
Constructive Computer Architecture:

Data Hazards
in Pipelined Processors

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

Delivered by Andy Wright

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-1

Data Hazard
Data hazard depends upon the match between
the source registers of the fetched instruction
and the destination register of an instruction
already in the pipeline

Both the source and destination registers must
be Valid for a hazard to exist

function Bool isFound

 (Maybe#(FullIndx) x, Maybe#(FullIndx) y);

 if(x matches Valid .xv &&& y matches Valid .yv

 &&& yv == xv)

 return True;

 else return False;

endfunction

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-2

Scoreboard: Keeping track of
instructions in execution

Scoreboard: a data structure to keep track of
the destination registers of the instructions
beyond the fetch stage

 method insert: inserts the destination (if any) of an
instruction in the scoreboard when the instruction is
decoded

 method search1(src): searches the scoreboard for a
data hazard

 method search2(src): same as search1

 method remove: deletes the oldest entry when an
instruction commits

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-3

2-Stage-DH pipeline:
Scoreboard and Stall logic

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

d2e

re
d
ir

e
c
t

fE

p
o
c
h

 eEpoch

pred

scoreboard

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-4

2-Stage-DH pipeline corrected
module mkProc(Proc);

 Reg#(Addr) pc <- mkRegU;

 RFile rf <- mkRFile;

 IMemory iMem <- mkIMemory;

 DMemory dMem <- mkDMemory;

 Fifo#(Decode2Execute) d2e <- mkFifo;

 Reg#(Bool) fEpoch <- mkReg(False);

 Reg#(Bool) eEpoch <- mkReg(False);

 Fifo#(Addr) execRedirect <- mkFifo;

 Scoreboard#(1) sb <- mkScoreboard;

 // contains only one slot because Execute

 // can contain at most one instruction

 rule doFetch …

 rule doExecute …

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-5

2-Stage-DH pipeline
doFetch rule second attempt
rule doFetch;

 if(execRedirect.notEmpty) begin

 fEpoch <= !fEpoch; pc <= execRedirect.first;

 execRedirect.deq; end

 else

 begin

 let instF = iMem.req(pc);

 let ppcF = nextAddrPredictor(pc); pc <= ppcF;

 let dInst = decode(instF);

 let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2);

 if(!stall) begin

 let rVal1 = rf.rd1(validRegValue(dInst.src1));

 let rVal2 = rf.rd2(validRegValue(dInst.src2));

 d2e.enq(Decode2Execute{pc: pc, ppc: ppcF,

 dIinst: dInst, epoch: fEpoch,

 rVal1: rVal1, rVal2: rVal2});

 sb.insert(dInst.rDst); end

 end

endrule

What should happen to pc when Fetch stalls?

pc should change only
when the instruction
is enqueued in d2e

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-6

2-Stage-DH pipeline
doFetch rule corrected
rule doFetch;

 if(execRedirect.notEmpty) begin

 fEpoch <= !fEpoch; pc <= execRedirect.first;

 execRedirect.deq; end

 else

 begin

 let instF = iMem.req(pc);

 let ppcF = nextAddrPredictor(pc); pc <= ppcF;

 let dInst = decode(instF);

 let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2);

 if(!stall) begin

 let rVal1 = rf.rd1(validRegValue(dInst.src1));

 let rVal2 = rf.rd2(validRegValue(dInst.src2));

 d2e.enq(Decode2Execute{pc: pc, ppc: ppcF,

 dIinst: dInst, epoch: fEpoch,

 rVal1: rVal1, rVal2: rVal2});

 sb.insert(dInst.rDst); end

 end

endrule

pc <= ppcF; end

To avoid structural
hazards, scoreboard must
allow two search ports

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-7

2-Stage-DH pipeline
doExecute rule corrected
rule doExecute;

 let x = d2e.first;

 let dInstE = x.dInst; let pcE = x.pc;

 let ppcE = x.ppc; let epoch = x.epoch;

 let rVal1E = x.rVal1; let rVal2E = x.rVal2;

 if(epoch == eEpoch) begin

 let eInst = exec(dInstE, rVal1E, rVal2E, pcE, ppcE);

 if(eInst.iType == Ld) eInst.data <-

 dMem.req(MemReq{op:Ld, addr:eInst.addr, data:?});

 else if (eInst.iType == St) let d <-

 dMem.req(MemReq{op:St, addr:eInst.addr, data:eInst.data});

 if (isValid(eInst.dst))

 rf.wr(validRegValue(eInst.dst), eInst.data);

 if(eInst.mispredict) begin

 execRedirect.enq(eInst.addr); eEpoch <= !eEpoch; end

 end

 d2e.deq; sb.remove;

endrule

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-8

A correctness issues

If the search by Decode does not see an
instruction in the scoreboard, then its effect must
have taken place. This means that any updates
to the register file by that instruction must be
visible to the subsequent register reads

 remove and wr should happen atomically

 search and rd1, rd2 should happen atomically

doFetch doExecute

d2e

redirect

Register File

Scoreboard

remove search insert

wr rd1 rd2

Fetch and Execute can execute in any order
October 15, 2014 http://csg.csail.mit.edu/6.175 L13-9

Concurrently executable
Fetch and Execute

Case 1: doExecute < dofetch
 rf: wr < rd (bypass rf)
 sb: remove < {search, insert}
 d2e: {first, deq} {<, CF} enq (pipelined or CF Fifo)
 redirect: enq {<, CF} {deq, first} (bypass or CF Fifo)

Case 2: doFetch < doExecute
 rf: rd < wr (normal rf)
 sb: {search, insert} < remove
 d2e: enq {<, CF} {deq, first} (bypass or CF Fifo)
 redirect: {first, deq} {<, CF} enq (pipelined or CF Fifo)

doFetch doExecute

d2e

redirect

Register File

Scoreboard

remove search insert

wr rd1 rd2 which is
better?

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-10

Performance issues

To avoid a stall due to a RAW hazard between successive
instructions
 sb: remove ? search
 rf: wr ? rd

To minimize stalls due to control hazards
 redirect: ?

What kind of fifo should be used for d2e ?
 Either a pipeline or CF fifo would do fine

doFetch doExecute

d2e

redirect

Register File

Scoreboard

remove search insert

wr rd1 rd2

<

< (bypass rf)

bypass fifo

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-11

2-Stage-DH pipeline
with proper specification of Fifos, rf, scoreboard

module mkProc(Proc);

 Reg#(Addr) pc <- mkRegU;

 RFile rf <- mkBypassRFile;

 IMemory iMem <- mkIMemory;

 DMemory dMem <- mkDMemory;

 Fifo#(Decode2Execute) d2e <- mkPipelineFifo;

 Reg#(Bool) fEpoch <- mkReg(False);

 Reg#(Bool) eEpoch <- mkReg(False);

 Fifo#(Addr) execRedirect <- mkBypassFifo;

 Scoreboard#(1) sb <- mkPipelineScoreboard;

 // contains only one slot because Execute

 // can contain at most one instruction

 rule doFetch …

 rule doExecute …

Can a destination register name
appear more than once in the
scoreboard ?

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-12

WAW hazards
If multiple instructions in the scoreboard can
update the register which the current
instruction wants to read, then the current
instruction has to read the update for the
youngest of those instructions

This is not a problem in our design because

 instructions are committed in order

 the RAW hazard for the instruction at the decode
stage will remain as long as the any instruction with
the required destination is present in sb

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-13

An alternative design for sb

Instead of keeping track of the destination of
every instruction in the pipeline, we can
associated a bit with every register to indicate
if that register is the destination of some
instruction in the pipeline

 Appropriate register bit is set when an instruction
enters the execute stage and cleared when the
instruction is committed

The design will not work if multiple
instructions in the pipeline have the same
destination

 don’t let an instruction with WAW hazard enter the
pipeline

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-14

Fetch rule to avoid WAW
hazard
rule doFetch;

 if(execRedirect.notEmpty) begin

 fEpoch <= !fEpoch; pc <= execRedirect.first;

 execRedirect.deq; end

 else

 begin

 let instF = iMem.req(pc);

 let ppcF = nextAddrPredictor(pc); let dInst = decode(instF);

 let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2);

 || sb.search3(dInst.dst);

 if(!stall) begin

 let rVal1 = rf.rd1(validRegValue(dInst.src1));

 let rVal2 = rf.rd2(validRegValue(dInst.src2));

 d2e.enq(Decode2Execute{pc: pc, ppc: ppcF,

 dIinst: dInst, epoch: fEpoch,

 rVal1: rVal1, rVal2: rVal2});

 sb.insert(dInst.rDst); pc <= ppcF; end

 end

endrule

 October 15, 2014 http://csg.csail.mit.edu/6.175 L13-15

Summary
Instruction pipelining requires dealing with
control and data hazards

Speculation is necessary to deal with control
hazards

Data hazards are avoided by withholding
instructions in the decode stage until the hazard
disappears

Performance issues are subtle

 For instance, the value of having a bypass network
depends on how frequently it is exercised by programs

 Bypassing necessarily increases combinational paths
which can slow down the clock

next – module implementations and multistage pipelines
October 15, 2014 http://csg.csail.mit.edu/6.175 L13-16

Normal Register File
module mkRFile(RFile);

 Vector#(32,Reg#(Data)) rfile <- replicateM(mkReg(0));

 method Action wr(RIndx rindx, Data data);

 if(rindx!=0) rfile[rindx] <= data;

 endmethod

 method Data rd1(RIndx rindx) = rfile[rindx];

 method Data rd2(RIndx rindx) = rfile[rindx];

endmodule

{rd1, rd2} < wr

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-17

Bypass Register File using EHR
module mkBypassRFile(RFile);

 Vector#(32,Ehr#(2, Data)) rfile <-

 replicateM(mkEhr(0));

 method Action wr(RIndx rindx, Data data);

 if(rindex!=0) (rfile[rindex])[0] <= data;

 endmethod

 method Data rd1(RIndx rindx) = (rfile[rindx])[1];

 method Data rd2(RIndx rindx) = (rfile[rindx])[1];

endmodule

wr < {rd1, rd2}

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-18

Bypass Register File
with external bypassing
module mkBypassRFile(BypassRFile);

 RFile rf <- mkRFile;

 Fifo#(1, Tuple2#(RIndx, Data))

 bypass <- mkBypassSFifo;

 rule move;

 begin rf.wr(bypass.first); bypass.deq end;

 endrule

 method Action wr(RIndx rindx, Data data);

 if(rindex!=0) bypass.enq(tuple2(rindx, data));

 endmethod

 method Data rd1(RIndx rindx) =

 return (!bypass.search1(rindx)) ? rf.rd1(rindx)

 : bypass.read1(rindx);

 method Data rd2(RIndx rindx) =

 return (!bypass.search2(rindx)) ? rf.rd2(rindx)

 : bypass.read2(rindx);

endmodule
wr < {rd1, rd2}

rf

move

rd

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-19

Scoreboard implementation
using searchable Fifos

function Bool isFound

 (Maybe#(RIndx) dst, Maybe#(RIndx) src);

 return isValid(dst) && isValid(src) &&

 (validValue(dst)==validValue(src));

endfunction

module mkCFScoreboard(Scoreboard#(size));

 SFifo#(size, Maybe#(RIndx), Maybe#(RIndx))

 f <- mkCFSFifo(isFound);

 method insert = f.enq;

 method remove = f.deq;

 method search1 = f.search1;

 method search2 = f.search2;

endmodule

October 15, 2014 http://csg.csail.mit.edu/6.175 L13-20

