
Constructive Computer Architecture

Realistic Memories and
Caches

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-1

Multistage Pipeline

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

d2e

re

d
ir

e
c
t

fE
p
o
c
h

 eEpoch

nap e2c

scoreboard

The use of magic memories (combinational reads)
makes such design unrealistic

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-2

Magic Memory Model

Reads and writes are always completed in
one cycle

 a Read can be done any time (i.e. combinational)

 If enabled, a Write is performed at the rising clock
edge

 (the write address and data must be stable at the clock edge)

MAGIC

 RAM
ReadData

WriteData

Address

WriteEnable

Clock

In a real DRAM the data will be available several
cycles after the address is supplied

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-3

Memory Hierarchy

 size: RegFile << SRAM << DRAM

 latency: RegFile << SRAM << DRAM

 bandwidth: on-chip >> off-chip

On a data access:

hit (data  fast memory)  low latency access

miss (data  fast memory)  long latency access (DRAM)

Small,

Fast Memory

SRAM

CPU

RegFile

Big, Slow Memory

DRAM

holds frequently used data

why?

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-4

Inside a Cache

Cache Processor Main

Memory

Address Address

Data Data

copy of main mem

locations 100, 101, ...

Data Block

Line =

<Add tag, Data blk>

Data
Byte

Data
Byte

Data
Byte

100

304

6848

 416

How many bits are needed for the tag?
Enough to uniquely identify the block

 Address

 Tag

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-5

Cache Read
Search cache tags to find match for

the processor generated address

Found in cache

a.k.a. hit

Return copy of
data from cache

Not in cache

a.k.a. miss

Read block of data from
Main Memory – may require
writing back a cache line

Wait …

Return data to processor and
update cache

Which line do
we replace?

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-6

Write behavior

On a write hit

 Write-through: write to both cache and the next level
memory

 write-back: write only to cache and update the next
level memory when line is evacuated

On a write miss

 Allocate – because of multi-word lines we first fetch the
line, and then update a word in it

 Not allocate – word modified in memory

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-7

Cache Line Size
A cache line usually holds more than one word

 Reduces the number of tags and the tag size needed
to identify memory locations

 Spatial locality: Experience shows that if address x is
referenced then addresses x+1, x+2 etc. are very
likely to be referenced in a short time window
 consider instruction streams, array and record accesses

 Communication systems (e.g., bus) are often more
efficient in transporting larger data sets

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-8

Types of misses
Compulsory misses (cold start)

 First time data is referenced

 Run billions of instructions, become insignificant

Capacity misses

 Working set is larger than cache size

 Solution: increase cache size

Conflict misses

 Usually multiple memory locations are mapped to the
same cache location to simplify implementations

 Thus it is possible that the designated cache location is
full while there are empty locations in the cache.

 Solution: Set-Associative Caches

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-9

Internal Cache Organization

Cache designs restrict where in cache a
particular address can reside

 Direct mapped: An address can reside in exactly one
location in the cache. The cache location is typically
determined by the lowest order address bits

 n-way Set associative: An address can reside in any
of the a set of n locations in the cache. The set is
typically determine by the lowest order address bits

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-10

Direct-Mapped Cache

 Tag Data Block V

=

Offset Tag Index

 t k b

 t

HIT Data Word or Byte

 2k

lines

Block number Block offset

What is a bad reference pattern? Strided = size of cache

req address

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-11

Direct Map Address Selection
higher-order vs. lower-order address bits

 Tag Data Block V

 =

Offset Index

 t k
 b

 t

HIT Data Word or Byte

 2k

lines

Tag

Why higher-order bits as tag may be undesirable?

Spatially local blocks conflict
October 31, 2014 http://csg.csail.mit.edu/6.175 L17-12

Reduce Conflict Misses
Memory time =

Hit time + Prob(miss) * Miss penalty

Associativity: Reduce conflict misses by
allowing blocks to go to several sets in cache

 2-way set associative: each block can be mapped to
one of 2 cache sets

 Fully associative: each block can be mapped to any
cache frame

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-13

2-Way Set-Associative Cache

 Tag Data Block V

=

Block

Offset
 Tag Index

 t
 k

 b

hit

 Tag Data Block V

Data

Word

or Byte

=

 t

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-14

Replacement Policy
In order to bring in a new cache line, usually
another cache line has to be thrown out.
Which one?

 No choice in replacement if the cache is direct
mapped

Replacement policy for set-associative caches

 One that is not dirty, i.e., has not been modified
 In I-cache all lines are clean

 In D-cache if a dirty line has to be thrown out then it must be
written back first

 Least recently used?

 Most recently used?

 Random?

How much is performance
affected by the choice?

Difficult to know without
benchmarks and
quantitative measurements

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-15

Blocking vs. Non-Blocking
cache

Blocking cache:

 At most one outstanding miss

 Cache must wait for memory to respond

 Cache does not accept requests in the
meantime

Non-blocking cache:

 Multiple outstanding misses

 Cache can continue to process requests while
waiting for memory to respond to misses

We will first design a write-back, Write-miss allocate,
Direct-mapped, blocking cache

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-16

Blocking Cache Interface

interface Cache;

 method Action req(MemReq r);

 method ActionValue#(Data) resp;

 method ActionValue#(MemReq) memReq;

 method Action memResp(Line r);

endinterface

cache

req

resp

memReq

memResp

Processor
DRAM or
next level
cache

hitQ

mReqQ

mRespQ

missReq

status

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-17

Interface dynamics
The cache either gets a hit and responds
immediately, or it gets a miss, in which case it
takes several steps to process the miss

Reading the response dequeues it

Requests and responses follow the FIFO order

Methods are guarded, e.g., the cache may not
be ready to accept a request because it is
processing a miss

A status register keeps track of the state of the
cache while it is processing a miss

 typedef enum {Ready, StartMiss, SendFillReq,

 WaitFillResp} CacheStatus deriving (Bits, Eq);

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-18

Blocking Cache
code structure
module mkCache(Cache);

 RegFile#(CacheIndex, Line) dataArray <-

 mkRegFileFull; …

 rule startMiss … endrule;

 method Action req(MemReq r) … endmethod;

 method ActionValue#(Data) resp … endmethod;

 method ActionValue#(MemReq) memReq … endmethod;

 method Action memResp(Line r) … endmethod;

endmodule

Internal communications is in line sizes but the processor
interface, e.g., the response from the hitQ is word size

Let us assume the line size is 4 words

CacheIndexSz + CacheTagSz + 4 = AddrSz
October 31, 2014 http://csg.csail.mit.edu/6.175 L17-19

Blocking cache
state elements

 RegFile#(CacheIndex, Line) dataArray <- mkRegFileFull;

 RegFile#(CacheIndex, Maybe#(CacheTag))

 tagArray <- mkRegFileFull;

 RegFile#(CacheIndex, Bool) dirtyArray <- mkRegFileFull;

 Fifo#(1, Data) hitQ <- mkBypassFifo;

 Reg#(MemReq) missReq <- mkRegU;

 Reg#(CacheStatus) status <- mkReg(Ready);

 Fifo#(2, MemReq) memReqQ <- mkCFFifo;

 Fifo#(2, Line) memRespQ <- mkCFFifo;

 function CacheIndex getIdx(Addr addr) = truncate(addr>>4);

 function CacheTag getTag(Addr addr) = truncateLSB(addr);

CF Fifos are preferable
because they provide better
decoupling. An extra cycle
here may not affect the
performance by much

Tag and valid bits
are kept together
as a Maybe type

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-20

truncate = truncateMSB

Req method
hit processing
method Action req(MemReq r) if(status == Ready);

 let idx = getIdx(r.addr); let tag = getTag(r.addr);

 Bit#(2) wOffset = truncate(r.addr >> 2);

 let currTag = tagArray.sub(idx);

 let hit = isValid(currTag)?

 fromMaybe(?,currTag)==tag : False;

 if(hit) begin

 let x = dataArray.sub(idx);

 if(r.op == Ld) hitQ.enq(x[wOffset]);

 else begin x[wOffset]=r.data;

 dataArray.upd(idx, x);

 dirtyArray.upd(idx, True); end

 else begin missReq <= r; status <= StartMiss; end

endmethod

It is straightforward to extend
the cache interface to include
a cacheline flush command

overwrite the
appropriate word
of the line

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-21

Rest of the methods
method ActionValue#(Data) resp;

 hitQ.deq;

 return hitQ.first;

endmethod

method ActionValue#(MemReq) memReq;

 memReqQ.deq;

 return memReqQ.first;

endmethod

method Action memResp(Line r);

 memRespQ.enq(r);

endmethod

Memory side
methods

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-22

Start-miss and Send-fill
rules

rule startMiss(status == StartMiss);

 let idx = getIdx(missReq.addr);

 let tag=tagArray.sub(idx); let dirty=dirtyArray.sub(idx);

 if(isValid(tag) && dirty) begin // write-back

 let addr = {fromMaybe(?,tag), idx, 4'b0};

 let data = dataArray.sub(idx);

 memReqQ.enq(MemReq{op: St, addr: addr, data: data});

 end

 status <= SendFillReq;

endrule

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-23

rule sendFillReq (status == SendFillReq);

 memReqQ.enq(missReq); status <= WaitFillResp;

endrule

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

Wait-fill rule
Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

rule waitFillResp(status == WaitFillResp);

 let idx = getIdx(missReq.addr);

 let tag = getTag(missReq.addr);

 let data = memRespQ.first;

 tagArray.upd(idx, Valid (tag));

 if(missReq.op == Ld) begin

 dirtyArray.upd(idx,False);dataArray.upd(idx, data);

 hitQ.enq(data[wOffset]); end

 else begin data[wOffset] = missReq.data;

 dirtyArray.upd(idx,True); dataArray.upd(idx, data);

 end

 memRespQ.deq; status <= Ready;

endrule

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-24

Hit and miss performance
Hit

 Combinational read/write, i.e. 0-cycle response

 Requires req and resp methods to be concurrently

schedulable, which in turn requires

 hitQ.enq < {hitQ.deq, hitQ.first}

 i.e., hitQ should be a bypass Fifo

Miss

 No evacuation: memory load latency plus
combinational read/write

 Evacuation: memory store followed by memory load
latency plus combinational read/write

Adding an extra cycle here and there in the miss case
should not have a big negative performance impact

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-25

Four-Stage Pipeline

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

f2d

Epoch

m2w d2e

Next

Addr

Pred

scoreboard

insert bypass FIFO’s to deal with
(0,n) cycle memory response

f12f2

e2m

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-26

