
Constructive Computer Architecture:

Control Hazards

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-1

Killing fetched instructions
In the simple design with combinational memory
we have discussed so far, the mispredicted
instruction was present in the f2d. So the
Execute stage can atomically

 Clear the f2d

 Set the pc to the correct target

In highly pipelined machines there can be
multiple mispredicted and partially executed
instructions in the pipeline; it will generally take
more than one cycle to kill all such instructions

Need a more general solution then clearing the f2d FIFO

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-2

Epoch: a method for
managing control hazards

Add an epoch register in the processor state

The Execute stage changes the epoch
whenever the pc prediction is wrong and sets
the pc to the correct value

The Fetch stage associates the current epoch
with every instruction when it is fetched

PC

iMem

pred
f2d

Epoch

Fetch Execute

inst

targetPC

The epoch of the
instruction is examined
when it is ready to
execute. If the processor
epoch has changed the
instruction is thrown away

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-3

An epoch based solution
rule doFetch ;

 let instF=iMem.req(pc[0]);

 let ppcF=nextAddr(pc[0]); pc[0]<=ppcF;

 f2d.enq(Fetch2Decode{pc:pc[0],ppc:ppcF,epoch:epoch,

 inst:instF});

endrule

rule doExecute;

 let x=f2d.first; let pcD=x.pc; let inEp=x.epoch;

 let ppcD = x.ppc; let instD = x.inst;

 if(inEp == epoch) begin

 let dInst = decode(instD); ... register fetch ...;

 let eInst = exec(dInst, rVal1, rVal2, pcD, ppcD);

 ...memory operation ...

 ...rf update ...

 if (eInst.mispredict) begin

 pc[1] <= eInst.addr; epoch <= epoch + 1; end

 end

 f2d.deq; endrule

Can these rules execute concurrently ?

yes

two values for epoch are sufficient

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-4

Discussion
Epoch based solution kills one wrong-path
instruction at a time in the execute stage

It may be slow, but it is more robust in more
complex pipelines, if you have multiple stages
between fetch and execute or if you have
outstanding instruction requests to the iMem

It requires the Execute stage to set the pc and
epoch registers simultaneously which may result
in a long combinational path from Execute to
Fetch

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-5

Decoupled Fetch and Execute

<inst, pc, ppc,
epoch>

<corrected pc,
new epoch>

In decoupled systems a subsystem reads and
modifies only local state atomically

 In our solution, pc and epoch are read by both rules

Properly decoupled systems permit greater
freedom in independent refinement of
subsystems

Fetch Execute

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-6

A decoupled solution using
epochs

Add fEpoch and eEpoch registers to the processor
state; initialize them to the same value

The epoch changes whenever Execute detects
the pc prediction to be wrong. This change is
reflected immediately in eEpoch and eventually
in fEpoch via a message from Execute to Fetch

Associate the fEpoch with every instruction when
it is fetched

In the execute stage, reject, i.e., kill, the
instruction if its epoch does not match eEpoch

fEpoch eEpoch fetch execute

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-7

Control Hazard resolution
A robust two-rule solution

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

+4
f2d

FIFO

FIFO

re
d
ir
e
c
t

Execute sends information about
the target pc to Fetch, which
updates fEpoch and pc whenever
it looks at the redirect PC fifo

fE
p
o
c
h

e
E
p
o
c
h

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-8

Two-stage pipeline
Decoupled code structure

module mkProc(Proc);

 Fifo#(Fetch2Execute) f2d <- mkFifo;

 Fifo#(Addr) execRedirect <- mkFifo;

 Reg#(Bool) fEpoch <- mkReg(False);

 Reg#(Bool) eEpoch <- mkReg(False);

 rule doFetch;

 let instF = iMem.req(pc);

 ...

 f2d.enq(... instF ..., fEpoch);

 endrule

 rule doExecute;

 if(inEp == eEpoch) begin

 Decode and execute the instruction; update state;

 In case of misprediction, execRedirect.enq(correct pc);
 end

 f2d.deq;

 endrule

endmodule

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-9

The Fetch rule
rule doFetch;

 let instF = iMem.req(pc);

 if(!execRedirect.notEmpty)

 begin

 let ppcF = nextAddrPredictor(pc);

 pc <= ppcF;

 f2d.enq(Fetch2Execute{pc: pc, ppc: ppcF,

 inst: instF, epoch: fEpoch});

 end

 else

 begin

 fEpoch <= !fEpoch; pc <= execRedirect.first;

 execRedirect.deq;

 end

endrule

pass the pc and predicted pc
to the execute stage

Notice: In case of PC redirection,
nothing is enqueued into f2d

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-10

The Execute rule
rule doExecute;

 let instD = f2d.first.inst; let pcF = f2d.first.pc;

 let ppcD = f2d.first.ppc; let inEp = f2d.first.epoch;

 if(inEp == eEpoch) begin

 let dInst = decode(instD);

 let rVal1 = rf.rd1(validRegValue(dInst.src1));

 let rVal2 = rf.rd2(validRegValue(dInst.src2));

 let eInst = exec(dInst, rVal1, rVal2, pcD, ppcD);

 if(eInst.iType == Ld) eInst.data <-

 dMem.req(MemReq{op: Ld, addr: eInst.addr, data: ?});

 else if (eInst.iType == St) let d <-

 dMem.req(MemReq{op: St, addr: eInst.addr, data: eInst.data});

 if (isValid(eInst.dst))

 rf.wr(validRegValue(eInst.dst), eInst.data);

 if(eInst.mispredict) begin

 execRedirect.enq(eInst.addr); eEpoch <= !inEp;

 end

 end

 f2d.deq;

endrule

exec returns a flag
if there was a fetch
misprediction

Can these rules execute concurrently?

yes, assuming CF FIFOs

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-11

Epoch mechanism is
independent of the branch
prediction scheme used. We
will study sophisticated
branch prediction schemes
later

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-12

Consider a different two-
stage pipeline

PC Decode

Register File

Execute

Data

Memory

Inst

Memory

pred
f2d

Suppose we move the pipeline stage from Fetch to after Decode
and Register fetch for a better balance of work in two stages

Fetch Execute, Memory, WriteBack

Insti Insti+1

Pipeline will still have control hazards

Decode,
RegisterFetch

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-13

A different 2-Stage pipeline:
2-Stage-DH pipeline

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

d2e

re
d
ir

e
c
t

fE

p
o
c
h

 eEpoch

pred

Fifos

Use the same epoch solution for
control hazards as before

Fetch, Decode, RegisterFetch Execute, Memory, WriteBack

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-14

Type Decode2Execute

typedef struct {

 Addr pc; Addr ppc; Bool epoch;

 DecodedInst dInst; Data rVal1; Data rVal2;

} Decode2Execute deriving (Bits, Eq);

values instead of register names

The Fetch stage, in addition to fetching the
instruction, also decodes the instruction and
fetches the operands from the register file. It
passes these operands to the Execute stage

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-15

2-Stage-DH pipeline
module mkProc(Proc);

 Reg#(Addr) pc <- mkRegU;

 RFile rf <- mkRFile;

 IMemory iMem <- mkIMemory;

 DMemory dMem <- mkDMemory;

 Fifo#(Decode2Execute) d2e <- mkFifo;

 Reg#(Bool) fEpoch <- mkReg(False);

 Reg#(Bool) eEpoch <- mkReg(False);

 Fifo#(Addr) execRedirect <- mkFifo;

 rule doFetch …

 rule doExecute …

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-16

2-Stage-DH pipeline
doFetch rule first attempt

rule doFetch;

 let instF = iMem.req(pc);

 if(execRedirect.notEmpty) begin

 fEpoch <= !fEpoch; pc <= execRedirect.first;

 execRedirect.deq; end

 else

 begin

 let ppcF = nextAddrPredictor(pc); pc <= ppcF;

 let dInst = decode(instF);

 let rVal1 = rf.rd1(validRegValue(dInst.src1));

 let rVal2 = rf.rd2(validRegValue(dInst.src2));

 d2e.enq(Decode2Execute{pc: pc, ppc: ppcF,

 dIinst: dInst, epoch: fEpoch,

 rVal1: rVal1, rVal2: rVal2});

 end

endrule

moved
from
Execute

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-17

2-Stage-DH pipeline
doExecute rule first attempt
rule doExecute;

 let x = d2e.first;

 let dInstE = x.dInst; let pcE = x.pc;

 let ppcE = x.ppc; let epoch = x.epoch;

 let rVal1E = x.rVal1; let rVal2E = x.rVal2;

 if(epoch == eEpoch) begin

 let eInst = exec(dInstE, rVal1E, rVal2E, pcE, ppcE);

 if(eInst.iType == Ld) eInst.data <-

 dMem.req(MemReq{op:Ld, addr:eInst.addr, data:?});

 else if (eInst.iType == St) let d <-

 dMem.req(MemReq{op:St, addr:eInst.addr, data:eInst.data});

 if (isValid(eInst.dst) &&

 validValue(eInst.dst).regType == Normal)

 rf.wr(validRegValue(eInst.dst), eInst.data);

 if(eInst.mispredict) begin

 execRedirect.enq(eInst.addr); eEpoch <= !eEpoch; end

 end

 d2e.deq;

endrule

no
change

Not quite correct. Why?

Fetch is potentially
reading stale values
from rf

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-18

Data Hazards
fetch &
decode

execute

d2e

time t0 t1 t2 t3 t4 t5 t6 t7
FDstage FD1 FD2 FD3 FD4 FD5
EXstage EX1 EX2 EX3 EX4 EX5

 I1 Add(R1,R2,R3)

 I2 Add(R4,R1,R2)

 I2 must be stalled until I1 updates the register file

pc rf dMem

time t0 t1 t2 t3 t4 t5 t6 t7
FDstage FD1 FD2 FD2 FD3 FD4 FD5
EXstage EX1 EX2 EX3 EX4 EX5

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-19

Dealing with data hazards
Keep track of instructions in the pipeline and
determine if the register values to be fetched
are stale, i.e., will be modified by some older
instruction still in the pipeline. This condition
is referred to as a read-after-write (RAW)
hazard

Stall the Fetch from dispatching the instruction
as long as RAW hazard prevails

RAW hazard will disappear as the pipeline
drains

 Scoreboard: A data structure to keep
track of the instructions in the pipeline
beyond the Fetch stage

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-20

Data Hazard
Data hazard depends upon the match between
the source registers of the fetched instruction
and the destination register of an instruction
already in the pipeline

Both the source and destination registers must
be Valid for a hazard to exist

function Bool isFound

 (Maybe#(FullIndx) x, Maybe#(FullIndx) y);

 if(x matches Valid .xv &&& y matches Valid .yv

 &&& yv == xv)

 return True;

 else return False;

endfunction

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-21

Scoreboard: Keeping track of
instructions in execution

Scoreboard: a data structure to keep track of
the destination registers of the instructions
beyond the fetch stage

 method insert: inserts the destination (if any) of an
instruction in the scoreboard when the instruction is
decoded

 method search1(src): searches the scoreboard for a
data hazard

 method search2(src): same as search1

 method remove: deletes the oldest entry when an
instruction commits

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-22

2-Stage-DH pipeline:
Scoreboard and Stall logic

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

d2e

re
d
ir

e
c
t

fE

p
o
c
h

 eEpoch

pred

scoreboard

October 8, 2014 http://csg.csail.mit.edu/6.175 L12-23

