
Constructive Computer Architecture

Cache Coherence

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

November 21, 2014 http://www.csg.csail.mit.edu/6.175 L23-1

Further issues

Are these rules enough, i.e., complete?

Effect of blocking vs non-blocking caches

Communication systems and buffer
requirements to avoid deadlocks

November 21, 2014 http://www.csg.csail.mit.edu/6.175 L23-2

Are the rules exhaustive?
Parent rules

2. Parent to Child: Upgrade-to-y response

(j, m.waitc[j][a]=No) & c2m.msg=<Req,cm,a,y,-> & (i≠c,
IsCompatible(m.child[i][a],y))

 m2c.enq(<Resp, mc, a, y,

 (if (m.child[c][a]=I) then m.data[a] else -)>);

 m.child[c][a]:=y; c2m.deq;

What if the guard fails because
 1.some child is not in compatible state?
 or 2. some child is in wait state?

if condition 1 holds then rule 4 can be invoked

if condition 2 holds then rule 4 must have been
invoked and the each child will eventually send
a response

November 21, 2014 http://www.csg.csail.mit.edu/6.175 L23-3

Is every rule necessary?
Consider rule 7 for cache

7. Child receiving downgrade-to-y request

(m2c.msg=<Req, mc, a, y, - >) & (c.state[a]≤y)

 m2c.deq;

Can happen because of voluntary downgrade

8. Child to Parent: Downgrade-to-y response (vol)

(c.waitp[a]=No) & (c.state[a]>y)

 c2m.enq(<Resp, c->m, a, y,

 (if (c.state[a]=M) then c.data[a] else -)>);

 c.state[a]:=y;

A downgrade request comes but the cache is already
in the downgraded state

November 21, 2014 http://www.csg.csail.mit.edu/6.175 L23-4

More rules?

How about a voluntary upgrade rule from
parent?

Parent to Child: Upgrade-to-S response (vol)

(m.waitc[c][a]=No) & (m.cstate[c][a]=S)

 m2c.enq(<Resp, m->c, a, M, -);

 m.cstate[c][a]:=M;

The child could have simultaneously evicted the line, in
which case the parent eventually makes m.cstate[c][a] =
I while the child makes its c.state[a] = M. This breaks
our invariant

A cc protocol is like a Swiss watch, even the smallest
change can easily (and usually does) introduce bugs

November 21, 2014 http://www.csg.csail.mit.edu/6.175 L23-5

More rules?

How about a “silent drop”

8a. Child to Parent: Downgrade-S-to-I response (vol)
(c.waitp[a]=No) & (c.state[a]=S)
 c2m.enq(<Resp, c->m, a, y,
 (if (c.state[a]=M) then c.data[a] else -)>);
 c.state[a]:=I;

November 21, 2014 http://www.csg.csail.mit.edu/6.175 L23-6

A Directory-based Protocol
an abstract view

interconnect PP

P

c2m

m2c
L1

p2m m2p

m PP

in out

PP

P

c2m

m2c
L1

p2m m2p

Each cache has 2 pairs of queues

 (c2m, m2c) to communicate with the memory

 (p2m, m2p) to communicate with the processor

Message format: <cmd, srcdst, a, s, data>

FIFO message passing between each (srcdst) pair
except a Req cannot block a Resp

Req messages from p to m cannot block Req messages
from m to p

Req/Resp address state

November 21, 2014 http://www.csg.csail.mit.edu/6.175 L23-7

Communication Network

Two virtual networks:

 For requests and responses from cache to memory

 For requests and responses from memory to caches

Each network has H and L priority messages -
a L message can never block an H message
other than that messages are delivered in
FIFO order

Mem

 P
 L1
 P

 L1 L1

Interconnect P P
 L1

November 21, 2014 http://www.csg.csail.mit.edu/6.175 L23-8

H and L Priority Messages
At the memory, unprocessed request messages cannot
block reply messages.

H and L messages can share the same wires but must
have separate queues

H

L An L message can be
processed only if H
queue is empty

November 21, 2014 http://www.csg.csail.mit.edu/6.175 L23-9

FIFO property of queues
If FIFO property is not enforced, then the protocol
can either deadlock or update with wrong data

A deadlock scenario:

1. msg1: Child 1 requests (I -> M) upgrade

2. msg2: Parent responds to Child 1 with upgrade (I -> M)

3. msg3: Child 2 requests (I -> M) upgrade

4. msg4: Parent requests Child 1 (M -> I) downgrade

5. msg4 overtakes msg2

6. Child 1 sees msg4 and drops it

7. Parent never gets a response from Child 1 for msg4

November 21, 2014 http://www.csg.csail.mit.edu/6.175 L23-10

Deadlocks due to buffer
space

A cache or memory always accepts a
response, thus responses will always drain
from the network

From the children to the parent, two buffers
are needed to implement the H-L priority. A
child’s req can be blocked and generate more
requests

From parent to all the children, just one buffer
is needed for both requests and responses
because a parent’s req only generates
responses

November 21, 2014 http://www.csg.csail.mit.edu/6.175 L23-11

