X
“Constructive Computer Architecture:

Data Hazards
in Pipelined Processors

Arvind

Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

N

Delivered by Andy Wright

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-1

Data Hazard

'@ Data hazard depends upon the match between
the source registers of the fetched instruction
and the destination register of an instruction
already in the pipeline

Both the source and destination registers must
be Valid for a hazard to exist

N

function Bool isFound
(Maybe# (FullIndx) x, Maybe# (FulllIndx) vV);
if (x matches Valid .xv &&& y matches Valid .yv
&§&& yV == XV)
return True;
else return False;
endfunction

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-2

Scoreboard: Keeping track of
Instructions in execution

K Scoreboard: a data structure to keep track of
the destination registers of the instructions
beyond the fetch stage

s method insert: inserts the destination (if any) of an
instruction in the scoreboard when the instruction is
decoded

s method searchl(src): searches the scoreboard for a
data hazard

s method search2(src): same as searchl

s method remove: deletes the oldest entry when an
instruction commits

N

October 15, 2014 http://csg.csail.mit.edu/6.175

L13-3

2-Stage-DH pipeline:
Scoreboard and Stall logic

p
N
5 : :
o Register File
el
AN Ax <
:&_’j > eEpoch |€—
il L
red — 1 d =
PC Decode |, Execute
— >
>
s >
Inst T IY { Data
Memory scoreboard Memory

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-4

2-Stage-DH pipeline corrected

\Vhodule mkProc (Proc) ;

Reg# (Addr) pc <- mkReqgU;

RFile rf <- mkRFile;
IMemory 1Mem <- mkIMemory;
DMemory dMem <- mkDMemory;
Fifo# (Decode2Execute) d2e <- mkFifo;
Reg# (Bool) fEpoch <- mkReg(False);
Reg# (Bool) eEpoch <- mkReg (False) ;

Fifo# (Addr) execRedirect <- mkFifo;

Scoreboard# (1) sb <- mkScoreboard;

// contains only one slot because Execute
// can contain at most one instruction

rule doFetch ..
rule doExecute ..

October 15, 2014 http://csg.csail.mit.edu/6.175

L13-5

2-Stage-DH pipeline
doFetch rule second attempt

rule doFetch;
if (execRedirect.notEmpty) begin
fEpoch <= !fEpoch; pc <= execRedirect.first;

N

execRedirect.deqg; end

else

begin What should happen to pc when Fetch stalls?
let instF = iMem.reqg(pc):;
let ppcF = nextAddrPredictor (pc)
let dInst = decode (instF) ;
let stall = sb.searchl (dInst.srcl) || sb.search2 (dInst.src2);
if(!stall) begin

let rvall = rf.rdl (validRegValue (dInst.srcl));
let rval2 = rf.rd2(validRegValue (dInst.src2));
d2e.eng(Decode?2Execute{pc: pc, ppc: ppcF,

dIinst: dInst, epoch: fEpoch,
rVall: rVall, rVal2: rVal2});

sb.insert (dInst.rDst); end

pc should change only
when the instruction

is enqueued in d2e
end

endrule o
October 15, 2014 http://csg.csail.mit.edu/6.175 L13-6

2-Stage-DH pipeline
doFetch rule corrected

rule doFetch;
1f (execRedirect.notEmpty) begin
fEpoch <= !fEpoch; pc <= execRedirect.first;

execRedirect.deq; end To avoid structural

1
else hazards, scoreboard must
allow two search ports

N
\J

begin
let instF = iMem.reqg(pc):;

let ppcF = nextAddrPredictor (pc) ; pe—<——ppcts
let dInst = decode (instF) ;
let stall = sb.searchl (dInst.srcl) || sb.search?(dInst.src?);

if(!stall) begin
let rvall = rf.rdl (validRegValue (dInst.srcl));
let rval?2 = rf.rd2(validRegValue (dInst.src2));
d2e.eng (Decode?2Execute{pc: pc, ppc: ppck,

dIinst: dInst, epoch: fEpoch,
rvall: rVall, rVal2: rVal2}):;
sb.insert (dInst.rDst); pc <= ppckF; end

end

endrule
October 15, 2014 http://csg.csail.mit.edu/6.175 L13-7

2-Stage-DH pipeline
doExecute rule corrected

-
b rule doExecute;
let x = d2e.first;
let dInstE = x.dInst; let pcE = X.pcC;
let ppcE = X.ppcC; let epoch = x.epoch;
let rvallE = x.rVall; let rVal2E = x.rVal?2;
if (epoch == eEpoch) begin
let eInst = exec(dInstE, rVallE, rVal2E, pcE, ppcE);
if (eInst.iType == Ld) elInst.data <-
dMem.reqg (MemReg{op:Ld, addr:elInst.addr, data:7?});
else if (eInst.iType == St) let d <-

dMem.reqg (MemReg{op:St, addr:elInst.addr, data:eInst.data})
if (isValid(eInst.dst))

rf.wr (validRegValue (eInst.dst), elnst.data);
if (eInst.mispredict) begin
execRedirect.eng(elnst.addr); eEpoch <= !eEpoch; end
end
d2e.deq; sb.remove;
endrule

October 15, 2014 http://csg.csail.mit.edu/6.175

4

L13-8

A correctness issues

Register File
redirect

f‘\

Scoreboard

If the search by Decode does not see an
instruction in the scoreboard, then its effect must
have taken place. This means that any updates
to the register file by that instruction must be
visible to the subsequent register reads =

= remove and wr should happen atomically
= Ssearch and rd1, rd2 should happen atomically

Fetch and Execute can execute in any order

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-9

Concurrently executable
Fetch and Execute

.
) Register File
redirect which is
better?
Scoreboard -
Case 1: doExecute < dofetch =
n f: wr < rd (bypass rf)
s Sb: remove < {search, insert}

= d2e: {first, deq} {<, CF} enqg (pipelined or CF Fifo)

s redirect: enqg {<, CF} {deq, first} (bypass or CF Fifo)
Case 2: doFetch < doExecute =

m-f: rd < wr (normal rf)

s Sb: {search, insert} < remove

= d2e: eng {<, CF} {deq, first} (bypass or CF Fifo)

= redirect: {first, deq} {<, CF} enqg (pipelined or CF Fifo)

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-10

Performance issues

Register File

N

redirect

Scoreboard

To avoid a stall due to a RAW hazard between successive
instructions

= Sb: remove < search
s [f: Wr < rd (bypass rf)
To minimize stalls due to control hazards
s redirect: bypass fifo
What kind of fifo should be used for d2e ?
= Either a pipeline or CF fifo would do fine

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-11

2-Stage-DH pipeline

) with proper specification of Fifos, rf, scoreboard

Tmodule mkProc (Proc) ;
Reg# (Addr) pc <- mkReqgU;
RFile rf <- mkBypassRFile;
IMemory 1Mem <- mkIMemory;
DMemory dMem <- mkDMemory;
Fifo# (Decode2Execute) d2e <- mkPipelineFifo;
Reg# (Bool) fEpoch <- mkReg(False);
Reg# (Bool) eEpoch <- mkReg (False) ;

Fifo# (Addr) execRedirect <- mkBypassFifo;

Scoreboard# (1) sb <- mkPipelineScoreboard;
// contains only one slot because Execute
// can contain at most one instruction

Can a destination register name
appear more than once in the

scoreboard ?
October 15, 2014 http://csg.csail.mit.edu/6.175

rule doFetch ..
rule doExecute ..

L13-12

WAW hazards

If multiple instructions in the scoreboard can
update the register which the current
instruction wants to read, then the current
instruction has to read the update for the
youngest of those instructions

This is not a problem in our design because
» instructions are committed in order

= the RAW hazard for the instruction at the decode
stage will remain as long as the any instruction with
the required destination is present in sb

N

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-13

An alternative design for sb

Instead of keeping track of the destination of
every instruction in the pipeline, we can
associated a bit with every register to indicate
if that register is the destination of some
instruction in the pipeline

s Appropriate register bit is set when an instruction
enters the execute stage and cleared when the
instruction is committed

#® The design will not work if multiple
instructions in the pipeline have the same
destination

s don't let an instruction with WAW hazard enter the
pipeline

N

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-14

Fetch rule to avoid WAW
hazard

rule doFetch;
if (execRedirect.notEmpty) begin
fEpoch <= !fEpoch; pc <= execRedirect.first;

N

execRedirect.deqg; end
else
begin
let instF = iMem.reqg(pc);
let ppcF = nextAddrPredictor (pc); let dInst = decode(instF);

let stall = sb.searchl (dInst.srcl) || sb.search? (dInst.src?);
| | sb.search3(dInst.dst);
if(!stall) begin

let rVall = rf.rdl (validRegValue (dInst.srcl));
let rvVal2 = rf.rd2(validRegValue (dInst.src2));
d2e.eng(DecodeZ2Execute{pc: pc, ppc: ppckF,

dIinst: dInst, epoch: fEpoch,
rvall: rvVall, rVvVal2: rVvVal2});
sb.insert (dInst.rDst); pc <= ppcF; end

end

endrule
October 15, 2014 http://csg.csail.mit.edu/6.175 L13-15

Summary

Instruction pipelining requires dealing with
control and data hazards

Speculation is necessary to deal with control
hazards

Data hazards are avoided by withholding
instructions in the decode stage until the hazard

disappears

Performance issues are subtle

= For instance, the value of having a bypass network
depends on how frequently it is exercised by programs

s Bypassing necessarily increases combinational paths
which can slow down the clock

next — module implementations and multistage pipelines
L13-16

N

October 15, 2014 http://csg.csail.mit.edu/6.175

Normal Register File

‘module mkRFile (RFile) ;
Vector# (32,Reg# (Data)) rfile <- replicateM(mkReg(0));

N

method Action wr (RIndx rindx, Data data);
i1f(rindx!=0) rfile[rindx] <= data;

endmethod

method Data rdl (RIndx rindx) = rfile[rindx];

method Data rd2 (RIndx rindx) = rfile[rindx];
endmodule

{rd1, rd2} < wr

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-17

Bypass Register File using EHR

module mkBypassRFile (RFile);
Vector# (32,Ehr# (2, Data)) rfile <-
replicateM (mkEhr (0));

N

method Action wr (RIndx rindx, Data data):;

1f(rindex!=0) (rfile[rindex]) [0] <= data;
endmethod
method Data rdl (RIndx rindx) = (rfile[rindx]) [1];
method Data rd2 (RIndx rindx) = (rfile[rindx]) [1];
endmodule

wr < {rdl, rd2}

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-18

Bypass Register File

Jwith external bypassing

module mkBypassRFile (BypassRFile);
RF1le rf <- mkRFile;
Fifo# (1, Tuple2# (RIndx, Data))
bypass <- mkBypassSFifo;

N

rule move;

endrule

method Action wr (RIndx rindx, Data data):;

begin rf.wr (bypass.first); bypass.deqg end;

1f(rindex!=0) bypass.eng(tupleZ(rindx, data)):;
endmethod
method Data rdl (RIndx rindx) =
return (!bypass.searchl (rindx)) ? rf.rdl (rindx)
bypass.readl (rindx) ;
method Data rd2 (RIndx rindx) =
return (!bypass.search2(rindx)) ? rf.rd2 (rindx)

bypass.read? (rindx) ;
endmodule
October 15, 2014 http://csg.csail.mit.edu/6.175

wr < {rdl, rd2}

L13-19

Scoreboard implementation
using searchable Fifos

function Bool isFound
(Maybe# (RIndx) dst, Maybe# (RIndx) src);
return isValid(dst) && isValid(src) &&
(validValue (dst)==validValue (src)) ;
endfunction

N

module mkCFScoreboard (Scoreboard# (size)) ;
SFifo# (size, Maybe# (RIndx), Maybe# (RIndx))
f <- mkCFSFifo (isFound) ;

method insert = f.eng;

method remove = f.deqg;

method searchl = f.searchl;

method search? = f.search?2;
endmodule

October 15, 2014 http://csg.csail.mit.edu/6.175

L13-20

