
Constructive Computer Architecture

Tutorial 4:
Running and Debugging
SMIPS

Andy Wright
6.175 TA

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-1

Introduction

In lab 5, you will be making modifications
to an existing, functional, SMIPS
processor
How do you know if your processor is
working?
 You will run an existing suite of C and

assembly software test benches on your
processor

What could go wrong?
 Software and Hardware

How will you debug this?

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-2

Running SMIPS

October 10, 2014 T04-3 http://csg.csail.mit.edu/6.175

SMIPS Interface

interface Proc;

 method ActionValue#(Tuple2#(RIndx,

Data)) cpuToHost;

 method Action hostToCpu(Addr startpc);

 interface MemInitIfc iMemInit;

 interface MemInitIfc dMemInit;

endinterface

October 10, 2014 T04-4 http://csg.csail.mit.edu/6.175

Sub-interfaces

Slightly different than the interface shown in lecture

Real SMIPS Interface

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-5

cpuToHost

hostToCpu

iMemInit

dMemInit

mkProc – BSV

COP

Core

iMem

dMem

PC

SMIPS Interface

cpuToHost

mtc0 moves data to coprocessor
registers
 This instruction really just writes data to

a FIFO in the form (cop_reg, data)
 cpuToHost dequeues from that FIFO

COP Registers:
 18: Print data as integer
 19: Print data as char
 21: Send finish code

 0 is passed, all other codes signal failure

October 10, 2014 T04-6 http://csg.csail.mit.edu/6.175

SMIPS Interface

Other Methods/Subinterfaces

hostToCpu

 Tells the processor to start running
from the given address

iMemInit/dMemInit

 Used to initialize iMem and dMem

 Can also be used to check when
initialization is done

 Defined in MemInit.bsv

October 10, 2014 T04-7 http://csg.csail.mit.edu/6.175

Connecting to the SMIPS
interface

Previous labs have used testbenches
written in BSV to connect with modules
we wanted to test.
Now we want a more advanced program
testing the processor
 Want to be able to load multiple files from

the user and display printed output

How do we do this?
 Use a SceMi interface to connect a

testbench written in C++ with a module
written in BSV

October 10, 2014 T04-8 http://csg.csail.mit.edu/6.175

SceMi Testbench Interface

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-9

tb – C++ mkProc – BSV

COP

Core

iMem

dMem

PC

Loading Programs

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-10

tb – C++

test.vmh

mkProc – BSV

COP

Core

iMem

dMem

PC

Starting the Processor

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-11

mkProc – BSV

COP

Core

iMem

dMem

tb – C++

Starting PC

0x1000
PC

Printing to Console

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-12

tb – C++ mkProc – BSV

COP

Core

iMem

dMem

PC

Get write to reg
18 and 19

18: Print int x

19: Print char x

Finishing Program

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-13

tb – C++ mkProc – BSV

COP

Core

iMem

dMem

PC

Get write to
reg 21

x == 0:
“PASSED”

x != 0:
“FAILED x”

SceMi Testbench Interface
Simulation

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-14

tb – C++ mkProc – BSV

COP

Core

iMem

dMem

PC

Compiled Program:

tb
Compiled BSim
Executable:

bsim_dut

TCP

Building the SMIPS processor

October 10, 2014 http://csg.csail.mit.edu/6.175

$ cd scemi/sim

$ build –v onecycle

building target onecycle...

… lots of compiler messages …

done building target onecycle.

T04-15

Builds ./bsim_dut and ./tb

Running SMIPS Simulations

October 10, 2014 http://csg.csail.mit.edu/6.175

$./bsim_dut > sim.out &

$./tb ../../programs/build/qsort.bench.vmh

../../programs/build/qsort.bench.vmh

Cycles = 21626

Insts = 21626

PASSED

SceMi Service thread finished!

T04-16

Printed by SMIPS mtc0 instructions

through tb executable

Writes BSV output to sim.out

Running SMIPS Simulations

October 10, 2014 http://csg.csail.mit.edu/6.175

$./bsim_dut –V test.vcd > /dev/null &

$./tb ../../programs/build/qsort.bench.vmh

../../programs/build/qsort.bench.vmh

Cycles = 21626

Insts = 21626

PASSED

SceMi Service thread finished!

T04-17

Dumps VCD waveform
to test.vcd

Ignores BSV output

Running all SMIPS Tests

October 10, 2014 http://csg.csail.mit.edu/6.175

$./run_assembly

… runs all assembly tests …

$./run_benchmarks

../../programs/build/median.bench.vmh

Cycles = 6871

Insts = 6871

../../programs/build/multiply.bench.vmh

Cycles = 21098

Insts = 21098

../../programs/build/qsort.bench.vmh

Cycles = 21626

Insts = 21626

…

SceMi Service thread finished!

T04-18

SceMi Testbench Interface
Hardware

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-19

tb – C++ mkProc – BSV

COP

Core

iMem

dMem

PC

Compiled Program:

tb
Compiled FPGA
Design running on
an FPGA dev board

PCIe

The same SceMi Testbench can be used to test
hardware FPGA designs too!

Running SMIPS Hardware

October 10, 2014 http://csg.csail.mit.edu/6.175

$ programfpga

… programs the FPGA …

$ runtb ./tb ../../programs/build/qsort.bench.vmh

../../programs/build/qsort.bench.vmh

Cycles = 21626

Insts = 21626

PASSED

T04-20

programfpga takes care loading the design, and runtb
takes care of communicating with the FPGA board

Your current design can’t run on FPGA boards and
won’t be able to run on them until later labs.

Debugging SMIPS

October 10, 2014 T04-21 http://csg.csail.mit.edu/6.175

Step 1 – Fail a test

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-22

$./run_assembly

…

../../programs/build/smipsv1_lw.asm.vmh

FAILED 1

…

$./run_benchmarks

…

../../programs/build/vvadd.bench.vmh

Executing unsupported instruction at pc: 00000004.

Exiting

…

We need more feedback from the processor!

Error Code

BSV Error message

$fwrite(stderr, “Executing unsupported …

Step 2 – Think about it

Just because you failed
smipsv1_lw.asm.vmh doesn’t
mean your problem is only with
the lw instruction

 Are other programs failing?

October 10, 2014 T04-23 http://csg.csail.mit.edu/6.175

Step 3 – Investigate

October 10, 2014 T04-24 http://csg.csail.mit.edu/6.175

$./bsim_dut –V test.vcd > test.out &

$./tb ../../programs/build/smipsv1_lw.asm.vmh

../../programs/build/smipsv1_lw.asm.vmh

FAILED 1

Save VCD file Save BSV output

Look at ../../programs/build/smipsv1_lw.asm.vmh
to see the program running (the source is in
../../programs/src/assembly/)
Look at test.out for any BSV messages you
outputted
Look at test.vcd to see the firing rules and the state
of the processor
Also look at targetname_compile_for_bluesim.log for
compiler warnings

Step 3 – Investigate
Programs

Test Benches can be written in
assembly or in C
 Assembly examples:

 baseline.S
 smipsv2_addu.S

 C example:
 vvadd

The .vmh files are the compiled
versions with some human readable
assembly as comments

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-25

Step 3 – Investigate
BSV Output

The BSV output may look something
like this:

To debug further, you can add more
$display(…) statements

October 10, 2014 http://csg.csail.mit.edu/6.175

…

Cycle 3057 ---------------------------------

pc: 00001098 inst: (03e00008) expanded: jr ‘h1f

Cycle 3058 ---------------------------------

pc: 00000004 inst: (aaaaaaaa) expanded: nop

T04-26

Step 3 – Investigate
Waveforms

“build –v testname” generates
testname.bspec
Open the bluespec workstation using
“bluespec testname.bspec &”
Open the module viewer to explore the
VCD file as mentioned in the previous
tutorial
Can view states and rule signals
 CAN_FIRE tells you if rule gaurds are true
 WILL_FIRE tells you if rules are actually

firing

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-27

Step 3 – Investigate
Compiler Output

The compiler will output many warnings
when compiling the SMIPS processor
 Most of them are because of the SceMi

interface

 All mkProc warnings will appear before any
of the SceMi warnings

The compiler gives a warning when
 Two rules conflict

 A rule never fires

 Many other useful situations…

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-28

Step 4 – Get More
Information

Create new programs
 New assembly programs can just be

added to programs/src/assembly and
then build by running “make” in
programs/

 New C programs require adding targets
to the makefile

 ./run_assembly and ./run_benchmarks
will find all *.asm.vmh and all
*.bench.vmh files that have been built

October 10, 2014 T04-29 http://csg.csail.mit.edu/6.175

Step 4 – Get More
Information

Add more debug outputs from the
processor
 New display statements will show up

in stdout

 $fwrite(stderr, “…”) messages will
show up in stderr

 Add Probes to your module to get
more information in the waveform
viewer

October 10, 2014 T04-30 http://csg.csail.mit.edu/6.175

Step 4 – Get More
Information: Probes

A Probe has an interface similar to a
register, but it can’t be read
 Import Probe::*;
 Probe#(t) myprobe <- mkProbe();
 myprobe <= my_value; (only inside rules)

Probes will be preserved by the compiler and
you will be able to see them in the VCD
viewer
Possible probe idea:
 Create a vector of probes to output the state of

a FIFO in logical order (probe[0] is the first
element in the fifo, and so on)

October 10, 2014 T04-31 http://csg.csail.mit.edu/6.175

Step 5 – Fix the bug

(hopefully you found it by this
point)

October 10, 2014 T04-32 http://csg.csail.mit.edu/6.175

Questions?

October 10, 2014 T04-33 http://csg.csail.mit.edu/6.175

