
Constructive Computer Architecture: 
 

FIFO Lab Comments 
Revisiting CF FIFOs 

 
 
Andy Wright 
6.175 TA 
 

October 20, 2014 http://csg.csail.mit.edu/6.175 L14-1 



Notes 

The FIFO lab has been graded 

Everyone did a great job on the 
conflicting, pipeline, and bypass 
FIFOs 

All difficulties came from the 
Conflict-Free FIFO and the 
discussion questions 

October 20, 2014 L14-2 http://csg.csail.mit.edu/6.175 



What is a Conflict-Free FIFO? 

Is it a FIFO with a conflict matrix 
filled with CFs? 

 Not really... 

Is it a FIFO that, in its typical use, 
doesn’t impose any more conflicts 
than necessary? 

 Yes! 

 

October 20, 2014 L14-3 http://csg.csail.mit.edu/6.175 



Typical FIFO use 

Enqueuing: 
 check notFull and call enq(x) 

Dequeuing: 
 check notEmpty and call first and deq 

Clearing: 
 call clear 

 

These are the methods that commonly 
appear in the same rule 
 A CF FIFO says enqueuing and dequeuing rules 

will have no scheduling conflict imposed by the 
FIFO. 

 {notFull, enq} CF {notEmpty, first, deq} 

October 20, 2014 L14-4 http://csg.csail.mit.edu/6.175 



Sequential FIFO Execution 

1. enq(1) 
2. first 
3. deq 
4. enq(2) 
5. clear 
6. enq(3) 
7. enq(4) 
8. first 
9. deq 

October 20, 2014 L14-5 http://csg.csail.mit.edu/6.175 

What is the state of the fifo here? 

Assume FIFO is empty initially 

What does first return? 

How many elements are in the FIFO at the end? 

How many clock cycles 
does this take? 
Should that change the 
answer to these 
questions? 



Concurrent FIFO Execution 
With Clock Cycles 

1. enq(1) 
2. first 
3. deq 
4. enq(2) 
5. clear 
6. enq(3) 
7. enq(4) 
8. first 
9. deq 

October 20, 2014 L14-6 http://csg.csail.mit.edu/6.175 

Clock cycle boundary 

1. enq(1) 
2. first 
3. deq 
4. enq(2) 
5. clear 
6. enq(3) 
7. enq(4) 
8. first 
9. deq 

If these are both 
valid executions 
for a given FIFO, 
they should 
produce the same 
results. 



Concurrent FIFO Execution 
Clear-Enq Interactions 

1. enq(1) 
2. first 
3. deq 
4. enq(2) 
5. clear 
6. enq(3) 
7. enq(4) 
8. first 
9. deq 

October 20, 2014 L14-7 http://csg.csail.mit.edu/6.175 

1. enq(1) 
2. first 
3. deq 
4. enq(2) 
5. clear 
6. enq(3) 
7. enq(4) 
8. first 
9. deq 

What should clear 
and enq do when 
they happen in the 
same cycle? 

If both executions 
are valid, then the 
action has to be 
dynamic based on 
the order. 



Can we detect the order of 
methods firing? 

In order for a method to know if it 
fired after another method fired, it 
has to always be scheduled after that 
method 
If you want two methods to be able 
to tell if either of them came after 
the other, they have to conflict 
 They will never fire in the same cycle 

making this problem of who fired first 
trivial... 

October 20, 2014 L14-8 http://csg.csail.mit.edu/6.175 



Concurrent FIFO Execution 
CF FIFO solution 

1. enq(1) 
2. first 
3. deq 
4. enq(2) 
5. clear 
6. enq(3) 
7. enq(4) 
8. first 
9. deq 

October 20, 2014 L14-9 http://csg.csail.mit.edu/6.175 

1. enq(1) 
2. first 
3. deq 
4. enq(2) 
5. clear 
6. enq(3) 
7. enq(4) 
8. first 
9. deq 

Invalid Execution 

Force enq < clear 



What does a CF FIFO do? 

It allows the most flexible 
scheduling constraints possible 
while still requiring all valid 
concurrent executions to match 
the expected result from 
sequential execution. 

 That is why {enq, deq} < clear and 
not {enq, deq} CF clear 

October 20, 2014 L14-10 http://csg.csail.mit.edu/6.175 



What about the 
canonicalize rule? 

What happens if you have: 
 {enq, deq} < canonicalize < clear 

 If deq and clear occur in the same rule, 
that rule conflicts with canonicalize. This 
may or may not be a problem depending 
on the exact use. 

 {enq, deq} < clear < canonicalize 
 canonicalize can always fire at the end of 

the cycle independent of how enq, deq, 
and clear are used in rules 

October 20, 2014 L14-11 http://csg.csail.mit.edu/6.175 


