
Constructive Computer Architecture 
 
 
 
 

Cache Coherence 
 

 

Arvind 
Computer Science & Artificial Intelligence Lab. 
Massachusetts Institute of Technology 
 
 

November 17, 2014 http://www.csg.csail.mit.edu/6.175 L21-1 



Shared Memory Systems 

M 

 L1 
 P 

 L1 
 P 

 L1 
 P 

 L1 
 P 

 L2  L2 

 L1 

P 

 L1 
 P 

Interconnect 

Modern systems often have hierarchical caches 

Each cache has exactly one parent but can have zero 
or more children 

Logically only a parent and its children can 
communicate directly 

Inclusion property is maintained between a parent 
and its children, i.e., 

  a  Li   a  Li+1 

Because usually 
Li+1 >> Li 

November 17, 2014 http://www.csg.csail.mit.edu/6.175 L21-2 



Cache-coherence problem 

Suppose CPU-1 updates A to 200.   

   write-back:  memory and cache-2 have stale values 

   write-through:  cache-2 has a stale value 

cache-1 A 100 

CPU-Memory bus 

CPU-1 CPU-2 

cache-2 A 100 

memory A 100 

200 

200 

Do these stale values matter? 
What is the view of shared memory for programming? 

November 17, 2014 http://www.csg.csail.mit.edu/6.175 L21-3 



Cache-Coherent Memory 

A monolithic or instantaneous memory 
processes one request at a time and responds 
to requests immediately 

A memory with hierarchy of caches is said to 
be coherent or atomic, if functionally it 
behaves like the monolithic memory 

November 17, 2014 L21-4 http://www.csg.csail.mit.edu/6.175 

req res req res 

Monolithic Memory 

... 



Maintaining Store Atomicity 
Store atomicity requires all processors to see 
writes occur in the same order 

 multiple copies of an address in various caches can 
cause this to be violated 

 

This property can be ensured if: 

 Only one cache at a time has the write permission 
for an address 

 No cache can have a stale copy of the data after a 
write to the address has been performed 

 cache coherence protocols are used 
    to implement store atomicity 

November 17, 2014 http://www.csg.csail.mit.edu/6.175 L21-5 



Cache Coherence Protocols 
Write request:   

 the address is invalidated in all other caches before 
the write is performed  

Read request:   

 if a dirty copy is found in some cache, that value 
must be used by doing a write-back and then 
reading the memory or forwarding that dirty value 
directly to the reader 

November 17, 2014 http://www.csg.csail.mit.edu/6.175 L21-6 

Such protocols are called Invalidation-based 



State needed to maintain 
Cache Coherence 

Use MSI encoding in caches where 

I means this cache does not contain the address 

S means this cache has the address but so may other 
caches; hence it can only be read 

M means only this cache has the address; hence it can 
be read and written 

The states M, S, I can be thought of as an 
order M > S > I 

 A transition from a lower state to a higher state is 
called an Upgrade 

 A transition from a higher state to a lower state is 
called a Downgrade 

 

 
November 17, 2014 http://www.csg.csail.mit.edu/6.175 L21-7 



Sibling invariant and 
compatibility 

Sibling invariant:  

 Cache  is in state M  its siblings are in state I 

 That is, the sibling states are “compatible” 

IsCompatible(M, M) = False 

IsCompatible(M, S) = False 

IsCompatible(S, M) = False 

All other cases        = True 

November 17, 2014 http://www.csg.csail.mit.edu/6.175 L21-8 



Cache State Transitions 

S M 

I 

store 
load 

write-back 

invalidate flush 

store 

optimizations 

This state diagram is helpful as long as one remembers 
that each transition involves cooperation of other caches 
and the main memory to maintain the sibling invariants 

November 17, 2014 http://www.csg.csail.mit.edu/6.175 L21-9 



Cache Actions 
On a read miss (i.e., Cache state is I):   

 In case some other cache has the address in state M 
then write back the dirty data to Memory 

 Read the value from Memory and set the state to S  

On a write miss (i.e., Cache state is I or S):  

 Invalidate the address in all other caches and in case 
some cache has the address in state M then write 
back the dirty data 

 Read the value from Memory if necessary and set 
the state to M  

Misses cause Cache upgrade actions which in turn may 
cause further downgrades or upgrades on other caches 

November 17, 2014 http://www.csg.csail.mit.edu/6.175 L21-10 



MSI protocol: some issues 
It never makes sense to have two outstanding 
requests for the same address from the same 
processor/cache 

It is possible to have multiple requests for the 
same address from different processors. Hence 
there is a need to arbitrate requests 

A cache needs to be able to evict an address in 
order to make room for a different address 

 Voluntary downgrade 

Memory system (higher-level cache) should be 
able to force a lower-level cache to downgrade 

 caches need to  keep track of the state of their 
children’s caches  

November 17, 2014 http://www.csg.csail.mit.edu/6.175 L21-11 



Directory State Encoding 
Two-level (L1, M) system 

For each address in a cache, the directory keeps 
two types of info 

 c.state[a] (sibling info): do c’s siblings have a copy of 
address a; M (means no),  S (means maybe) 

 m.child[ck][a] (children info): the state of child ck for 
address a; At most one child can be in state M 

a 

 a 
 P 

 L1 
 P 

 L1  L1 

Interconnect 

<S,I,I,I> 

S 
 P  P 

November 17, 2014 http://www.csg.csail.mit.edu/6.175 L21-12 



Directory state encoding  
wait states 

New states to deal with waiting for responses: 

 c.waitp[a] : Denotes if cache c is waiting for a response 
from its parent 

 No means not waiting 

 Yes (S|I) means waiting for a response to transition to 
state S or I, respectively 

 m.waitc[ck][a] : Denotes if memory m is waiting for a 
response from its child ck 

 No | Yes (M|S) 

Cache state in L1:  

<(M|S|I), (No | Yes(M|S))>  

Directory state in home memory (for each child):  

 <[(M|S|I), (No | Yes(S|I))]>  

  
November 17, 2014 http://www.csg.csail.mit.edu/6.175 L21-13 

Child’s state Waiting for downgrade response 



A Directory-based Protocol  
an abstract view 

interconnect PP 

P 

c2m 

m2c 
L1 

p2m m2p 

m PP 

in out 

PP 

P 

c2m 

m2c 
L1 

p2m m2p 

Each cache has 2 pairs of queues  

 (c2m, m2c) to communicate with the memory 

 (p2m, m2p) to communicate with the processor 

Message format:  <cmd, srcdst, a, s, data> 

 

FIFO message passing between each (srcdst) pair 
except a Req cannot block a Resp 

Messages in one srcdst path cannot block messages 
in another srcdst path 

Req/Resp address state 

November 17, 2014 http://www.csg.csail.mit.edu/6.175 L21-14 



 

Processor Hit Rules 

 Load-hit rule 
 p2m.msg=(Load a) & 
     (c.state[a]>I) 

       p2m.deq; 
 m2p.enq(c.data[a]); 
 

 Store-hit rule 
p2m.msg=(Store a v) &  

     c.state[a]=M 
       p2m.deq;  
 m2p.enq(Ack); 
 c.data[a]:=v;  

PP 

P 

c2m 

m2c 
L1 

p2m m2p 

November 17, 2014 http://www.csg.csail.mit.edu/6.175 L21-15 



Processing misses: 
Requests and Responses 

1 Up-req send (cache) 
2 Up-req proc, Up resp send (memory) 
3 Up-resp proc (cache) 
4 Dn-req send (memory) 
5 Dn-req proc, Dn resp send (cache) 
6 Dn-resp proc (memory) 
7 Dn-req proc, drop (cache) 
8 Voluntary Dn-resp (cache) 

Cache 

1,5,8 3,5,7 

Memory 

2,4 2,6 

November 17, 2014 http://www.csg.csail.mit.edu/6.175 L21-16 

Cache 

1,5,8 3,5,7 

1 
2 4 

3 

6 

5 



Invariants for a CC-protocol 
design  

Directory state is always a conservative estimate 
of a child’s state 

 E.g., if directory thinks that a child cache is in S state then 
the cache has to be in either I or S state 

For every request there is a corresponding 
response, though sometimes a response may have 
been generated even before the request was 
processed 

Communication system has to ensure that 

 responses cannot be blocked by requests  

 a request cannot overtake a response for the same 
address 

At every merger point for requests, we will 
assume fair arbitration to avoid starvation 

November 17, 2014 http://www.csg.csail.mit.edu/6.175 L21-17 


