2014 http://csg.csail.mit.edu/6.175 L11-18

module mkCFFifo(Fifo#(2, t)) provisos(Bits#(t, tSz));

 Ehr#(3, t) da <- mkEhr(?);

 Ehr#(2, Bool) va <- mkEhr(False);

 Ehr#(2, t) db <- mkEhr(?);

 Ehr#(3, Bool) vb <- mkEhr(False);

 rule canonicalize if(vb[2] && !va[2]);

 da[2] <= db[2]; va[2] <= True; vb[2] <= False; endrule

 method Action enq(t x) if(!vb[0]);

 db[0] <= x; vb[0] <= True; endmethod

 method Action deq if (va[0]);

 va[0] <= False; endmethod

 method t first if(va[0]);

 return da[0]; endmethod

 method Action clear;

 va[1] <= False ; vb[1] <= False endmethod

endmodule

Conflict-free FIFO with a
Clear method

If there is only one
element in the FIFO it
resides in da

db da

first CF enq

deq CF enq

first < deq

enq < clear

Canonicalize must be the last rule to fire!

October 6, 2014 http://csg.csail.mit.edu/6.175 L11-19

Why canonicalize must be
last rule to fire

first CF enq

deq CF enq

first < deq

enq < clear

rule foo ;

 f.deq; if (p) f.clear

endrule

Consider rule foo. If p is false then canonicalize
must fire after deq for proper concurrency.

If canonicalize uses EHR indices between deq and
clear, then canonicalize won’t fire when p is false

October 6, 2014 http://csg.csail.mit.edu/6.175 L11-20

