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The use of magic memories (combinational reads) 
makes such design unrealistic  

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-2 



Magic Memory Model 

Reads and writes are always completed in 
one cycle 

 a Read can be done any time (i.e. combinational) 

 If enabled, a Write is performed at the rising clock 
edge 

 (the write address and data must be stable at the clock edge) 

 

MAGIC 
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In a real DRAM the data will be available several 
cycles after the address is supplied 
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Memory Hierarchy 

 size:   RegFile  <<  SRAM  <<  DRAM 

 latency: RegFile  <<  SRAM  <<  DRAM 

 bandwidth: on-chip  >>  off-chip     
 

On a data access: 

hit    (data  fast memory)  low latency access 

miss (data  fast memory)  long latency access (DRAM) 

Small, 

Fast Memory 

SRAM 

CPU 

RegFile 

Big, Slow Memory 

DRAM 

holds frequently used data 

why? 
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Inside a Cache 
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How many bits are needed for the tag? 
Enough to uniquely identify the block 

  Address 

     Tag 
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Cache Read 
Search cache tags to find match for 

the processor generated address  

Found in cache  

a.k.a.  hit 

Return copy of 
data from cache 

Not in cache 

a.k.a. miss 

Read block of data from 
Main Memory – may require 
writing back a cache line 

 

Wait …  

 

Return data to processor and 
update cache 

Which line do 
we replace? 
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Write behavior 

On a write hit 

 Write-through: write to both cache and the next level 
memory 

 write-back: write only to cache and update the next 
level memory when line is evacuated 

On a write miss  

 Allocate – because of multi-word lines we first fetch the 
line, and then update a word in it 

 Not allocate – word modified in memory 
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Cache Line Size 
A cache line usually holds more than one word 

 Reduces the number of tags and the tag size needed 
to identify memory locations 

 Spatial locality: Experience shows that if address x is 
referenced then addresses x+1, x+2 etc. are very 
likely to be referenced in a short time window 
 consider instruction streams, array and record accesses 

 Communication systems (e.g., bus) are often more 
efficient in transporting larger data sets 
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Types of misses 
Compulsory misses (cold start) 

 First time data is referenced 

 Run billions of instructions, become insignificant 

Capacity misses 

 Working set is larger than cache size 

 Solution: increase cache size 

Conflict misses 

 Usually multiple memory locations are mapped to the 
same cache location to simplify implementations 

 Thus it is possible that the designated cache location is 
full while there are empty locations in the cache.  

 Solution: Set-Associative Caches 
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Internal Cache Organization 

Cache designs restrict where in cache a 
particular address can reside 

 Direct mapped: An address can reside in exactly one 
location in the cache. The cache location is typically 
determined by the lowest order address bits 

 n-way Set associative: An address can reside in any 
of the a set of n locations in the cache. The set is 
typically determine by the lowest order address bits 
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Direct-Mapped Cache 
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What is a bad reference pattern? Strided = size of cache 

req address 
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Direct Map Address Selection 
higher-order vs. lower-order address bits 
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Why higher-order bits as tag may be undesirable? 

Spatially local blocks conflict 
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Reduce Conflict Misses 
Memory time =  

Hit time + Prob(miss) * Miss penalty 

 

Associativity: Reduce conflict misses by 
allowing blocks to go to several sets in cache 

 2-way set associative: each block can be mapped to 
one of 2 cache sets 

 Fully associative: each block can be mapped to any 
cache frame 
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2-Way Set-Associative Cache 
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Replacement Policy 
In order to bring in a new cache line, usually 
another cache line has to be thrown out. 
Which one? 

 No choice in replacement if the cache is direct 
mapped 

Replacement policy for set-associative caches 

 One that is not dirty, i.e., has not been modified 
 In I-cache all lines are clean 

 In D-cache if a dirty line has to be thrown out then it must be 
written back first 

 Least recently used? 

 Most recently used? 

 Random? 

How much is performance 
affected by the choice? 

Difficult to know without 
benchmarks and 
quantitative measurements 
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Blocking vs. Non-Blocking 
cache 

Blocking cache: 

 At most one outstanding miss 

 Cache must wait for memory to respond 

 Cache does not accept requests in the 
meantime 

Non-blocking cache: 

 Multiple outstanding misses 

 Cache can continue to process requests while 
waiting for memory to respond to misses 

We will first design a write-back, Write-miss allocate, 
Direct-mapped, blocking cache 
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Blocking Cache Interface 

interface Cache; 

  method Action req(MemReq r); 

  method ActionValue#(Data) resp; 

 

  method ActionValue#(MemReq) memReq; 

  method Action memResp(Line r); 

endinterface 
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Interface dynamics 
The cache either gets a hit and responds 
immediately, or it gets a miss, in which case it 
takes several steps to process the miss 

Reading the response dequeues it 

Requests and responses follow the FIFO order 

Methods are guarded, e.g., the cache may not 
be ready to accept a request because it is 
processing a miss 

A status register keeps track of the state of the 
cache while it is processing a miss 

    typedef enum {Ready, StartMiss, SendFillReq, 

 WaitFillResp} CacheStatus deriving (Bits, Eq); 
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Blocking Cache 
code structure 
module mkCache(Cache); 

    RegFile#(CacheIndex, Line) dataArray <- 

                                 mkRegFileFull; … 

    rule startMiss … endrule; 

   

    method Action req(MemReq r) …        endmethod;     

    method ActionValue#(Data) resp …     endmethod;  

  

    method ActionValue#(MemReq) memReq … endmethod; 

    method Action memResp(Line r) …      endmethod; 

endmodule 

Internal communications is in line sizes but the processor 
interface, e.g., the response from the hitQ is word size 

Let us assume the line size is 4 words 

CacheIndexSz + CacheTagSz + 4 = AddrSz 
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Blocking cache 
state elements 

  RegFile#(CacheIndex, Line) dataArray <- mkRegFileFull; 

  RegFile#(CacheIndex, Maybe#(CacheTag)) 

                               tagArray <- mkRegFileFull; 

  RegFile#(CacheIndex, Bool) dirtyArray <- mkRegFileFull; 

 

  Fifo#(1, Data)      hitQ <- mkBypassFifo; 

  Reg#(MemReq)     missReq <- mkRegU; 

  Reg#(CacheStatus) status <- mkReg(Ready); 

 

  Fifo#(2, MemReq) memReqQ <- mkCFFifo; 

  Fifo#(2, Line)  memRespQ <- mkCFFifo; 

 

  function CacheIndex getIdx(Addr addr) = truncate(addr>>4); 

  function CacheTag getTag(Addr addr)   = truncateLSB(addr); 

CF Fifos are preferable 
because they provide better 
decoupling. An extra cycle 
here may not affect the 
performance by much 

Tag and valid bits 
are kept together 
as a Maybe type 
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truncate = truncateMSB 



Req method 
hit processing 
method Action req(MemReq r) if(status == Ready); 

  let idx = getIdx(r.addr); let tag = getTag(r.addr); 

  Bit#(2) wOffset = truncate(r.addr >> 2); 

  let currTag = tagArray.sub(idx); 

  let hit = isValid(currTag)?  

             fromMaybe(?,currTag)==tag : False;  

  if(hit) begin 

    let x = dataArray.sub(idx); 

    if(r.op == Ld) hitQ.enq(x[wOffset]); 

    else begin x[wOffset]=r.data;  

               dataArray.upd(idx, x); 

               dirtyArray.upd(idx, True); end 

  else begin missReq <= r; status <= StartMiss; end 

endmethod 

It is straightforward to extend 
the cache interface to include 
a cacheline flush command 

overwrite the 
appropriate  word 
of the line 
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Rest of the methods 
method ActionValue#(Data) resp; 

  hitQ.deq; 

  return hitQ.first; 

endmethod 

 

method ActionValue#(MemReq) memReq; 

  memReqQ.deq; 

  return memReqQ.first; 

endmethod 

 

method Action memResp(Line r); 

  memRespQ.enq(r); 

endmethod 

 

 

 

Memory side 
methods 
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Start-miss and Send-fill 
rules 

rule startMiss(status == StartMiss); 

  let idx = getIdx(missReq.addr);  

  let tag=tagArray.sub(idx); let dirty=dirtyArray.sub(idx); 

  if(isValid(tag) && dirty) begin // write-back 

    let addr = {fromMaybe(?,tag), idx, 4'b0}; 

    let data = dataArray.sub(idx); 

    memReqQ.enq(MemReq{op: St, addr: addr, data: data}); 

                            end 

  status <= SendFillReq;                            

endrule 

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready 
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rule sendFillReq (status == SendFillReq); 

  memReqQ.enq(missReq);   status <= WaitFillResp; 

endrule 

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready 



Wait-fill rule 
Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready 

rule waitFillResp(status == WaitFillResp); 

  let idx = getIdx(missReq.addr); 

  let tag = getTag(missReq.addr); 

  let data = memRespQ.first; 

  tagArray.upd(idx, Valid (tag)); 

  if(missReq.op == Ld) begin 

    dirtyArray.upd(idx,False);dataArray.upd(idx, data); 

    hitQ.enq(data[wOffset]); end 

  else begin data[wOffset] = missReq.data;     

    dirtyArray.upd(idx,True); dataArray.upd(idx, data); 

        end 

  memRespQ.deq; status <= Ready; 

endrule 
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Hit and miss performance 
Hit 

 Combinational read/write, i.e. 0-cycle response 

 Requires req and resp methods to be concurrently 

schedulable, which in turn requires 

              hitQ.enq < {hitQ.deq, hitQ.first} 

  i.e., hitQ should be a bypass Fifo 

Miss 

 No evacuation: memory load latency plus 
combinational read/write 

 Evacuation: memory store followed by memory load 
latency plus combinational read/write 

 
Adding an extra cycle here and there in the miss case 
should not have a big negative performance impact 
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