
Constructive Computer Architecture:

Branch Prediction:
Direction Predictors

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-1

Multiple Predictors: BTB +
Branch Direction Predictors

Suppose we maintain a table of how a particular Br has
resolved before. At the decode stage we can consult this
table to check if the incoming (pc, ppc) pair matches
our prediction. If not redirect the pc

Need
next PC

immediately

Instr type,
PC relative

targets
available

Simple
conditions,

register targets
available

Complex
conditions
available

Next Addr
Pred

tight
loop

P
C

Decode
Reg
Read

Execute
Write
Back

mispred
insts

must be
filtered

Br Dir
Pred

correct
mispred

correct
mispred

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-2

Branch Prediction Bits
Remember how the branch was resolved previously

• Assume 2 BP bits per instruction
• Use saturating counter

O
n
 ¬

ta
k
e
n




 O

n
 ta

k
e
n

1 1 Strongly taken

1 0 Weakly taken

0 1 Weakly ¬taken

0 0 Strongly ¬taken

Direction prediction changes only after two successive
bad predictions

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-3

Two-bit versus one-bit
Branch prediction

Consider the branch instruction needed to
implement a loop

 with one bit, the prediction will always be set
incorrectly on loop exit

 with two bits the prediction will not change on loop
exit

A little bit of hysteresis is good in changing predictions

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-4

Branch History Table (BHT)

4K-entry BHT, 2 bits/entry, ~80-90% correct
direction predictions

0 0

Fetch PC

Branch?

Opcode offset

Instruction

k

BHT Index

2k-entry
BHT,
2 bits/entry

Taken/¬Taken?

Target PC

+

from
Fetch

At the Decode stage, if the instruction is a
branch then BHT is consulted using the pc;
if BHT shows a different prediction than the
incoming ppc, Fetch is redirected

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-5

Exploiting Spatial Correlation
Yeh and Patt, 1992

History register, H, records the direction of the last N
branches executed by the processor and the predictor
uses this information to predict the resolution of the next
branch

if (x[i] < 7) then
 y += 1;
if (x[i] < 5) then
 c -= 4;

If first condition is false then so is second condition

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-6

Two-Level Branch Predictor
Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~95% correct)

0 0

k Fetch PC

Taken/¬Taken?

Shift in Taken/¬Taken
results of each branch

2-bit global branch
history shift register

Four
2k, 2-bit
Entry
BHT

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-7

Where does BHT fit in the
processor pipeline?

BHT can only be used after instruction decode

We still need the next instruction address
predictor (e.g., BTB) at the fetch stage

Predictor training: On a pc misprediction,
information about redirecting the pc has to be
passed to the fetch stage. However for
training the branch predictors information has
to be passed even when there is no
misprediction

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-8

Multiple predictors in a
pipeline

 At each stage we need to take two decisions:

 Whether the current instruction is a wrong path
instruction. Requires looking at epochs

 Whether the prediction (ppc) following the current
instruction is good or not. Requires consulting the
prediction data structure (BTB, BHT, …)

Fetch stage must correct the pc unless the
redirection comes from a known wrong path
instruction

Redirections from Execute stage are always
correct, i.e., cannot come from wrong path
instructions

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-9

Dropping or poisoning an
instruction

Once an instruction is determined to be on the
wrong path, the instruction is either dropped or
poisoned

Drop: If the wrong path instruction has not
modified any book keeping structures (e.g.,
Scoreboard) then it is simply removed

Poison: If the wrong path instruction has
modified book keeping structures then it is
poisoned and passed down for book keeping
reasons (say, to remove it from the scoreboard)

Subsequent stages know not to update any
architectural state for a poisoned instruction

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-10

re
c
ir
e
c
t

N-Stage pipeline – BTB only

Execute d2e Decode f2d Fetch PC

miss
pred?

fEpoch

At Execute:
 (correct pc?) if (epoch!=eEpoch) then mark instruction as poisoned
 (correct ppc?) if (correct pc) & mispred then change eEpoch
 For every control instruction send <pc, newPc, taken, mispred, ...> to

Fetch for training and redirection

At Fetch:
 msg from execute: train BTB with <pc, newPc, taken, mispred>
 if msg from execute indicates misprediction then set pc, change fEpoch

attached to
every fetched
instruction

{pc, ppc, epoch}

eEpoch
{pc, newPc, taken
mispredict, ...}

BTB

...

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-11

2-Stage-DH pipeline

doExecute rule
rule doExecute;

 let x = d2e.first;

 let dInst = x.dInst; let pc = x.pc;

 let ppc = x.ppc; let epoch = x.epoch;

 let rVal1 = x.rVal1; let rVal2 = x.rVal2;

 if(epoch == eEpoch) begin

 let eInst = exec(dInst, rVal1, rVal2, pc, ppc);

 if(eInst.iType == Ld) eInst.data <-

 dMem.req(MemReq{op:Ld, addr:eInst.addr, data:?});

 else if (eInst.iType == St) let d <-

 dMem.req(MemReq{op:St, addr:eInst.addr, data:eInst.data});

 if (isValid(eInst.dst))

 rf.wr(validRegValue(eInst.dst), eInst.data);

 if(eInst.mispredict) eEpoch <= !eEpoch;

 if(eInst.iType == J || eInst.iType == Jr || eInst.iType == Br)

 redirect.enq(Redirect{pc: pc, nextPc: eInst.addr,

 taken: eInst.brTaken, mispredict: eInst.mispredict,

 brType: eInst.iType});

 d2e.deq; sb.remove;

endrule

Information about branch
resolution is sent for all branches
to train predictors

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-12

2-Stage-DH pipeline

doFetch rule
rule doFetch;

 let inst = iMem.req(pc);

 if(redirect.notEmpty) begin

 btb.update(redirect.first); redirect.deq; end

 if(redirect.notEmpty && redirect.first.mispredict)

 begin pc <= redirect.first.ppc; fEpoch <= !fEpoch; end
 else begin

 let ppc = btb.predPc(pc); let dInst = decode(inst);

 let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2);

 if(!stall) begin

 let rVal1 = rf.rd1(validRegValue(dInst.src1));

 let rVal2 = rf.rd2(validRegValue(dInst.src2));

 d2e.enq(Decode2Execute{pc: pc, nextPC: ppc,

 dIinst: dInst, epoch: fEpoch,

 rVal1: rVal1, rVal2: rVal2});

 sb.insert(dInst.rDst); pc <= ppc; end

 end

endrule

update btb but
change pc only
on a mispredict

October 22, 2014 http://csg.csail.mit.edu/6.175 L15-13

N-Stage pipeline:
Two predictors

Both Decode and Execute can redirect the PC; Execute
redirect should never be overruled

We will use separate epochs for each redirecting stage
 feEpoch and deEpoch are estimates of eEpoch at Fetch and

Decode, respectively. deEpoch is updated by the incoming eEpoch

 fdEpoch is Fetch’s estimates of dEpoch

 Initially set all epochs to 0

Execute stage logic does not change

Execute d2e Decode f2d Fetch PC

miss
pred?

miss
pred?

redirect PC

redirect PC
deEpoch

eEpoch feEpoch e
R
e
c
ir
e
c
t

fdEpoch dEpoch

d
R
e
c
ir
e
c
t

...

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-14

Decode stage
Redirection logic

Execute d2e Decode f2d Fetch PC

miss
pred?

miss
pred?

deEpoch

eEpoch feEpoch e
R
e
c
ir
e
c
t

fdEpoch dEpoch

d
R
e
c
ir
e
c
t

...

{..., ieEp} {pc, ppc, ieEp, idEp}

{pc, newPc, taken
mispredict, ...}

{pc, newPc,
idEp, ideEp...}

Is ieEp = deEp ?

Is idEp = dEp ? Current instruction is OK but
Execute has redirected the pc;
Set <deEp, dEp> to <ieEp, idEp>
check the ppc prediction via BHT,
Switch dEp if misprediction

yes no

yes no

Current instruction
is OK; check the
ppc prediction via
BHT, Switch dEp if
misprediction

Wrong path
instruction; drop it

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-15

N-Stage pipeline: Two predictors
Redirection logic

Execute d2e Decode f2d Fetch PC

miss
pred?

miss
pred?

deEpoch

eEpoch feEpoch e
R
e
c
ir
e
c
t

fdEpoch dEpoch

d
R
e
c
ir
e
c
t

...

At execute:
 (correct pc?) if (ieEp!=eEp) then poison the instruction
 (correct ppc?) if (correct pc) & mispred then change eEp;
 For every non-poisoned control instruction send <pc, newPc, taken, mispred, ...> to

Fetch for training and redirection

At fetch:
 msg from execute: train btb & if (mispred) set pc, change feEp,
 msg from decode: if (no redirect message from Execute)
 if (ideEp=feEp) then set pc, change fdEp to idEp

At decode: …

{..., ieEp} {pc, ppc, ieEp, idEp}

{pc, newPc, taken
mispredict, ...}

{pc, newPc,
 ieEp,ideEp...}

make sure that the msg
from Decode is not from
a wrong path instruction October 27, 2014 http://csg.csail.mit.edu/6.175 L16-16

now some coding ...

4-stage pipeline (F, D&R, E&M, W)

Direction predictor training is incompletely
specified

You will explore the effect of
predictor training in the lab

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-17

4-Stage pipeline with Branch
Prediction
module mkProc(Proc);

 Reg#(Addr) pc <- mkRegU;

 RFile rf <- mkBypassRFile;

 IMemory iMem <- mkIMemory;

 DMemory dMem <- mkDMemory;

 Fifo#(1, Decode2Execute) d2e <- mkPipelineFifo;

 Fifo#(1, Exec2Commit) e2c <- mkPipelineFifo;

 Scoreboard#(2) sb <- mkPipelineScoreboard;

 Reg#(Bool) feEp <- mkReg(False);

 Reg#(Bool) fdEp <- mkReg(False);

 Reg#(Bool) dEp <- mkReg(False);

 Reg#(Bool) deEp <- mkReg(False);

 Reg#(Bool) eEp <- mkReg(False);

 Fifo#(ExecRedirect) redirect <- mkBypassFifo;

 Fifo#(DecRedirect) decRedirect <- mkBypassFifo;

 NextAddrPred#(16) btb <- mkBTB;

 DirPred#(1024) dirPred <- mkBHT;

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-18

4-Stage-BP pipeline
Fetch rule: multiple predictors
rule doFetch;

 let inst = iMem.req(pc);

 if(redirect.notEmpty)

 begin redirect.deq; btb.update(redirect.first); end

 if(redirect.notEmpty && redirect.first.mispredict)

 begin pc <= redirect.first.nextPc; feEp <= !feEp; end

 else if(decRedirect.notEmpty) begin

 if(decRedirect.first.eEp == feEp) begin

 fdEp <= !fdEp; pc <= decRedirect.first.nextPc; end

 decRedirect.deq; end;

 else begin

 let ppc = btb.predPc(pc);

 f2d.enq(Fetch2Decoode{pc: pc, ppc: ppc, inst: inst,

 eEp: feEp, dEp: fdEp});

 end

 endrule

Not enough information is being passed from
Fetch to Decode to train BHT – lab problem

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-19

4-Stage-BP pipeline
Decode&RegRead Action
function Action decAndRegFetch(DInst dInst, Addr pc, Addr ppc,

 Bool eEp);

action

 let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2);

 if(!stall)

 begin

 let rVal1 = rf.rd1(validRegValue(dInst.src1));

 let rVal2 = rf.rd2(validRegValue(dInst.src2));

 d2e.enq(Decode2Execute{pc: pc, ppc: ppc,

 dInst: dInst, epoch: eEp,

 rVal1: rVal1, rVal2: rVal2});

 sb.insert(dInst.rDst);

 end

endaction

endfunction

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-20

4-Stage-BP pipeline
Decode&RegRead rule
rule doDecode;

 let x = f2d.first; let inst = x.inst; let pc = x.pc;

 let ppc = x.ppc; let idEp = x.dEp; let ieEp = x.eEp;

 let dInst = decode(inst);

 let nextPc = dirPrec.predAddr(pc, dInst);

 if(ieEp != deEp) begin // change Decode’s epochs and

 // continue normal instruction execution

 deEp <= ieEp; let newdEp = idEp;

 decAndRegRead(inst, pc, nextPc, ieEp);

 if(ppc != nextPc) begin newdEp = !newdEp;

 decRedirect.enq(DecRedirect{pc: pc,

 nextPc: nextPc, eEp: ieEp}); end

 dEp <= newdEp end

 else if(idEp == dEp) begin

 decAndRegRead(inst, pc, nextPc, ieEp);

 if(ppc != nextPc) begin

 dEp <= !dEp; decRedirect.enq(DecRedirect{pc: pc,

 newPc: newPc, eEp: ieEp}); end

 end // if idEp!=dEp then drop,ie, no action

 f2d.deq;

endrule BHT update is missing– lab problem
October 27, 2014 http://csg.csail.mit.edu/6.175 L16-21

4-Stage-BP pipeline
Execute rule: predictor training
rule doExecute;

 let x = d2e.first;

 let dInst = x.dInst; let pc = x.pc;

 let ppc = x.ppc; let epoch = x.epoch;

 let rVal1 = x.rVal1; let rVal2 = x.rVal2;

 if(epoch == eEpoch) begin

 let eInst = exec(dInst, rVal1, rVal2, pc, ppc);

 if(eInst.iType == Ld) eInst.data <-

 dMem.req(MemReq{op:Ld, addr:eInst.addr, data:?});

 else if (eInst.iType == St) let d <-

 dMem.req(MemReq{op:St, addr:eInst.addr, data:eInst.data});

 e2c.enq(Exec2Commit{dst:eInst.dst, data:eInst.data});

 if(eInst.mispredict) eEpoch <= !eEpoch

 if(eInst.iType == J || eInst.iType == Jr || eInst.iType == Br)

 redirect.enq(Redirect{pc: pc, nextPc: eInst.addr,

 taken: eInst.brTaken, mispredict: eInst.mispredict,

 brType: eInst.iType}); end

 else e2c.enq(Exec2Commit{dst:Invalid, data:?});

 d2e.deq;

endrule

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-22

4-Stage-BP pipeline
Commit rule
 rule doCommit;

 let dst = eInst.first.dst;

 let data = eInst.first.data;

 if(isValid(dst))

 rf.wr(tuple2(validValue(dst), data);

 e2c.deq;

 sb.remove;

 endrule

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-23

Uses of Jump Register (JR)
Switch statements (jump to address of
matching case)

Dynamic function call (jump to run-time
function address)

Subroutine returns (jump to return address)

How well does BTB or BHT work for each of these cases?

BTB works well if the same case is used repeatedly

BTB works well if the same function is usually called, (e.g., in
C++ programming, when objects have same type in virtual
function call)

BTB works well if return is usually to the same place

However, often one function is called from many
distinct call sites!

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-24

Subroutine Return Stack
A small structure to accelerate JR
for subroutine returns is typically
much more accurate than BTBs

pc of fb call

pc of fc call

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

pc of fd call k entries
(typically k=8-16)

Pop return address
when subroutine
return decoded

Push call address
when function call
executed

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-25

Multiple Predictors: BTB +
BHT + Ret Predictors

One of the PowerPCs has all the three predictors
Performance analysis is quite difficult – depends upon the
sizes of various tables and program behavior
Correctness: The system must work even if every prediction
is wrong

Need
next PC

immediately

Instr type,
PC relative

targets
available

Simple
conditions,

register targets
available

Complex
conditions
available

Next Addr
Pred

tight
loop

P
C

Decode
Reg
Read

Execute
Write
Back

mispred
insts

must be
filtered

Br Dir
Pred, RAS

correct
JR pred

correct
mispred

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-26

