
Constructive Computer Architecture

Tutorial 5:
Programming SMIPS:
Single-Core Assembly

Andy Wright
6.175 TA

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-1

Two Ways to Program SMIPS

Assembly
 .S files

 Register level control of processor

 Direct translation into machine code
(vmh files) by assembler

C
 .c files

 Higher level control of processor

 Compiled by smips-gcc

October 10, 2014 T04-2 http://csg.csail.mit.edu/6.175

SMIPS Assembly Files
baseline.S

start: mfc0 $28, $10

 li $30, 0

 nop

 …100 nop’s in total…

 mfc0 $29, $10

 subu $29, $29, $28

 mtc0 $29, $18

 li $29, 10

 mtc0 $29, $19

 mtc0 $30, $21

end: beq $0, $0, end

October 10, 2014 T04-3 http://csg.csail.mit.edu/6.175

tags assembly instructions

tag for branch instruction

$x -> register

immediate value

SMIPS Registers Overview

32 GPR Registers - $0 to $31
 $0 always has the value 0
 Application Binary Interface (ABI) specifies how

registers and stack should be used
 Compiled C programs will typically follow the ABI

32 COP Registers - $0 to $31
 Only a few are actually used in our processor
 $10 – Number of clock cycles passed (R)
 $11 – Number of instructions executed (R)
 $18 – Write integer to console (W)
 $19 – Write char to console (W)
 $21 – Write finish code (W)

October 10, 2014 T04-4 http://csg.csail.mit.edu/6.175

SMIPS GPR Registers
According to ABI

October 10, 2014 T04-5 http://csg.csail.mit.edu/6.175

Name Number Usage

$zero 0 Always 0

$at 1 Temporary register for assembler to use

$v0 - $v1 2 – 3 Method call return values

$a0 - $a3 4 – 7 Method call arguments

$t0 - $t7 8 – 15 Temporary register (not preserved during method call)

$s0 - $s7 16 – 23 Saved register (preserved during method calls)

$t8 - $t9 24 – 25 Temporary register (not preserved during method call)

$k0 - $k1 26 – 27 Kernel registers (OS only)

$gp 28 Global pointer

$sp 29 Stack pointer

$fp 30 Frame pointer

$ra 31 Return address

SMIPS Method Calls
Caller

Caller saves any registers that may get
written over by method call
 $a0 - $a3 – Argument registers
 $v0, $v1 – Return registers
 $t0 - $t9 – Temporary registers

Caller sets argument register(s) $a0-$a3
Caller jumps to function using jal
 After call, method will eventually return to

instruction after jal

Get return value(s) from $v0, $v1
Restore caller-saved registers

October 10, 2014 T04-6 http://csg.csail.mit.edu/6.175

SMIPS Method Calls
Method

Get called
Move stack pointer to reserve more space on
the stack
Save return address $(ra) and saved
registers ($s0-$s7) to the stack
Do method including any necessary method
calls
Restore the return address ($ra) and saved
registers ($s0-s7) from the stack
Move stack pointer to release space on the
stack

October 10, 2014 T04-7 http://csg.csail.mit.edu/6.175

SMIPS Assembly Instructions
ALU Instructions

aluop $1, $2, $3
 $1 is the destination
 $1 <- $2 (aluop) $3

aluopi $1, $2, x
 x is an immediate value

 sign-extended for addi, slti, sltiu
 zero-extended for andi, ori, xori, lui

 $1 <- $2 (aluop) x

shiftop $1, $2, shamt
 shamt is the shift amount
 $1 <- $2 (shiftop) x
 shiftop is shift left logical (sll), shift right logical (srl),

or shift right arithmetic (sra)

October 10, 2014 T04-8 http://csg.csail.mit.edu/6.175

ADDU vs ADD

Our processor only supports ADDU and ADDIU, not ADD
or ADDI
 ADD and ADDI should cause errors

Is this a problem?
 No, ADD and ADDU should give the same output bits

regardless of the interpretation of the input bits (signed vs
unsigned)

Why are there different ADD and ADDU instructions
then?
 ADD and ADDI generate exceptions on overflow
 No one writes programs that use those exceptions

anyways...

But there definitely is a difference between ADDIU and
ADDI, right?
 No, ADDIU still uses a sign-extended immediate value!

October 10, 2014 T04-9 http://csg.csail.mit.edu/6.175

SMIPS Assembly Instructions
Memory Instructions

LW $1, offset($2)
 $1 <- M[$2 + offset]
 offset is a signed immediate value

SW $1, offset($2)
 M[$2 + offset] <- $1
 offset is a signed immediate value

There are many unsupported memory
instructions in our processor
 Smaller Accesses: LB, LH, LBU, LHU, SB, SH
 Atomic Accesses: LL, SC

 We will implement these two for the final project

October 10, 2014 T04-10 http://csg.csail.mit.edu/6.175

SMIPS Assembly Instructions
Control Flow

J address
JAL address
 Address can be a tag found in the assembly

program
 JAL saves the return address (PC+4) to $ra

($31)

JR $1
 Jumps to instruction in $1, typically $ra

B<op> $1, $2, offset
 Jump to PC + 4 + (offset << 2) if $1 <op> $2
 Example:

 beq $1, $2, -1 is an infinite loop if $1 == $2

 Offset can also be a tag found in the assembly
program

October 10, 2014 T04-11 http://csg.csail.mit.edu/6.175

SMIPS Assembly Instructions
Mnemonics

li $1, x

 Loads register $1 with sign extended
immediate value x

 Alias for addiu $1, $0, x

b offset

 Always branches to offset

 Alias for beq $0, $0, offset

October 10, 2014 T04-12 http://csg.csail.mit.edu/6.175

Writing an Assembly
Program

Add start tag to first instruction
 This lets the assembler know where the

program starts

Write interesting assembly
 Include mtco $??, $18/$19 to print reg $??

Include mtco $??, $21 at end
 $?? is the register which contains the return

code
 0 for success, !0 for failure.

Include infinite loop after final mtc0
 end: j end

Put program in programs/src/assembly
Build program by running make in programs

October 10, 2014 T04-13 http://csg.csail.mit.edu/6.175

Example Assembly Code

Assembly if statement:
 beq $7, $8, abc

 addiu $7, $7, 1

abc: ...

C if statement:

 if($7 != $8) {

 $7++;

 }

October 10, 2014 T04-14 http://csg.csail.mit.edu/6.175

Example Assembly Code

Assembly loop:
 li $8, 10

begin: addiu $8, $8, -1

 bne $8, $0, begin

C loop:
 i = 10;

 do {

 i--;

 } while(i != 0);

October 10, 2014 T04-15 http://csg.csail.mit.edu/6.175

Assembly Overview

A great way to build low level tests!
 You have control over every instruction

and every register

 You can reproduce any processor state
with little effort
 At least for our current pipeline complexity...

A great way to introduce new errors
into your testing procedure
 Assembly programming is not easy

October 10, 2014 T04-16 http://csg.csail.mit.edu/6.175

C Programs

We have a compiler to turn C
programs into SMIPS programs

You can create larger tests and
performance benchmarks with
ease

October 10, 2014 T04-17 http://csg.csail.mit.edu/6.175

C Programs
What’s missing

smips-gcc sometimes produces
unsupported instructions
 Using types smaller than int (such as

char) causes unsupported loads and
stores to be implemented

 Mul and div instructions are unsupported
so using * and / causes problems

No standard libraries
 Can’t use malloc, printf, etc.

October 10, 2014 T04-18 http://csg.csail.mit.edu/6.175

C Programs
What we have

Start code

 Jumps to main and sends return
value to COP

Print library

 Can print chars, ints, and strings

Cop library

 Can read number of instructions and
things like that.

October 10, 2014 T04-19 http://csg.csail.mit.edu/6.175

C Programs

We are going to talk about details in a
later tutorial (when we talk about
multicore programming)

 If you want to do it on your own, start with
an existing example and modify it

 Also add the necessary lines to the makefile

October 10, 2014 T04-20 http://csg.csail.mit.edu/6.175

Searchable FIFO

October 10, 2014 T04-21 http://csg.csail.mit.edu/6.175

Searchable FIFO
Interface

interface SFifo#(numeric type n, type dt, type st);

 method Bool notFull;

 method Action enq(dt x);

 method Bool notEmpty;

 method dt first;

 method Action deq;

 method Action clear;

 Bool search(st x);

endinterface

October 10, 2014 T04-22 http://csg.csail.mit.edu/6.175

Searchable FIFO
Internal States

Standard FIFO states:

Reg#(Bit#(TLog#(n))) enqP <- mkReg(0);

Reg#(Bit#(TLog#(n))) deqP <- mkReg(0);

Reg#(Bool) full <- mkReg(False);

Reg#(Bool) empty <- mkReg(Empty);

Need any more?

October 10, 2014 T04-23 http://csg.csail.mit.edu/6.175

Searchable FIFO
Method Calls

{notFull, enq}
 R: full, enqP, deqP
 W: full, empty, enqP, data

{notEmpty, deq, first}
 R: empty, enqP, deqP, data
 W: full, empty, deqP

search
 R: (empty or full), enqP, deqP, data

clear
 W: empty, full, enq, deqP

October 10, 2014 T04-24 http://csg.csail.mit.edu/6.175

Searchable FIFO
Potential Conflicts

{notFull, enq}
 R: full, enqP, deqP
 W: full, empty, enqP, data

{notEmpty, deq, first}
 R: empty, enqP, deqP, data
 W: full, empty, deqP

search
 R: (empty or full), enqP, deqP, data

clear
 W: empty, full, enq, deqP

October 10, 2014 T04-25 http://csg.csail.mit.edu/6.175

enq < deq

deq < enq

enq C deq

Same as FIFO

Search is read-only -> it can always come first

Clear is write-only -> it can always come last

Searchable FIFO
Implementation 1

Implementation:

 mkCFFifo with a search method

Schedule:

 search < {notFull, enq, notEmpty,
deq, first} < clear

 {notFull, enq} CF {notEmpty, deq,
first}

October 10, 2014 T04-26 http://csg.csail.mit.edu/6.175

Searchable FIFO
Implementation 1

module mkSFifo1(SFifo#(n, t, t)) provisos(Eq#(t));

 // mkCFFifo implementation

 method Bool search(t x);

 Bool found = False;

 for(Integer i = 0; i < valueOf(n); i = i+1) begin

 Bool validEntry = full[0] ||

 (enqP[0]>deqP[0] && i>=deqP[0] && i<enqP[0]) ||

 (enqP[0]<deqP[0] && (i>=deqP[0] || i<enqP[0]));

 if(validEntry && (data[i] == x)) found = True;

 end

 return found;

 endmethod

endmodule

October 10, 2014 T04-27 http://csg.csail.mit.edu/6.175

Searchable FIFO
Custom Search Function

October 10, 2014 T04-28 http://csg.csail.mit.edu/6.175

module mkSFifo1(

SFifo#(n, dt, st) ifc);

 // mkCFFifo implementation

 method Bool search(st x);

 Bool found = False;

 for(Integer i = 0; i < valueOf(n); i = i+1) begin

 Bool validEntry = full[0] ||

 (enqP[0]>deqP[0] && i>=deqP[0] && i<enqP[0]) ||

 (enqP[0]<deqP[0] && (i>=deqP[0] || i<enqP[0]);

 if(validEntry && isFound(data[i], x)) found = True;

 end

 return found;

 endmethod

endmodule

function Bool isFound(dt x, st y),

Scoreboard

When using a SFifo for a scoreboard,
the following functions are used
together:
 {search, notFull, enq}
 {notEmpty, deq}

Are enq and deq still commutative
like in the CFFifo case?
 No! Search has to be able to be done

with enq, and search is not commutative
with deq

October 10, 2014 T04-29 http://csg.csail.mit.edu/6.175

Two SFifo Implementations
for a Scoreboard

Implementation 1:
 {search, notFull, enq} < {deq, notEmpty}

 “Conflict Free” Scoreboard
 Can be implemented with previously shown SFifo

Implementation 2:
 {deq, notEmpty} < {search, notFull, enq}

 “Pipeline” Scoreboard
 Design is straight forward using technique from

Lab 4

October 10, 2014 T04-30 http://csg.csail.mit.edu/6.175

