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Modern systems often have hierarchical caches 

Each cache has exactly one parent but can have zero 
or more children 

Logically only a parent and its children can 
communicate directly 

Inclusion property is maintained between a parent 
and its children, i.e., 

  a  Li   a  Li+1 

Because usually 
Li+1 >> Li 
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Cache-coherence problem 

Suppose CPU-1 updates A to 200.   

   write-back:  memory and cache-2 have stale values 

   write-through:  cache-2 has a stale value 

cache-1 A 100 

CPU-Memory bus 

CPU-1 CPU-2 

cache-2 A 100 

memory A 100 

200 

200 

Do these stale values matter? 
What is the view of shared memory for programming? 
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Cache-Coherent Memory 

A monolithic or instantaneous memory 
processes one request at a time and responds 
to requests immediately 

A memory with hierarchy of caches is said to 
be coherent or atomic, if functionally it 
behaves like the monolithic memory 
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Maintaining Store Atomicity 
Store atomicity requires all processors to see 
writes occur in the same order 

 multiple copies of an address in various caches can 
cause this to be violated 

 

This property can be ensured if: 

 Only one cache at a time has the write permission 
for an address 

 No cache can have a stale copy of the data after a 
write to the address has been performed 

 cache coherence protocols are used 
    to implement store atomicity 
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Cache Coherence Protocols 
Write request:   

 the address is invalidated in all other caches before 
the write is performed  

Read request:   

 if a dirty copy is found in some cache, that value 
must be used by doing a write-back and then 
reading the memory or forwarding that dirty value 
directly to the reader 
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Such protocols are called Invalidation-based 



State needed to maintain 
Cache Coherence 

Use MSI encoding in caches where 

I means this cache does not contain the address 

S means this cache has the address but so may other 
caches; hence it can only be read 

M means only this cache has the address; hence it can 
be read and written 

The states M, S, I can be thought of as an 
order M > S > I 

 A transition from a lower state to a higher state is 
called an Upgrade 

 A transition from a higher state to a lower state is 
called a Downgrade 
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Sibling invariant and 
compatibility 

Sibling invariant:  

 Cache  is in state M  its siblings are in state I 

 That is, the sibling states are “compatible” 

IsCompatible(M, M) = False 

IsCompatible(M, S) = False 

IsCompatible(S, M) = False 

All other cases        = True 
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Cache State Transitions 
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This state diagram is helpful as long as one remembers 
that each transition involves cooperation of other caches 
and the main memory to maintain the sibling invariants 
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Cache Actions 
On a read miss (i.e., Cache state is I):   

 In case some other cache has the address in state M 
then write back the dirty data to Memory 

 Read the value from Memory and set the state to S  

On a write miss (i.e., Cache state is I or S):  

 Invalidate the address in all other caches and in case 
some cache has the address in state M then write 
back the dirty data 

 Read the value from Memory if necessary and set 
the state to M  

Misses cause Cache upgrade actions which in turn may 
cause further downgrades or upgrades on other caches 
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MSI protocol: some issues 
It never makes sense to have two outstanding 
requests for the same address from the same 
processor/cache 

It is possible to have multiple requests for the 
same address from different processors. Hence 
there is a need to arbitrate requests 

A cache needs to be able to evict an address in 
order to make room for a different address 

 Voluntary downgrade 

Memory system (higher-level cache) should be 
able to force a lower-level cache to downgrade 

 caches need to  keep track of the state of their 
children’s caches  
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Directory State Encoding 
Two-level (L1, M) system 

For each address in a cache, the directory keeps 
two types of info 

 c.state[a] (sibling info): do c’s siblings have a copy of 
address a; M (means no),  S (means maybe) 

 m.child[ck][a] (children info): the state of child ck for 
address a; At most one child can be in state M 

a 

 a 
 P 

 L1 
 P 

 L1  L1 

Interconnect 

<S,I,I,I> 

S 
 P  P 
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Directory state encoding  
wait states 

New states to deal with waiting for responses: 

 c.waitp[a] : Denotes if cache c is waiting for a response 
from its parent 

 No means not waiting 

 Yes (S|I) means waiting for a response to transition to 
state S or I, respectively 

 m.waitc[ck][a] : Denotes if memory m is waiting for a 
response from its child ck 

 No | Yes (M|S) 

Cache state in L1:  

<(M|S|I), (No | Yes(M|S))>  

Directory state in home memory (for each child):  

 <[(M|S|I), (No | Yes(S|I))]>  
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A Directory-based Protocol  
an abstract view 
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Each cache has 2 pairs of queues  

 (c2m, m2c) to communicate with the memory 

 (p2m, m2p) to communicate with the processor 

Message format:  <cmd, srcdst, a, s, data> 

 

FIFO message passing between each (srcdst) pair 
except a Req cannot block a Resp 

Messages in one srcdst path cannot block messages 
in another srcdst path 

Req/Resp address state 
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Processor Hit Rules 

 Load-hit rule 
 p2m.msg=(Load a) & 
     (c.state[a]>I) 

       p2m.deq; 
 m2p.enq(c.data[a]); 
 

 Store-hit rule 
p2m.msg=(Store a v) &  

     c.state[a]=M 
       p2m.deq;  
 m2p.enq(Ack); 
 c.data[a]:=v;  

PP 

P 
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m2c 
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p2m m2p 
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Processing misses: 
Requests and Responses 

1 Up-req send (cache) 
2 Up-req proc, Up resp send (memory) 
3 Up-resp proc (cache) 
4 Dn-req send (memory) 
5 Dn-req proc, Dn resp send (cache) 
6 Dn-resp proc (memory) 
7 Dn-req proc, drop (cache) 
8 Voluntary Dn-resp (cache) 

Cache 

1,5,8 3,5,7 

Memory 

2,4 2,6 
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Invariants for a CC-protocol 
design  

Directory state is always a conservative estimate 
of a child’s state 

 E.g., if directory thinks that a child cache is in S state then 
the cache has to be in either I or S state 

For every request there is a corresponding 
response, though sometimes a response may have 
been generated even before the request was 
processed 

Communication system has to ensure that 

 responses cannot be blocked by requests  

 a request cannot overtake a response for the same 
address 

At every merger point for requests, we will 
assume fair arbitration to avoid starvation 
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