
Constructive Computer Architecture

Cache Coherence

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

November 19, 2014 http://www.csg.csail.mit.edu/6.175 L22-1

Plan

The invalidation protocol

Non-blocking L1

November 19, 2014 http://www.csg.csail.mit.edu/6.175 L22-2

Processor Hit Rules

 Load-hit rule
 p2m.msg=(Load a) &
 c.tag[cs(a)]=tag(a) &
 c.state[cs(a)]>I

  p2m.deq;
 m2p.enq(c.data[cs(a)]);

 Store-hit rule
p2m.msg=(Store a v) &

 c.tag[cs(a)]=tag(a) &
 c.state[cs(a)]=M

  p2m.deq;
 m2p.enq(Ack);
 c.data[cs(a)]:=v;

PP

P

c2m

m2c
L1

p2m m2p

November 19, 2014 http://www.csg.csail.mit.edu/6.175 L22-3

Processing misses:
Requests and Responses

1 Up-req send (cache)
2 Up-req proc, Up resp send (memory)
3 Up-resp proc (cache)
4 Dn-req send (memory)
5 Dn-req proc, Dn resp send (cache)
6 Dn-resp proc (memory)
7 Dn-req proc, drop (cache)
8 Voluntary Dn-resp (cache)

Cache

1,5,8 3,5,7

Memory

2,4 2,6

Cache

1,5,8 3,5,7

1
2 4

3

6

5

November 19, 2014 http://www.csg.csail.mit.edu/6.175 L22-4

Invariants for a CC-protocol
design

Directory state is always a conservative
estimate of a child’s state

 E.g., if directory thinks that a child cache is in S
state then the cache has to be in either I or S state

For every request there is a corresponding
response, though sometimes it is generated
even before the request is processed

Communication system has to ensure that

 responses cannot be blocked by requests

 a request cannot overtake a response for the same
address

At every merger point for requests, we will
assume fair arbitration to avoid starvation

November 19, 2014 http://www.csg.csail.mit.edu/6.175 L22-5

Child Requests
1. Child to Parent: Upgrade-to-y Request

c.tag[cs(a)]!=tag(a) & c.state[cs(a)]=I &

c.waitp[cs(a)]=No

 c.tag[cs(a)]:= tag(a);

 c.waitp[cs(a)]:=Yes y;

 c2m.enq(<Req, cm, a, y, - >);

c.tag[cs(a)]=tag(a) & (c.state[cs(a)]< y) &

c.waitp[cs(a)]=No

 c.waitp[cs(a)]:=Yes y;

 c2m.enq(<Req, cm, a, y, - >);

These rules are mutually exclusive and can be combined.
This rule would normally be triggered by a cache miss.

November 19, 2014 http://www.csg.csail.mit.edu/6.175 L22-6

A request is never
sent unless the
cache has a slot
and the slot
contains the tag

cs(a) is the cache slot address

Parent Responds
2. Parent to Child: Upgrade-to-y response

(j, m.waitc[j][a]=No) & c2m.msg=<Req,cm,a,y,-> &
(i≠c, IsCompatible(m.child[i][a],y))

 m2c.enq(<Resp, mc, a, y,

 (if (m.child[c][a]=I) then m.data[a] else -)>);

 m.child[c][a]:=y; c2m.deq;

November 19, 2014 http://www.csg.csail.mit.edu/6.175 L22-7

Child receives Response
3. Child receiving upgrade-to-y response

m2c.msg=<Resp, mc, a, y, data>

 m2c.deq;

 if(c.state[cs(a)]=I) c.data[cs(a)]:=data;

 c.state[cs(a)]:=y;

 c.waitp[cs(a)]:=No;

// the child must be waiting for state y

November 19, 2014 http://www.csg.csail.mit.edu/6.175 L22-8

Parent Requests
4. Parent to Child: Downgrade-to-y Request

c2m.msg=<Req,cm,a,y,-> &

(m.child[i][a]>y) & (m.waitc[i][a]=No)

 m.waitc[i][a]:=Yes y;

 m2c.enq(<Req, mc, a, y, - >);

November 19, 2014 http://www.csg.csail.mit.edu/6.175 L22-9

Child Responds
5. Child to Parent: Downgrade-to-y response

(m2c.msg=<Req,mc,a,y,->) &

c.state[cs(a)]>y &

c.tag[cs(a)]=tag(a)

 c2m.enq(<Resp, c->m, a, y,

 (if (c.state[cs(a)]=M) then c.data[a] else -)>);

 c.state[cs(a)]:=y; m2c.deq

November 19, 2014 http://www.csg.csail.mit.edu/6.175 L22-10

Parent receives Response
6. Parent receiving downgrade-to-y response

c2m.msg=<Resp, cm, a, y, data>

 c2m.deq;

 if(m.child[c][a]=M) m.data[a]:=data;

 m.child[c][a]:=y;

 if(m.waitc[c][a]=(Yes x) & x≥y)

 m.waitc[c][a]:=No;

November 19, 2014 http://www.csg.csail.mit.edu/6.175 L22-11

Child receives served Request

7. Child receiving downgrade-to-y request

(m2c.msg=<Req, mc, a, y, - >) &

((c.tag[cs(a)]=tag(a) & c.state[cs(a)]≤y)

|| c.tag[cs(a)]!=tag(a))

 m2c.deq;

November 19, 2014 http://www.csg.csail.mit.edu/6.175 L22-12

Child Voluntarily downgrades
8. Child to Parent: Downgrade-to-y response (vol)

(c.waitp[cs(a)]=No) & (c.state[cs(a)]>y)

 c2m.enq(<Resp, c->m, a, y,

 (if (c.state[cs(a)]=M) then c.data[a] else -)>);

 c.state[cs(a)]:=y;

Rules 1 to 8 are complete - cover all possibilities
and cannot deadlock or violate cache invariants

November 19, 2014 http://www.csg.csail.mit.edu/6.175 L22-13

Non-blocking Cache
single processor

St

Q

Ld

Buff
W Tag Data

wbQ mReqQ mRespQ

hitQ

resp req

An extra bit in
the cache line to
indicate if it is
waiting for data
from parent

load reqs
waiting for
data

Behavior to be
described by 2
concurrent
FSMs to
process input
requests and
memory
responses,
respectively

St req goes
into StQ and
waits until
data can be
written into
the cache

D V

November 19, 2014 http://www.csg.csail.mit.edu/6.175 L22-14

Incoming req
single processor

Type of request

Put in StQ
If (evacuate)
 send wbResp
 unset V
send memReq
set W, set Tag

In StQ?

bypass
hit

Cache state V?

hit

st ld

yes no

no

no

Cache state W?

Put in
StQ

yes

Put in
LdBuf

Cache W?
yes no

Put in LdBuf
If (evacuate)
 send wbResp
 unset V
send memReq
set W, set Tag

cache state V?

yes no

Write in
cache
Set D

yes StQ empty?

yes no

Put in
StQ

a request may
end up here
because of a
conflict miss

November 19, 2014 http://www.csg.csail.mit.edu/6.175 L22-15

Mem Resp (for line cl)
single processor

1. Update cache line (set V, unset D, and unset W)
2. Process all matching ldBuff entries and send responses
3. L: If cachestate(oldest StQ entry address) = V
 then
 update the cache word with StQ entry; set D
 remove the oldest entry;
 Loop back to L
 else if there is a ldBuff entry for cl // process conflict misses
 then if(evacuate) wbResp; unset V
 memReq for the address in ldBuff;
 set W, set Tag
 else if cachestate(oldest StQ entry address) = !W
 then if(evacuate) wbResp; unset V
 memReq for this store entry;
 set W, set Tag

November 19, 2014 http://www.csg.csail.mit.edu/6.175 L22-16

Non-blocking Cache
multi-processor

St

Q

Ld

Buff

WM

WS

Tag Data

wbQ mReqQ mRespQ

hitQ

resp req

An extra bits in
the cache line to
indicate if it is
waiting for data
from parent

load reqs
waiting for
data

Behavior to be
described by 2
concurrent
FSMs to
process input
requests and
memory
responses,
respectively

St req goes
into StQ and
waits until
data can be
written into
the cache

D

M

S

I

November 19, 2014 http://www.csg.csail.mit.edu/6.175 L22-17

state

Includes
invalidation
messages

Incoming req
multi-processor

Type of request

Put in StQ
If (evacuate)
 send wbResp
 set state to I
send memReq
set W(M), set Tag

In StQ?

bypass
hit

Cache state M or S?

hit

st ld

yes no

no

no

Cache W?

Put in
StQ

yes

Put in
LdBuf

Cache W?
yes no

Put in LdBuf
If (evacuate)
 send wbResp
 set state to I
send memReq
set W(S), set Tag

cache state M?

yes no

Write in
cache
Set D

yes StQ empty?

yes no

Put in
StQ

a request may
end up here
because of a
conflict miss

This flow chart
replaces the processor
Hit and Miss rules

November 19, 2014 http://www.csg.csail.mit.edu/6.175 L22-18

Mem Resp (for line cl)
multi-processor

1. Update cache line (set state to M or S based on W,
 unset D, unset W)
2. Process all matching ldBuff entries and send responses
3. L: If cachestate(oldest StQ entry address) = M
 then
 update the cache word with StQ entry; set D
 remove the oldest entry;
 Loop back to L
 else if there is a ldBuff entry for cl
 then if(evacuate) wbResp; set state to I
 memReq for the address in ldBuff;
 set W(S), set Tag
 else if cachestate(oldest StQ entry address) = !W
 then if(evacuate) wbResp; set state to I
 memReq for this store entry;
 set W(M), set Tag

This flow
chart
replaces
rule 3
(for L1)

November 19, 2014 http://www.csg.csail.mit.edu/6.175 L22-19

next - Network and buffer issues to
avoid deadlocks

November 19, 2014 http://www.csg.csail.mit.edu/6.175 L22-20

