X
“"Constructive Computer Architecture

Realistic Memories and
Caches

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

N

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-1



Multistage Pipeline

p
N
< . .
o Register File
LLl —
A A% ]
9_L3 > eEpoch |€—
I
nap 11 e2C
PC Decode _,A Execute f——
P > B
P>
\ 4 >-f- A 4
Inst T IY Data
Memory scoreboard Memory

The use of magic memories (combinational reads)
makes such design unrealistic
October 31, 2014 http://csg.csail.mit.edu/6.175 L17-2



Maglc Memory Model

WriteEnable

Cllock l

N\

f‘\

Address ———
MAGIC |_, ReadData

RAM

WriteData ——

# Reads and writes are always completed in
one cycle
= a Read can be done any time (i.e. combinational)

= If enabled, a Write is performed at the rising clock
edge

(the write address and data must be stable at the clock edge)

In a real DRAM the data will be available several
cycles after the address is supplied

October 31, 2014 http://csg.csail.mit.edu/6.175

L17-3



Memory Hierarchy

Small,
CPU Big, Slow Memory
Fast Memory |——- !
RegFiIe<:> SRAM y DRAM

holds frequently used data

N

size: RegFile << SRAM << DRAM o
latency: RegFile << SRAM << DRAM why:
bandwidth: on-chip >> off-chip

On a data access:
hit (data e fast memory) = low latency access
miss (data ¢ fast memory) = long latency access (DRAM)

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-4



Inside a Cache

p
N N Address Address
Processor Cache Main
Memory
g Datq,‘..»'"‘ ..Data \
copy of main ment-.
locations 100, 101
100 IevtelBytel | | ------- Line =
304 129 | | |- <Add tag, Data blk>
6848
— |
Address 416 :> Data Block

Tag

How many bits are needed for the tag?
Enough to uniquely identify the block

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-5



Cache Read

Search cache tags to find match for
the processor generated address

N

Found in cache Not in cache

a.k.a. hit a.k.a. miss
Return copy of Read block of data from
data from cache Main Memory — may require

writing back a cache line

Which line do

Wait ... we replace?

Return data to processor and
update cache

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-6



Write behavior

# 0On a write hit

s Write-through: write to both cache and the next level
memory

= write-back: write only to cache and update the next
level memory when line is evacuated

# 0On a write miss

n Allocate - because of multi-word lines we first fetch the
line, and then update a word in it

= Not allocate - word modified in memory

N

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-7



Cache Line Size

# A cache line usually holds more than one word

= Reduces the number of tags and the tag size needed
to identify memory locations

= Spatial locality: Experience shows that if address x is
referenced then addresses x+1, x+2 etc. are very
likely to be referenced in a short time window
» consider instruction streams, array and record accesses

= Communication systems (e.g., bus) are often more
efficient in transporting larger data sets

N

October 31, 2014 http://csg.csail.mit.edu/6.175

L17-8



Types of misses

L/ .

#® Compulsory misses (cold start)

= First time data is referenced

= Run billions of instructions, become insignificant

# Capacity misses
= Working set is larger than cache size
= Solution: increase cache size

# Conflict misses

= Usually multiple memory locations are mapped to the
same cache location to simplify implementations

= Thus it is possible that the designated cache location is
full while there are empty locations in the cache.

s Solution: Set-Associative Caches

N

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-9



Internal Cache Organization

# Cache designs restrict where in cache a
particular address can reside

s Direct mapped: An address can reside in exactly one
location in the cache. The cache location is typically
determined by the lowest order address bits

s nN-way Set associative: An address can reside in any
of the a set of n locations in the cache. The set is
typically determine by the lowest order address bits

N

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-10



Direct-Mapped Cache

N

Block humber

Block offset

%
A A
| | \
Tag Index Offset req address
7.t_I £ L
Vi Tag Data Block )
Bt =i TR MRl TR k
SRl %fﬁ“%ﬁ 2
lines
1t
HIT 7

What is a bad reference pattern?

October 31, 2014

Data Word or Byte

Strided = size of cache

http://csg.csail.mit.edu/6.175

L17-11



Direct Map Address Selection

higher-order vs. lower-order address bits

¥,
Index ii t Tag Offset
—e! "
k I s
Vi Tag Data Block X
' lines
1t

HIT | > Data Word or Byte

Why higher-order bits as tag may be undesirable?
Spatially local blocks conflict

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-12



Reduce Conflict Misses

Memory time =
Hit time + Prob(miss) * Miss penalty

N

L/

# Associativity: Reduce conflict misses by
allowing blocks to go to several sets in cache

s 2-way set associative: each block can be mapped to
one of 2 cache sets

s Fully associative: each block can be mapped to any
cache frame

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-13



2-Way Set-Associative

\V

Z

Tag Index Block
Offset
oz )
; K
V|, Tag Data Block V, Tag

4

b

Data Block

October 31, 2014

http://csg.csail.mit.edu/6.175

Cache

Data
Word
or Byte

hit

L17-14



Replacement Policy

# In order to bring in a new cache line, usually
another cache line has to be thrown out.
Which one?

= No choice in replacement if the cache is direct
mapped

# Replacement policy for set-associative caches

= One that is not dirty, i.e., has not been modified
+ In I-cache all lines are clean

+ In D-cache if a dirty line has to be thrown out then it must be
written back first

N

= Least recently used? How much is performance
= Most recently used? affected by the choice?
= Random? Difficult o know without

benchmarks and

quantitative measurements
October 31, 2014 http://csg.csail.mit.edu/6.175 L17-15



Blocking vs. Non-Blocking

cache

# Blocking cache:
s At most one outstanding miss
s Cache must wait for memory to respond

s Cache does not accept requests in the
meantime

# Non-blocking cache:

= Multiple outstanding misses

s Cache can continue to process requests while
waiting for memory to respond to misses

N

We will first design a write-back, Write-miss allocate,
Direct-mapped, blocking cache

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-16



Blocking Cache Interface

N

req status
” Req
: mRegQ ALIAR
‘missReq 'mReqQ DRAM or
Processor next level
cache

resp memRcep

interface Cache;
method Action reg(MemReq r);
method ActionValue# (Data) resp;

a

method ActionValuei (MemReq) memReq;
method Action memResp (Line r);

endinterface

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-17



Interface dynamics

# The cache either gets a hit and responds
immediately, or it gets a miss, in which case it
takes several steps to process the miss

# Reading the response dequeues it
# Requests and responses follow the FIFO order

# Methods are guarded, e.qg., the cache may not
be ready to accept a request because it is
processing a miss

# A status register keeps track of the state of the

cache while it is processing a miss

typedef enum {Ready, StartMiss, SendFillReq,
WaitFillResp} CacheStatus deriving (Bits, Eq);

N

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-18



Blocking Cache
code structure

p
\\module mkCache (Cache) ;
RegFile# (CacheIndex, Line) dataArray <-
mkRegFileFull;
rule startMiss .. endrule;
method Action reg(MemReq r) .. endmethod;
method ActionValue# (Data) resp .. endmethod;

method ActionValue# (MemReq) memReqg .. endmethod;
method Action memResp (Line r) .. endmethod;
endmodule

# Internal communications is in line sizes but the processor
interface, e.g., the response from the hitQ is word size

# Let us assume the line size is 4 words
# CachelndexSz + CacheTagSz + 4 = AddrSz

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-19



Blocking cache
state elements

RegFile# (CacheIndex, Bool) dirtyA

Reg# (CacheStatus) status <- mkReg (Ready) :

\%RegFile#(CacheIndex, Line) dataArray <- mkRegFileFull;
RegFile# (CacheIndex, Maybe# (CacheTaqg))

tagArray <- mkRegFileFull;

Tag and valid bits
Fifo# (1, Data) hitQ <- mkBypassFifo; | are kept together
Reg# (MemReq) missReq <- mkRegU; as a Maybe type

<- mkRegFileFull;

CF Fifos are preferable

Fifo# (2, MemReq) memReqQ <- kaFg% because they provide better

Fifo# (2, Line) memRespQ <- mkCFFifo;

decoupling. An extra cycle
here may not affect the
performance by much

function CachelIndex getlIdx (Addr addr) = truncate (addr>>4);

function CacheTag getTag (Addr addr)

truncatelSB (addr) ;

truncate = truncateMSB

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-20



Re q m et h O d It is straightforward to extend

the cache interface to include

h |t proceSSi ng a cacheline flush command

method Action reg(MemReq r) if (status == Ready):;
let idx = getldx(r.addr); let tag = getTag(r.addr);
Bit#(2) wOffset = truncate(r.addr >> 2);
let currTag = tagArray.sub (idx);
let hit = isValid(currTag)?
fromMaybe (?,currTag)==tag : False;
if (hit) begin
let x = dataArray.sub (idx) ;
if(r.op == Ld) hitQ.eng(x[wOffset])
else begin x[wOffset]=r.data; «—
dataArray.upd (idx, x);

N

overwrite the
appropriate word
of the line

dirtyArray.upd(idx, True); end
else begin missReg <= r; status <= StartMiss; end
endmethod

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-21



Rest of the methods

“method ActionValue# (Data) resp;
hitQ.deqg;
return hitQ.first;

endmethod

N

—_

method ActionValue# (MemReq) memReq;

memRegQ.deq;

return memReqgQ.first;
endmethod - Memory side
methods
method Action memResp (Line r);

memRespQ.eng(r) ;
endmethod

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-22



Start-miss and Send-fill
rules

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

N

rule startMiss{(status == StartMiss);

let idx = getIdx (missReqg.addr);
let tag=tagArray.sub(idx); let dirty=dirtyArray.sub (idx);
if(isvValid(tag) && dirty) begin // write-back

let addr = {fromMaybe (?,tag), idx, 4'b0};

let data = dataArray.sub (idx);

memRegQ.eng (MemReg{op: St, addr: addr, data: data});

end
status <= SendFillReq;
endrule
Ready -> StartMiss —-> SendFillReq -> WaitFillResp —-> Ready

rule sendFillReqg (status == SendFillReq);
memReqQ.enqg (missReq) ; status <= WaitFillResp;
endrule

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-23



Wait-fill rule

V
Ready -> StartMiss -> SendFillReqg -> WaitFillResp -> Ready

rule waitFillResp (status == WaitFillResp);

let 1dx = getlIdx(missReqg.addr)
let tag = getTag(missReg.addr) ;
let data = memRespQ.first;

tagArray.upd(idx, Valid (taqg)):

if (missReg.op == Ld) begin
dirtyArray.upd(idx, False) ;dataArray.upd(idx, data);
hitQ.eng(data[wOffset]); end
else begin data[wOffset] = missReg.data;
dirtyArray.upd(idx, True); dataArray.upd(idx, data);
end
memRespQ.deqg; status <= Ready;

endrule

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-24



Hit and miss performance
@ Hit

= Combinational read/write, i.e. O-cycle response

s Requires req and resp methods to be concurrently
schedulable, which in turn requires

hitQ.eng < {hitQ.deq, hitQ.first}
i.e., hitQ should be a bypass Fifo

# Miss

= No evacuation: memory load latency plus
combinational read/write

= Evacuation: memory store followed by memory load
latency plus combinational read/write

N

Adding an extra cycle here and there in the miss case
should not have a big negative performance impact

October 31, 2014 http://csg.csail.mit.edu/6.175 L17-25



Four-Stage Pipeline

N

L/

Epoch

October 31, 2014

H

insert bypass FIFO’s to deal with

(0,n) cycle memory response

http://csg.csail.mit.edu/6.175

Register File
AA t
— —> L’> -J ] N
f2d = Decode |, >ld2el»|Execute eom m2w
A\ A A
T l :
YYy Data
scoreboard Memory

L17-26



