
Constructive Computer Architecture

Tutorial 2

Advanced BSV

Andy Wright
6.175 TA

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-1

BSV Review
Last Tutorial

Types
 Bit, UInt/Int, Bool
 Vector, Tuple, Maybe
 struct, enum, tagged union

Register of Vector vs Vector of
Registers
 Partial writes lead to the double write

error

Modules and Interfaces
Quiz

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-2

BSV Review
Expressions vs. Actions

Expressions
 Have no side effects (state changes)
 Can be used outside of rules and modules in

assignments

Actions
 Can have side effects
 Can only take effect when used inside of

rules
 Can be found in other places intended to be

called from rules
 Action/ActionValue methods
 functions that return actions

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-3

BSV Review
Valid Rule

A Rule is valid if there is a valid total
ordering of all the method calls in the
rule that meets:
 Syntax constraints
 Reg constraints
 EHR constraints
 Module conflict matrix constraints

Double write errors exist because
register constraints prevent two calls
to the _write method from happening
in the same rule

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-4

BSV Review
Scheduling Circuitry

Each rule has a CAN_FIRE and a WILL_FIRE
signal in hardware
 CAN_FIRE is true if the explicit and implicit

guards are both true
 WILL_FIRE is true if the rule is firing in the

current cycle

When does WILL_FIRE != CAN_FIRE?
 When there are conflicts between rules
 If CAN_FIRE is true and WILL_FIRE is false,

there is a rule that has WILL_FIRE as true and it
conflicts with the current rule

If all rules are conflict free, WILL_FIRE =
CAN_FIRE

September 26, 2014 http://csg.csail.mit.edu/6.175

The compiler will give a warning if WILL_FIRE != CAN_FIRE

T02-5

BSV Review
Valid Concurrent Rules

A set of rules ri can fire
concurrently if there exists a total
order between the rules such that
all the method calls within each of
the rules can happen in that given
order
 Rules r1, r2, r3 can fire concurrently if

there is an order ri, rj, rk such that ri
< rj, ri < rk, and ri < rk are all valid

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-6

Design Example

An Up/Down Counter

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-7

Up/Down Counter
Design example

Some modules have inherently conflicting
methods that need to be concurrent
 This example will show a couple of ways to

handle it

interface Counter;

 Bit#(8) read;

 Action increment;

 Action decrement;

endinterface

September 26, 2014 http://csg.csail.mit.edu/6.175

Inherently
conflicting

T02-8

Up/Down Counter
Conflicting design

module mkCounter(Counter);

 Reg#(Bit#(8)) count <- mkReg(0);

 method Bit#(8) read;

 return count;

 endmethod

 method Action increment;

 count <= count + 1;

 endmethod

 method Action decrement;

 count <= count – 1;

 endmethod

endmodule

September 26, 2014 http://csg.csail.mit.edu/6.175

Can’t fire in the
same cycle

T02-9

Concurrent Design
A general technique

September 26, 2014 http://csg.csail.mit.edu/6.175

Replace conflicting registers with EHRs
Choose an order for the methods
Assign ports of the EHR sequentially to
the methods depending on the desired
schedule

Method described in paper that
introduces EHRs: “The Ephemeral History
Register: Flexible Scheduling for Rule-
Based Designs” by Daniel Rosenband

T02-10

Up/Down Counter
Concurrent design: read < inc < dec

module mkCounter(Counter);

 Ehr#(3, Bit#(8)) count <- mkEhr(0);

 method Bit#(8) read;

 return count[];

 endmethod

 method Action increment;

 count[] <= count[] + 1;

 endmethod

 method Action decrement;

 count[] <= count[] – 1;

 endmethod

endmodule

September 26, 2014 http://csg.csail.mit.edu/6.175

 0

 1 1

 2 2

These two methods
can use the same
port

T02-11

Up/Down Counter
Concurrent design: read < inc < dec

module mkCounter(Counter);

 Ehr#(2, Bit#(8)) count <- mkEhr(0);

 method Bit#(8) read;

 return count[0];

 endmethod

 method Action increment;

 count[0] <= count[0] + 1;

 endmethod

 method Action decrement;

 count[1] <= count[1] – 1;

 endmethod

endmodule

September 26, 2014 http://csg.csail.mit.edu/6.175

This design only needs
2 EHR ports now

T02-12

Conflict-Free Design
A general technique

September 26, 2014 http://csg.csail.mit.edu/6.175

Replace conflicting Action and ActionValue
methods with writes to EHRs representing method
call requests
 If there are no arguments for the method call, the

EHR should hold a value of Bool

 If there are arguments for the method call, the EHR
should hold a value of
Maybe#(Tuple2#(TypeArg1,TypeArg2)) or
something similar

Create a canonicalize rule to handle all of the
method call requests at the same time
Reset all the method call requests to False or
tagged invalid at the end of the canonicalize rule

Guard method calls with method call requests
 If there is an outstanding request, don’t allow a

second one to happen

T02-13

Up/Down Counter
Conflict-Free design – methods

module mkCounter(Counter);

 Reg#(Bit#(8)) count <- mkReg(0);

 Ehr#(2, Bool) inc_req <- mkEhr(False);

 Ehr#(2, Bool) dec_req <- mkEhr(False);

 // canonicalize rule on next slide

 method Bit#(8) read = count;

 method Action increment if(!inc_req[0]);

 inc_req[0] <= True;

 endmethod

 method Action decrement if(!dec_req[0]);

 dec_req[0] <= True;

 endmethod

endmodule

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-14

Up/Down Counter
Conflict-Free design – canonicalize rule

module mkCounter(Counter);

 // Reg and EHR definitions on previous slide

 rule canonicalize;

 if(inc_req[1] && !dec_req[1]) begin

 count <= count+1;

 end else if(dec_req[1] && !inc_req[1]) begin

 count <= count-1;

 end

 inc_req[1] <= False;

 dec_req[1] <= False;

 endrule

 // methods on previous slide

endmodule

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-15

Synthesis Boundary

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-16

Synthesis Boundary

A synthesis boundary is an attribute on a
module that causes the module to be
compiled separately
A synthesis boundary looks like this:

(* synthesize *)

Module mkMyModule(MyModuleIFC);

A synthesis boundary can only be placed
over a module with:
 No type parameters in its interface
 No parameters in the module’s constructor that

can’t be converted to bits (no interfaces can be
passed in)

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-17

Synthesis Boundary
Guard Logic

Synthesis boundaries simplifies guard logic

method Action doAction(Bool x);

 if(x) begin

 <a> when p;

 end else begin

 <a> when q;

 end

endmethod

September 26, 2014 http://csg.csail.mit.edu/6.175

Lifted guard without synthesis boundary:

Lifted guard with synthesis boundary:

(!x || p) && (x || q)

p && q

Synthesis boundaries do not allow inputs to be in guards

T02-18

Synthesis Boundary
Guard Logic

Synthesis boundaries simplifies guard logic

rule doStuff;

 let x <- m.getResult;

 if(isValid(x)) begin

 <a> when p;

 end else begin

 <a> when q;

 end

endmethod

September 26, 2014 http://csg.csail.mit.edu/6.175

Lifted guard without synthesis boundary on m:

(!isValid(m.result) || p) && (isValid(m.result) || q)

Lifted guard with synthesis boundary: p && q

Synthesis boundaries do not allow outputs of ActionValue

methods to be in guards
T02-19

Synthesis Boundary
Why is it different?

When a module has no synthesis boundary,
its methods are effectively inlined in the
rules
 Long compilation times – A module used 64

times is compiled 64 times!
 Aggressive guards – Rules will be able to fire

more often

When a module has a synthesis boundary, it
is compiled separately and other modules
instantiate copies of it
 Shorter compilation times
 Conservative guards
 Separate hardware module
 Required for top-level module

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-20

Advanced Types

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-21

Types used in function
definitions

Example from C/C++:
 int add1(int x) {

 return x + 1;

 }

The type definition of add1 says it takes
values of type int and returns values of type
int
 Types are a collection of values
 Defining a function to use a type restricts the

values you can use in the function
 banana is not a value in the collection int, so

add1(banana) is not valid

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-22

Types variables used in
function definitions

Example from BSV:
 function t add1(t x);

 return x + 1;

 endfunction

The type used for this function is a type
variable (t)
 It says the input and the output are values of

the same type
 Some types of values make sense for this

function, but some types don’t
 do make sense: Integer, Int#(n), Bit#(n)
 don’t make sense: String, Fruit

September 26, 2014 http://csg.csail.mit.edu/6.175

How do you describe the collection of types that t can belong to?

T02-23

Types variables used in
function definitions

Lets break down the example:
 x + 1

 is actually
 x + fromInteger(1)

add1 uses the functions
 t \+(t x, t y)

 and
 t fromInteger(Integer x)

 t needs to belong to the collection of types that has +
defined on it, and it needs to belong to the collection of
types that has fromInteger defined on it

What is the collection of types that has + defined on it?
What is the collection of types that has fromInteger
defined on it?
What are these collections of types?
 Typeclasses!

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-24

Typeclasses
A typeclass is a group of functions that can be defined
on multiple types
Examples:

typeclass Arith#(type t);

 function t \+(t x, t y);

 function t \-(t x, t y);

 // ... more arithmetic functions

endtypeclass

typeclass Literal#(type t);

 function t fromInteger(Integer x);

 function Bool inLiteralRange(t target,

 Integer literal);

endtypeclass

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-25

Instances

Types are added to typeclasses by creating
instances of that typeclass

instance Arith#(Bit#(n));

 function Bit#(n) \+(Bit#(n) a, Bit#(n) b);

 return truncate(csa(a,b));

 endfunction

 function Bit#(n) \-(Bit#(n) a, Bit#(n) b);

 return truncate(csa(a, -b));

 endfunction

 // more functions...

endinstance

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-26

Provisos

Provisos restrict type variables used in
functions and modules through typeclasses

If a function or module doesn’t have the
necessary provisos, the compiler will throw an
error along with the required provisos to add

The add1 function with the proper provisos is
shown below:

September 26, 2014 http://csg.csail.mit.edu/6.175

function t add1(t x) provisos(Arith#(t), Literal#(t));

 return x + 1;

endfunction

T02-27

Special Typeclasses for
Provisos

There are some Typeclasses defined on
numeric types that are only for provisos:
Add#(n1, n2, n3)

 asserts that n1 + n2 = n3

Mul#(n1, n2, n3)

 asserts that n1 * n2 = n3

An inequality constraint can be constructed
using free type variables since all type
variables are non-negative
 Add#(n1, _a, n2)

 asserts that n1 + _a = n2
 equivalent to n1 <= n2 if _a is a free type variable

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-28

The Bits Typeclasses

The Bits typeclass is defined below

typeclass Bits#(type t, numeric type tSz);

 function Bit#(tSz) pack(t x);

 function t unpack(Bit#(tSz) x);

endtypeclass

This typeclass contains functions to go
between t and Bit#(tSz)

mkReg(Reg#(t)) requires t to have an
instance of Bits#(t, tSz)

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-29

Custom Bits#(a,n) instance

typedef enum { red, green, blue } Color deriving (Eq); // not bits

instance Bits#(Color, 2);

 function Bit#(2) pack(a x);

 if(x == red) return 0;

 else if(x == green) return 1;

 else return 2;

 endfunction

 function Color unpack(Bit#(2) y)

 if(x == 0) return red;

 else if(x == 1) return green;

 else return blue;

 endfunction

endinstance

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-30

Typeclasses Summary

Typeclasses allow polymorphism across
types
 Provisos restrict modules type parameters

to specified type classes

Typeclass Examples:
 Eq: contains == and !=
 Ord: contains <, >, <=, >=, etc.
 Bits: contains pack and unpack
 Arith: contains arithmetic functions
 Bitwise: contains bitwise logic
 FShow: contains the fshow function to

format values nicely as strings

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-31

Quiz 2

Fun with BSV’s scheduling

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-32

Question 1

What is the schedule for the following
rules?

rule r1;

 x <= y;

endrule

rule r2;

 y <= x;

endrule

September 26, 2014 http://csg.csail.mit.edu/6.175

Calls y._read() and x._write()

Calls x._read() and y._write()

r1 C r2, so the two rules will never fire in parallel

T02-33

Question 2

What is the schedule for the following
rules?

rule increment;

 x <= x + 1;

endrule

rule decrement;

 x <= x - 1;

endrule

September 26, 2014 http://csg.csail.mit.edu/6.175

Calls x._read() and x._write()

Calls x._read() and x._write()

increment C decrement, so the two rules will never fire in parallel

T02-34

Question 3

What is the schedule for the following
rules?

rule increment;

 x <= x + 1;

endrule

rule reset;

 x <= 0;

endrule

September 26, 2014 http://csg.csail.mit.edu/6.175

Calls x._read() and x._write()

Calls x._write()

increment < reset

T02-35

Question 3 – I’m so sorry

It turns out the double write error does not
exist between rules

 Two rules can write to the same register in the same
cycle assuming there are no other conflicts

In this case, the compiler would warn about
Action shadowing

 The effects of increment are shadowed by reset

Why is this so?

 I have no idea

 Idea: Its an easy optimization to run more rules in a
single cycle

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-36

Conflict Matrix of Primitive
modules: Registers and EHRs

EHR.r0 EHR.w0 EHR.r1 EHR.w1

EHR.r0 CF < CF <

EHR.w0 > C < <

EHR.r1 CF > CF <

EHR.w1 > > > C

reg.r reg.w

reg.r CF <

reg.w > C

Register

EHR

September 26, 2014 http://csg.csail.mit.edu/6.175

*No conflict between rules

Slide from
lecture 6

EHR write ports
still conflict
between rules

*

T02-37

Question 4

What is the schedule for the following rules?

// q1, q2, and q3 are FIFOs

rule r1;

 q1.enq(f1(q3.first)); q3.deq;

endrule

rule r2;

 q2.enq(f2(q1.first)); q1.deq;

endrule

rule r3;

 q3.enq(f3(q2.first)); q2.deq;

endrule

September 26, 2014 http://csg.csail.mit.edu/6.175

It depends on the type of FIFOs

T02-38

Question 4.5

What is the schedule for the following rules?

// q1, q2, and q3 are all pipeline FIFOs

rule r1;

 q1.enq(f1(q3.first)); q3.deq;

endrule

rule r2;

 q2.enq(f2(q1.first)); q1.deq;

endrule

rule r3;

 q3.enq(f3(q2.first)); q2.deq;

endrule

September 26, 2014 http://csg.csail.mit.edu/6.175

r1 < r3 < r2 < r1
The compiler will introduce a conflict
to break this cycle.

T02-39

Question 5

What type of FIFOs allow these rules to fire
concurrently?

// q1, q2, and q3 are FIFOs

rule r1;

 q1.enq(f1(q3.first)); q3.deq;

endrule

rule r2;

 q2.enq(f2(q1.first)); q1.deq;

endrule

rule r3;

 q3.enq(f3(q2.first)); q2.deq;

endrule

September 26, 2014 http://csg.csail.mit.edu/6.175

Many different combinations

q1: pipeline

q2: pipeline

q3: bypass

q1: pipeline

q2: bypass

q3: bypass

q1: pipeline

q2: pipeline

q3: CF

T02-40

