
Constructive Computer Architecture

Interrupts/Exceptions/Faults

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

November 7, 2014 http://csg.csail.mit.edu/6.175 L19-1

Interrupts
altering the normal flow of control

An external or internal event that needs to be processed by
another (system) program. The event is usually unexpected or
rare from program’s point of view.

program

HI1

HI2

HIn

interrupt
handler

Ii-1

Ii

Ii+1

November 7, 2014 http://csg.csail.mit.edu/6.175 L19-2

Causes of Interrupts
events that request the attention of the processor

Asynchronous: an external event

 input/output device service-request/response

 timer expiration

 power disruptions, hardware failure

Synchronous: an internal event caused by the

execution of an instruction

 exceptions: The instruction cannot be completed
 undefined opcode, privileged instructions

 arithmetic overflow, FPU exception

 misaligned memory access

 virtual memory exceptions: page faults,
 TLB misses, protection violations

 traps: Deliberately used by the programmer for a
purpose, e.g., a system call to jump into kernel

November 7, 2014 http://csg.csail.mit.edu/6.175 L19-3

Asynchronous Interrupts:
invoking the interrupt handler

An I/O device requests attention by asserting one
of the prioritized interrupt request lines

After the processor decides to process the
interrupt

 It stops the current program at instruction Ii, completing
all the instructions up to Ii-1 (Precise interrupt)

 It saves the PC of instruction Ii in a special register

 It disables interrupts and transfers control to a
designated interrupt handler running in the kernel mode
 Privileged/user mode to prevent user programs from causing harm

to other users or OS

Usually speed is not the paramount concern in
handling interrupts

November 7, 2014 http://csg.csail.mit.edu/6.175 L19-4

Synchronous Interrupts
Requires undoing the effect of one or more
partially executed instructions

Exception: Since the instruction cannot be
completed, it typically needs to be restarted after
the exception has been handled

 information about the exception has to be recorded and
conveyed to the exception handler

Trap: After a the kernel has processed a trap,
the instruction is typically considered to have
completed
 system calls require changing the mode from user to kernel

November 7, 2014 http://csg.csail.mit.edu/6.175 L19-5

Synchronous Interrupt
Handling

Overflow

Illegal Opcode

PC address Exception

Data address Exceptions

...

PC
Inst.
Mem

Decode
Data
Mem +

Illegal
Opcode

Overflow
Data address
Exceptions

PC address
Exception

WB

When an instruction
causes multiple
exceptions the first
one has to be
processed

November 7, 2014 http://csg.csail.mit.edu/6.175 L19-6

Architectural features for
Interrupt Handling

Special registers

 epc holds pc of the instruction that causes the

exception/fault

 Cause Register to indicate the cause of the interrupt

 Status Register …

Special instructions

 eret (return-from-exception) to return from an

exception/fault handler sub-routine using epc. It
restores the previous interrupt state, mode, cause
register, …

 Instruction to move EPC etc. into GPRs

 need a way to mask further interrupts at least until EPC
can be saved

November 7, 2014 http://csg.csail.mit.edu/6.175 L19-7

In MIPS EPC, Cause and Status
Register are Coprocessor registers

Status register

Keeps the user/kernel, interrupt enabled info
and the mask

It keeps tract of some information about the
two previous interrupts to speed up control
transfer

 When an interrupt is taken, (kernel, disabled) is
pushed on to stack

 The stack is popped by the eret instruction

November 7, 2014 L19-8 http://csg.csail.mit.edu/6.175

15 … 8 7 6 5 4 3 2 1 0

interrupt mask old prev cur

interrupt
enabled?

kernel/
user

Interrupt Handling

System calls
A system call instruction causes an interrupt
when it reaches the execute stage

 decoder recognizes a sys call instruction

 current pc is stored in EPC

 the processor is switched to kernel mode and
disables interrupt

 Fetch is redirected to the Exception handler

 Exact behavior depends on the kernel’s
implementation of the exception handler routine

 The use of the SYSCALL instruction depends on the
convention used by the kernel
 Suppose: Register $fn contains the desired function,

 register $arg contains the argument,

 and the result is stored in register $res

November 7, 2014 L19-9 http://csg.csail.mit.edu/6.175

Single-cycle implementation follows

One-Cycle SMIPS
rule doExecute;

 let inst = iMem.req(pc);

 let dInst = decode(inst, cop.getStatus);

 let rVal1 = rf.rd1(validRegValue(dInst.src1));

 let rVal2 = rf.rd2(validRegValue(dInst.src2));

 let eInst = exec(dInst, rVal1, rVal2, pc, ?);

 if(eInst.iType == Ld)

 eInst.data <- dMem.req(MemReq{op: Ld, addr:

 eInst.addr, data: ?});

 else if(eInst.iType == St)

 let d <- dMem.req(MemReq{op: St, addr:

 eInst.addr, data: eInst.data});

 if (isValid(eInst.dst))

 rf.wr(validRegValue(eInst.dst), eInst.data);

 … setting special registers …

 … next address calculation …

endrule endmodule
November 7, 2014 http://csg.csail.mit.edu/6.175 L19-10

Decoded Instruction
typedef struct {

 IType iType;

 AluFunc aluFunc;

 BrFunc brFunc;

 Maybe#(FullIndx) dst;

 Maybe#(FullIndx) src1;

 Maybe#(FullIndx) src2;

 Maybe#(Data) imm;

} DecodedInst deriving(Bits, Eq);

typedef enum {Unsupported, Alu, Ld, St, J, Jr, Br,

Syscall, ERet} IType deriving(Bits, Eq);

typedef enum {Add, Sub, And, Or, Xor, Nor, Slt, Sltu,

LShift, RShift, Sra} AluFunc deriving(Bits, Eq);

typedef enum {Eq, Neq, Le, Lt, Ge, Gt, AT, NT} BrFunc

deriving(Bits, Eq);

Bit#(6) fcSYSCALL = 6'b001100;

Bit#(5) rsERET = 5'b10000;

November 7, 2014 http://csg.csail.mit.edu/6.175 L19-11

Decode
function DecodedInst decode(Data Inst, Status status);

 DecodedInst dInst = ?; ...

 opFUNC: begin

 case (funct) ...

 fcSYSCALL:

 begin

 dInst.iType = Syscall; dInst.dst = Invalid;

 dInst.src1 = Invalid; dInst.src2 = Invalid;

 dInst.imm = Invalid; dInst.brFunc = NT;

 end end

 opRS:

 if (status.kuc == 0) // eret is a Kernel Mode instruction

 if (rs==rsERET) begin

 dInst.iType = ERet; dInst.brFunc = AT;

 dInst.rDst = Invalid; dInst.rSrc1 = Invalid;

 dInst.rSrc2 = Invalid; end

 return dInst;

endfunction

November 7, 2014 http://csg.csail.mit.edu/6.175 L19-12

Set special registers

November 7, 2014 L19-13 http://csg.csail.mit.edu/6.175

if (eInst.iType==Syscall)

begin

 Status status=cop.getStatus;

 status=statusPushKU(status);

 cop.setStatus(status);

 Cause cause=cop.getCause;

 cause.excCode=causeExcCode(eInst.iType);

 cop.setCause(cause);

 cop.setEpc(pc);

end else

if (eInst.iType==ERet) begin

 Status status=cop.getStatus;

 status=statusPopKU(status);

 cop.setStatus(status);

end

Redirecting PC

November 7, 2014 L19-14 http://csg.csail.mit.edu/6.175

if (eInst.iType==Syscall)

 pc <= excHandlerPC;

else if (eInst.iType==ERet)

 pc <= cop.getEpc;

else

 pc <= eInst.brTaken ? eInst.addr : pc + 4;

Interrupt handler- SW

November 7, 2014 L19-15 http://csg.csail.mit.edu/6.175

exception_handler:

 mfc0 $26, $cause # get cause register

 srl $26, 2 # shift to get cause in LSB

 andi $26, $26, 0x1f # apply mask to cause

 li $27, 0x0008 # syscall cause

 beq $26, $27, syscallhandler

 …

syscallhandler:

 li $26, 0xA

 beq $fn, $26, testDone

 li $26, 0xE

 beq $fn, $26, getInsts

 …

testdone: …

getInsts: …

retfrmsyscall:…

0xA is the code for syscall
testDone
0xE is the code for syscall
getInsts

Interrupt handler cont

November 7, 2014 L19-16 http://csg.csail.mit.edu/6.175

testdone:

 mtc0 $arg, $21 # end simulation with $arg

 nop …

getInsts:

 mfc0 $res, $insts

 j retfrmsyscall

retfrmsyscall:

 mfc0 $26, $epc # get epc

 addiu $26, $26, 4 # add 4 to epc to skip SYSCALL

 mtc0 $26, $epc # store new epc

 eret # return to main at new epc

Another Example: SW emulation
of MULT instruction

Suppose there is no hardware multiplier. With proper
exception handlers we can implement unsupported
instructions in SW

Multiply returns a 64-bit result stored in two registers:
hi and lo
 These registers are accessed using special instructions (mfhi,

mflo, mthi, mtlo)

Mult is decoded as an unsupported instruction and will
throw an RI (reserved instruction) exception
 The opcode (i.e. Mult or Multu) is checked in software to jump to

the emulated multiply function

 The results are moved to hi and lo using mthi and mtlo

Control is resumed after the multiply instruction (ERET)

November 7, 2014 L19-17 http://csg.csail.mit.edu/6.175

 mult ra, rb

Interrupt handler

November 7, 2014 L19-18 http://csg.csail.mit.edu/6.175

exception_handler:

 mfc0 $26, $cause # get cause register

 srl $26, 2 # shift to get cause in LSB

 andi $26, $26, 0x1f # apply mask to cause

 li $27, 0x0008 # syscall cause

 beq $26, $27, syscallhandler

 li $27, 0x000a # ri cause

 beq $26, $27, rihandler

 …

rihandler:

 mfc0 $26, $epc # get EPC

 lw $26, 0($26) # fetch EPC instruction

 li $27, 0xfc00ffff # opcode mask for MULT

 and $26, $26, $27

 li $27, 0x00000018 # opcode pattern for MULT

 beq $26, $27, emumult

emumult: …

Emulating multiply in SW
Need to load the contents of ra and rb

We have the register numbers for ra and rb
encoded in Mem[EPC]

How do we do this?

 Self-modifying code: construct mov instruction
whose rs field is set to ra, etc.

 Without self-modifying code?

The rest of the emulation is straight forward

November 7, 2014 L19-19 http://csg.csail.mit.edu/6.175

Store all registers in memory sequentially and store
the base address into r26.

Bring the index of ra into say r27

r27 = r26 + (r27 << 2);

load from address in r27

Exception handling in
pipeline machines

November 7, 2014 http://csg.csail.mit.edu/6.175 L19-20

Exception Handling

PC
Inst.
Mem D Decode E M

Data
Mem W +

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Ex
D

PC
D

Ex
E

PC
E

Ex
M

PC
M

C
a
u
s
e

E
P
C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

Commit
Point

1. An instruction may cause multiple exceptions; which
one should we process?

2. When multiple instructions are causing exceptions;
which one should we process first?

from the earliest stage

from the oldest instruction
November 7, 2014 http://csg.csail.mit.edu/6.175 L19-21

Exception Handling
When instruction x in stagei raises an
exception, its cause is recorded and passed
down the pipeline

For a given instruction, exceptions from the
later stages of the pipeline do not override
cause of exception from the earlier stages

At commit point external interrupts, if present,
override other internal interrupts

If an exception is present at commit: Cause
and EPC registers are set, and pc is redirected
to the handler PC

 Epoch mechanism takes care of redirecting the pc

November 7, 2014 http://csg.csail.mit.edu/6.175 L19-22

Multiple stage pipeline

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

f2d

Epoch

m2c d2e

Next

Addr

Pred

scoreboard

f12f2

e2m

wrong path insts
are dropped

wrong path insts
are poisoned

This affects whether an instruction is removed from sb in
case of an interrupt

e
x
te

rn
a
l
in

te
rr

u
p
ts

 c
o
n
s
id

e
re

d
 a

t
C
o
m

m
it

November 7, 2014 http://csg.csail.mit.edu/6.175 L19-23

Interrupt processing
Internal interrupts can happen at any stage but
cause a redirection only at Commit

External interrupts are considered only at Commit

Some instructions, like Store, cannot be undone
once launched. So an instruction is considered to
have completed before an external interrupt is
taken

If an instruction causes an interrupt then the
external interrupt, if present, is given a priority
and the instruction is executed again

November 7, 2014 http://csg.csail.mit.edu/6.175 L19-24

Interrupt processing at
Execute-1

Incoming Interrupt

-if (mem type) issue Ld/St
-if (mispred) redirect
-pass eInst to M stage

-pass eInst to M
stage unmodified

no yes

eInst will contain
information about any
newly detected
interrupts at Execute

November 7, 2014 http://csg.csail.mit.edu/6.175 L19-25

Interrupt processing at
Execute-2 or Mem stage

Incoming Interrupt

-pass eInst
with modified
data to Commit

-pass eInst to Commit
unmodified

no yes

Memory Interrupt?

no yes

-pass new Cause
to Commit

November 7, 2014 http://csg.csail.mit.edu/6.175 L19-26

Interrupt processing at
Commit

External Interrupt?

EPC<= pc;
causeR <= inCause;
if (inCause after Reg Fetch) sb.rm;
mode <= Kernel;
Redirect

no yes

Incoming interrupt

no yes no yes

-commit
-sb.rm

Incoming interrupt

commit;
sb.rm;
EPC<= ppc;
causeR <= Ext;
mode <= Kernel;
Redirect

EPC<= pc;
causeR <= Ext;
if (inCause after Reg Fetch) sb.rm;
mode <= Kernel;
Redirect

November 7, 2014 http://csg.csail.mit.edu/6.175 L19-27

Final comment

There is generally a lot of machinery associated
with a plethora of exceptions in ISAs

Precise exceptions are difficult to implement
correctly in pipelined machines

Performance is usually not the issue and
therefore sometimes exceptions are
implemented using microcode

November 7, 2014 L19-28 http://csg.csail.mit.edu/6.175

