X
“Constructive Computer Architecture

Tutorial 2

Advanced BSV

Andy Wright
6.175 TA

N

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-1

BSV Review

Last Tutorial

%

N

®Types
s Bit, UInt/Int, Bool
s Vector, Tuple, Maybe
s struct, enum, tagged union
Register of Vector vs Vector of
Registers

s Partial writes lead to the double write
error

Modules and Interfaces
Quiz

September 26, 2014 http://csg.csail.mit.edu/6.175

T02-2

BSV Review

Expressions vs. Actions

%

N

Expressions
= Have no side effects (state changes)
= Can be used outside of rules and modules in
assignments

Actions
s Can have side effects

= Can only take effect when used inside of
rules
= Can be found in other places intended to be
called from rules
+ Action/ActionValue methods
+ functions that return actions

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-3

BSV Review
Valid Rule

N

A Rule is valid if there is a valid total
ordering of all the method calls in the
rule that meets:

s Syntax constraints
s Reg constraints
s EHR constraints
s Module conflict matrix constraints
Double write errors exist because
register constraints prevent two calls

to the _write method from happening
in the same rule

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-4

BSV Review
Scheduling Circuitry

N

Each rule has a CAN_FIRE and a WILL_FIRE
signal in hardware

= CAN_FIRE is true if the explicit and implicit
guards are both true

= WILL_FIRE is true if the rule is firing in the
current cycle

When does WILL_FIRE !'= CAN_FIRE?

s When there are conflicts between rules

s If CAN_FIRE is true and WILL_FIRE is false,
there is a rule that has WILL_ FIRE as true and it
conflicts with the current rule

If all rules are conflict free, WILL_FIRE =
CAN_FIRE

The compiler will give a warning if WILL_FIRE '= CAN_FIRE

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-5

BSV Review

Valid Concurrent Rules

%

N

A set of rules r; can fire
concurrently if there exists a total
order between the rules such that
all the method calls within each of
the rules can happen in that given
order
= Rules ry, r,, r; can fire concurrently if

there is an order r;, r;, r, such that r;
<rn<r,andr <r are all valid

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-6

Design Example

An Up/Down Counter

N

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-7

Up/Down Counter

Design example

%

N

Some modules have inherently conflicting
methods that need to be concurrent

= This example will show a couple of ways to
handle it

interface Counter;
Bit#(8) read;
Act%on 1ncrement;é_1nherently
Action decrement; conflicting
endinterface

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-8

Up/Down Counter
Conflicting design

N

module mkCounter (Counter);

Reg# (Bit# (8)) count <- mkReg(0);

method Bit# (8) read;
return count;
endmethod

method Action increment;

count <= count + 1;
endmethod $\\\\\\\\\\\\\ e les
Can't fire in the

method Action decrement;

.~ —samecycle
count <= count - 1;

endmethod
endmodule

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-9

Concurrent Design
A general technique

%

N

Replace conflicting registers with EHRs
Choose an order for the methods

Assign ports of the EHR sequentially to
the methods depending on the desired
schedule

Method described in paper that
introduces EHRs: “The Ephemeral History
Register: Flexible Scheduling for Rule-
Based Designs” by Daniel Rosenband

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-10

Up/Down Counter

Concurrent design: read < inc < dec

%

N

module mkCounter (Counter);
Ehr# (3, Bit#(8)) count <- mkEhr (0);

method Bit# (8) read;

return count[0];

endmethod
method Action increment; These two methods

count[1] <= count[l] + 1: «— €an use the same
endmethod port

method Action decrement;
count[2] <= count[2] - 1;
endmethod
endmodule

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-11

Up/Down Counter

Concurrent design: read < inc < dec

%

N

module mkCounter (Counter);
Ehr# (2, Bit#(8)) count <- mkEhr (0);

This design only needs

method Bit# (8) read;
2 EHR ports now

return count[0];
endmethod
method Action increment;
count[0] <= count[0] + 1;
endmethod
method Action decrement;
count[1l] <= count[l] - 1;
endmethod
endmodule

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-12

Conflict-Free Design
A general technique

%

N

Replace conflicting Action and ActionValue
methods with writes to EHRs representing method
call requests

= If there are no arguments for the method call, the
EHR should hold a value of Bool

= If there are arguments for the method call, the EHR
should hold a value of
Maybe# (Tuple2# (TypeArgl, TypeArg2)) Or
something similar
Create a canonicalize rule to handle all of the
method call requests at the same time

Reset all the method call requests to False or
tagged invalid at the end of the canonicalize rule

#® Guard method calls with method call requests

= If there is an outstanding request, don’t allow a
second one to happen

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-13

Up/Down Counter

Conflict-Free design — methods

N

%

module mkCounter (Counter);
Reg# (Bit# (8)) count <- mkReg(O0);
Ehr# (2, Bool) inc req <- mkEhr (False);
Ehr# (2, Bool) dec req <- mkEhr (False);
// canonicalize rule on next slide
method Bit# (8) read = count;

method Action increment if(!inc reqgf[O0]);

inc req[0] <= True;
endmethod
method Action decrement i1f(!dec reql[0]);
dec reqg[0] <= True;
endmethod
endmodule

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-14

Up/Down Counter

Conflict-Free design — canonicalize rule

N

%

module mkCounter (Counter);

// Reg and EHR definitions on previous slide
rule canonicalize;
if (inc reqg[l] && !dec reqg[l]) begin

count <= count+l;

end else if (dec reg[l] && !inc reqg[l]) begin
count <= count-1;

end
inc--reglll-<=.False;
dec reqg[l] <= False;

endrule

// methods on previous slide

endmodule

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-15

Synthesis Boundary

N

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-16

Synthesis Boundary

A synthesis boundary is an attribute on a
module that causes the module to be
compiled separately

A synthesis boundary looks like this:

N

(* synthesize ¥*)
Module mkMyModule (MyModuleIFC);

A synthesis boundary can only be placed
over a module with:

= No type parameters in its interface

= No parameters in the module’s constructor that
can’t be converted to bits (no interfaces can be
passed in)

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-17

Synthesis Boundary
Guard Logic

N

Synthesis boundaries simplifies guard logic

method Action doAction(Bool x);
if(x) begin
<a> when p;
end else begin
<g>--when--q;

end
endmethod

Lifted guard without synthesis boundary: (!x || p) && (x || q)
Lifted guard with synthesis boundary: p && q

Synthesis boundaries do not allow inputs to be in guards

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-18

Synthesis Boundary
Guard Logic

N

Synthesis boundaries simplifies guard logic

rule doStuff;
let x <- m.getResult;
if(1sValid(x)) begin
<a> when p;
end else begin
<a> when qg;
end
endmethod

Lifted guard without synthesis boundary on m:
(lisValid(m.result) || p) && (isValid(m.result) || q)

Lifted guard with synthesis boundary: p && g
Synthesis boundaries do not allow outputs of ActionValue

methods to be in guards
September 26, 2014 http://csg.csail.mit.edu/6.175

T02-19

Synthesis Boundary
Why is it different?

N

When a module has no synthesis boundary,
itsI methods are effectively inlined in the
rules

= Long compilation times — A module used 64
times is compiled 64 times!

s Aggressive guards — Rules will be able to fire
more often

When a module has a synthesis boundary, it
is compiled separately and other modules
instantiate copies of it

= Shorter compilation times

= Conservative guards

s Separate hardware module

s Required for top-level module

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-20

Advanced Types

N

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-21

Types used in function
definitions

N

Example from C/C++:
int addl(int x) {
return x + 1;

J

The type definition of add1l says it takes

values of type int and returns values of type
int

s Types are a collection of values

s Defining a function to use a type restricts the
values you can use in the function

= banana is not a value in the collection int, so
add1l(banana) is not valid

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-22

Types variables used in
function definitions

N

Example from BSV:
function t addl(t x);
retirrni-x—t-il-
endfunction

® The tyfae used for this function is a type
variable (t)
s [t says the input and the output are values of
the same type
= Some types of values make sense for this
function, but some types don't
+ do make sense: Integer, Int#(n), Bit#(n)
+ don’t make sense: String, Fruit

How do you describe the collection of types that t can belong to?

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-23

Types variables used in
function definitions

Lets break down the example:
x + 1
is actually
X + fromInteger (1)
#® addl uses the functions
t \+(t x, t V)
and
t fromInteger (Integer x)

= t needs to belong to the collection of types that has +
defined on it, and it needs to belong to the collection of
types that has fromInteger defined on it

What is the collection of types that has + defined on it?

What is the collection of types that has fromInteger
defined on it?

What are these collections of types?
s Typeclasses!

N
¥

& @

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-24

Typeclasses

#® A typeclass is a group of functions that can be defined
on multiple types

#® Examples:

N

typeclass Arith# (type t);
function t \+(t x, t y);
function t \-(t x, t y);
// ... more arithmetic functions
endtypeclass

typeclass Literal# (type t);
function t fromInteger (Integer x);
function Bool inliteralRange (t target,

Integer literal);
endtypeclass

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-25

Instances

N

Types are added to typeclasses by creating
instances of that typeclass

instance Arith# (Bit# (n));
function Bit# (n) \+(Bit#(n) a, Bit#(n) b);
return truncate(csa(a,b));
endfunction
function Bit# (n) \-(Bit#(n) a, Bit#(n) b);
return truncate(csa(a, -b));

endfunction
/f-more-functionsi
endinstance
September 26, 2014 http://csg.csail.mit.edu/6.175

T02-26

Provisos

N

Provisos restrict type variables used in
functions and modules through typeclasses

If a function or module doesn’t have the
necessary provisos, the compiler will throw an
error along with the required provisos to add

The addl function with the proper provisos is
shown below:

function t addl (t x) provisos (Arith#(t), Literal#(t));
return x + 1;
endfunction

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-27

Special Typeclasses for
Provisos

N

There are some Typeclasses defined on
numeric types that are only for provisos:

#® Add# (nl, n2, n3)
s asserts that nl + n2 = n3

Mul#(nl, n2, n3)
m asserts that n1 * n2 = n3

An inequality constraint can be constructed

using free type variables since all type
variables are non-negative
= Add#(nl, a, n2)

+ asserts thatnl + _a = n2

+ equivalent to n1 <= n2 if _a is a free type variable

September 26, 2014 http://csg.csail.mit.edu/6.175

T02-28

The Bits Typeclasses

N

The Bits typeclass is defined below

function Bit# (tSz) pack(t x);
function t unpack (Bit# (tSz) x);
endtypeclass

This typeclass contains functions to go
between t and Bit#(tSz)

mkReg(Reg#(t)) requires t to have an
instance of Bits#(t, tSz)

September 26, 2014 http://csg.csail.mit.edu/6.175

typeclass Bits# (type t, numeric type tSz);

T02-29

Custom Bits#(a,n) instance

N

typedef enum { red, green, blue } Color deriving (Eq); // not bits

instance Bits#(Color, 2);
function Bit#(2) pack(a x);

if(x == red) return ©;
else if(x == green) return 1;
else return 2;

endfunction

function Color unpack(Bit#(2) y)
if(x == @) return red;
else if(x == 1) return green;
else return blue;

endfunction

endinstance

September 26, 2014 http://csg.csail.mit.edu/6.175

T02-30

Typeclasses Summary

N

Typeclasses allow polymorphism across
types

s Provisos restrict modules type parameters
to specified type classes

#® Typeclass Examples:

s EQ: contains == and !=

= Ord: contains <, >, <=, >=, etc.

s Bits: contains pack and unpack

= Arith: contains arithmetic functions
= Bitwise: contains bitwise logic
|

FShow: contains the fshow function to
format values nicely as strings

September 26, 2014 http://csg.csail.mit.edu/6.175

T02-31

Quiz 2

Fun with BSV’s scheduling

N

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-32

Question 1

N

What is the schedule for the following
rules?

rule rl;

X <= Yy; Calls y._read() and x._write()
endrule

rule r2;
y <= x; Calls x._read() and y._write()
endrule

rl1 C r2, so the two rules will never fire in parallel

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-33

Question 2

N

#® What is the schedule for the following
rules?

rule increment;

x <= x + 1; cCalls x._read() and x._write()
endrule

rule decrement;
x <= x — 1: Calls x._read() and x._write()

endrule

increment C decrement, so the two rules will never fire in parallel

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-34

Question 3

N

What is the schedule for the following
rules?

rule increment;

X <= x + 1; Calls x._read() and x._write()
endrule

rule reset;
x <= 0; Calls x._write()

endrule
increment < reset

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-35

Question 3 — I'm so sorry

N

It turns out the double write error does not
exist between rules
= Two rules can write to the same register in the same
cycle assuming there are no other conflicts
In this case, the compiler would warn about
Action shadowing
s The effects of increment are shadowed by reset

Why is this so?

= I have no idea

m Idea: Its an easy optimization to run more rules in a
single cycle

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-36

Conflict Matrix of Primitive

modules: Registers and EHRs | Slide from

¢ lecture 6
reg.r reg.w
Register rag.t - 3
reg.w S C*
*No conflict between rules
EHR EHR.rO EHR.wO0 EHR.r1 EHR.wl
EHR.r0 | cF < CF <
EHR.WO | > C < -

EHR write ports

still conflict EHR.r1

between rules CF > CF <

EHR.wl > > > C

September 26, 2014 http://csg.csail.mit.edu/6.175

T02-37

Question 4

N

What is the schedule for the following rules?

// ql, g2, and g3 are FIFOs
rule rl;

gl.eng(fl(g3.f1irst)); g3.deq;
endrule
rule r2;

gZ2.eng(f2(gl.first)); gl.deg;
endrule
rule r3;

g3.enqg(£3(g2.f1irst)); g2.deqg;
endrule

It depends on the type of FIFOs

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-38

Question 4.5

What is the schedule for the following rules?

N

/[fglyg2;-and g3 -areall pipeline FIFOS
rule rl;

gl.eng(fl(g3.f1irst)); g3.deq;
endrule
rule r2;

gZ2.eng(f2(gl.first)); gl.deg;
endrule
rule r3;

g3.enqg(£3(g2.f1irst)); g2.deqg;
endrule

The compiler will introduce a conflict

rl<r3<r2<rl to break this cycle.

September 26, 2014 http://csg.csail.mit.edu/6.175 T02-39

Question 5

N

What type of FIFOs allow these rules to fire
concurrently?

// gl, g2, and g3 are FIFOs
rule rl;

gl.eng(fl(g3.fi1rst)); g3.deqg;
endrule
rule r2;

g2.enqg(f2(gl.first)); gl.deqg;
endrule
rule r3;

g3.enqg(£3(g2.first)); g2.deq;
endrule

Many different combinations

September 26, 2014 http://csg.csail.mit.edu/6.175

: pipeline
. pipeline
: bypass

: pipeline
: bypass
: bypass

: pipeline
: pipeline
: CF

T02-40

