
Constructive Computer Architecture

Tutorial 5:
Programming SMIPS:
Single-Core Assembly

Andy Wright
6.175 TA

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-1

Two Ways to Program SMIPS

Assembly
 .S files

 Register level control of processor

 Direct translation into machine code
(vmh files) by assembler

C
 .c files

 Higher level control of processor

 Compiled by smips-gcc

October 10, 2014 T04-2 http://csg.csail.mit.edu/6.175

SMIPS Assembly Files
baseline.S

start: mfc0 $28, $10

 li $30, 0

 nop

 …100 nop’s in total…

 mfc0 $29, $10

 subu $29, $29, $28

 mtc0 $29, $18

 li $29, 10

 mtc0 $29, $19

 mtc0 $30, $21

end: beq $0, $0, end

October 10, 2014 T04-3 http://csg.csail.mit.edu/6.175

tags assembly instructions

tag for branch instruction

$x -> register

immediate value

SMIPS Registers Overview

32 GPR Registers - $0 to $31
 $0 always has the value 0
 Application Binary Interface (ABI) specifies how

registers and stack should be used
 Compiled C programs will typically follow the ABI

32 COP Registers - $0 to $31
 Only a few are actually used in our processor
 $10 – Number of clock cycles passed (R)
 $11 – Number of instructions executed (R)
 $18 – Write integer to console (W)
 $19 – Write char to console (W)
 $21 – Write finish code (W)

October 10, 2014 T04-4 http://csg.csail.mit.edu/6.175

SMIPS GPR Registers
According to ABI

October 10, 2014 T04-5 http://csg.csail.mit.edu/6.175

Name Number Usage

$zero 0 Always 0

$at 1 Temporary register for assembler to use

$v0 - $v1 2 – 3 Method call return values

$a0 - $a3 4 – 7 Method call arguments

$t0 - $t7 8 – 15 Temporary register (not preserved during method call)

$s0 - $s7 16 – 23 Saved register (preserved during method calls)

$t8 - $t9 24 – 25 Temporary register (not preserved during method call)

$k0 - $k1 26 – 27 Kernel registers (OS only)

$gp 28 Global pointer

$sp 29 Stack pointer

$fp 30 Frame pointer

$ra 31 Return address

SMIPS Method Calls
Caller

Caller saves any registers that may get
written over by method call
 $a0 - $a3 – Argument registers
 $v0, $v1 – Return registers
 $t0 - $t9 – Temporary registers

Caller sets argument register(s) $a0-$a3
Caller jumps to function using jal
 After call, method will eventually return to

instruction after jal

Get return value(s) from $v0, $v1
Restore caller-saved registers

October 10, 2014 T04-6 http://csg.csail.mit.edu/6.175

SMIPS Method Calls
Method

Get called
Move stack pointer to reserve more space on
the stack
Save return address $(ra) and saved
registers ($s0-$s7) to the stack
Do method including any necessary method
calls
Restore the return address ($ra) and saved
registers ($s0-s7) from the stack
Move stack pointer to release space on the
stack

October 10, 2014 T04-7 http://csg.csail.mit.edu/6.175

SMIPS Assembly Instructions
ALU Instructions

aluop $1, $2, $3
 $1 is the destination
 $1 <- $2 (aluop) $3

aluopi $1, $2, x
 x is an immediate value

 sign-extended for addi, slti, sltiu
 zero-extended for andi, ori, xori, lui

 $1 <- $2 (aluop) x

shiftop $1, $2, shamt
 shamt is the shift amount
 $1 <- $2 (shiftop) x
 shiftop is shift left logical (sll), shift right logical (srl),

or shift right arithmetic (sra)

October 10, 2014 T04-8 http://csg.csail.mit.edu/6.175

ADDU vs ADD

Our processor only supports ADDU and ADDIU, not ADD
or ADDI
 ADD and ADDI should cause errors

Is this a problem?
 No, ADD and ADDU should give the same output bits

regardless of the interpretation of the input bits (signed vs
unsigned)

Why are there different ADD and ADDU instructions
then?
 ADD and ADDI generate exceptions on overflow
 No one writes programs that use those exceptions

anyways...

But there definitely is a difference between ADDIU and
ADDI, right?
 No, ADDIU still uses a sign-extended immediate value!

October 10, 2014 T04-9 http://csg.csail.mit.edu/6.175

SMIPS Assembly Instructions
Memory Instructions

LW $1, offset($2)
 $1 <- M[$2 + offset]
 offset is a signed immediate value

SW $1, offset($2)
 M[$2 + offset] <- $1
 offset is a signed immediate value

There are many unsupported memory
instructions in our processor
 Smaller Accesses: LB, LH, LBU, LHU, SB, SH
 Atomic Accesses: LL, SC

 We will implement these two for the final project

October 10, 2014 T04-10 http://csg.csail.mit.edu/6.175

SMIPS Assembly Instructions
Control Flow

J address
JAL address
 Address can be a tag found in the assembly

program
 JAL saves the return address (PC+4) to $ra

($31)

JR $1
 Jumps to instruction in $1, typically $ra

B<op> $1, $2, offset
 Jump to PC + 4 + (offset << 2) if $1 <op> $2
 Example:

 beq $1, $2, -1 is an infinite loop if $1 == $2

 Offset can also be a tag found in the assembly
program

October 10, 2014 T04-11 http://csg.csail.mit.edu/6.175

SMIPS Assembly Instructions
Mnemonics

li $1, x

 Loads register $1 with sign extended
immediate value x

 Alias for addiu $1, $0, x

b offset

 Always branches to offset

 Alias for beq $0, $0, offset

October 10, 2014 T04-12 http://csg.csail.mit.edu/6.175

Writing an Assembly
Program

Add start tag to first instruction
 This lets the assembler know where the

program starts

Write interesting assembly
 Include mtco $??, $18/$19 to print reg $??

Include mtco $??, $21 at end
 $?? is the register which contains the return

code
 0 for success, !0 for failure.

Include infinite loop after final mtc0
 end: j end

Put program in programs/src/assembly
Build program by running make in programs

October 10, 2014 T04-13 http://csg.csail.mit.edu/6.175

Example Assembly Code

Assembly if statement:
 beq $7, $8, abc

 addiu $7, $7, 1

abc: ...

C if statement:

 if($7 != $8) {

 $7++;

 }

October 10, 2014 T04-14 http://csg.csail.mit.edu/6.175

Example Assembly Code

Assembly loop:
 li $8, 10

begin: addiu $8, $8, -1

 bne $8, $0, begin

C loop:
 i = 10;

 do {

 i--;

 } while(i != 0);

October 10, 2014 T04-15 http://csg.csail.mit.edu/6.175

Assembly Overview

A great way to build low level tests!
 You have control over every instruction

and every register

 You can reproduce any processor state
with little effort
 At least for our current pipeline complexity...

A great way to introduce new errors
into your testing procedure
 Assembly programming is not easy

October 10, 2014 T04-16 http://csg.csail.mit.edu/6.175

C Programs

We have a compiler to turn C
programs into SMIPS programs

You can create larger tests and
performance benchmarks with
ease

October 10, 2014 T04-17 http://csg.csail.mit.edu/6.175

C Programs
What’s missing

smips-gcc sometimes produces
unsupported instructions
 Using types smaller than int (such as

char) causes unsupported loads and
stores to be implemented

 Mul and div instructions are unsupported
so using * and / causes problems

No standard libraries
 Can’t use malloc, printf, etc.

October 10, 2014 T04-18 http://csg.csail.mit.edu/6.175

C Programs
What we have

Start code

 Jumps to main and sends return
value to COP

Print library

 Can print chars, ints, and strings

Cop library

 Can read number of instructions and
things like that.

October 10, 2014 T04-19 http://csg.csail.mit.edu/6.175

C Programs

We are going to talk about details in a
later tutorial (when we talk about
multicore programming)

 If you want to do it on your own, start with
an existing example and modify it

 Also add the necessary lines to the makefile

October 10, 2014 T04-20 http://csg.csail.mit.edu/6.175

Searchable FIFO

October 10, 2014 T04-21 http://csg.csail.mit.edu/6.175

Searchable FIFO
Interface

interface SFifo#(numeric type n, type dt, type st);

 method Bool notFull;

 method Action enq(dt x);

 method Bool notEmpty;

 method dt first;

 method Action deq;

 method Action clear;

 Bool search(st x);

endinterface

October 10, 2014 T04-22 http://csg.csail.mit.edu/6.175

Searchable FIFO
Internal States

Standard FIFO states:

Reg#(Bit#(TLog#(n))) enqP <- mkReg(0);

Reg#(Bit#(TLog#(n))) deqP <- mkReg(0);

Reg#(Bool) full <- mkReg(False);

Reg#(Bool) empty <- mkReg(Empty);

Need any more?

October 10, 2014 T04-23 http://csg.csail.mit.edu/6.175

Searchable FIFO
Method Calls

{notFull, enq}
 R: full, enqP, deqP
 W: full, empty, enqP, data

{notEmpty, deq, first}
 R: empty, enqP, deqP, data
 W: full, empty, deqP

search
 R: (empty or full), enqP, deqP, data

clear
 W: empty, full, enq, deqP

October 10, 2014 T04-24 http://csg.csail.mit.edu/6.175

Searchable FIFO
Potential Conflicts

{notFull, enq}
 R: full, enqP, deqP
 W: full, empty, enqP, data

{notEmpty, deq, first}
 R: empty, enqP, deqP, data
 W: full, empty, deqP

search
 R: (empty or full), enqP, deqP, data

clear
 W: empty, full, enq, deqP

October 10, 2014 T04-25 http://csg.csail.mit.edu/6.175

enq < deq

deq < enq

enq C deq

Same as FIFO

Search is read-only -> it can always come first

Clear is write-only -> it can always come last

Searchable FIFO
Implementation 1

Implementation:

 mkCFFifo with a search method

Schedule:

 search < {notFull, enq, notEmpty,
deq, first} < clear

 {notFull, enq} CF {notEmpty, deq,
first}

October 10, 2014 T04-26 http://csg.csail.mit.edu/6.175

Searchable FIFO
Implementation 1

module mkSFifo1(SFifo#(n, t, t)) provisos(Eq#(t));

 // mkCFFifo implementation

 method Bool search(t x);

 Bool found = False;

 for(Integer i = 0; i < valueOf(n); i = i+1) begin

 Bool validEntry = full[0] ||

 (enqP[0]>deqP[0] && i>=deqP[0] && i<enqP[0]) ||

 (enqP[0]<deqP[0] && (i>=deqP[0] || i<enqP[0]));

 if(validEntry && (data[i] == x)) found = True;

 end

 return found;

 endmethod

endmodule

October 10, 2014 T04-27 http://csg.csail.mit.edu/6.175

Searchable FIFO
Custom Search Function

October 10, 2014 T04-28 http://csg.csail.mit.edu/6.175

module mkSFifo1(

SFifo#(n, dt, st) ifc);

 // mkCFFifo implementation

 method Bool search(st x);

 Bool found = False;

 for(Integer i = 0; i < valueOf(n); i = i+1) begin

 Bool validEntry = full[0] ||

 (enqP[0]>deqP[0] && i>=deqP[0] && i<enqP[0]) ||

 (enqP[0]<deqP[0] && (i>=deqP[0] || i<enqP[0]);

 if(validEntry && isFound(data[i], x)) found = True;

 end

 return found;

 endmethod

endmodule

function Bool isFound(dt x, st y),

Scoreboard

When using a SFifo for a scoreboard,
the following functions are used
together:
 {search, notFull, enq}
 {notEmpty, deq}

Are enq and deq still commutative
like in the CFFifo case?
 No! Search has to be able to be done

with enq, and search is not commutative
with deq

October 10, 2014 T04-29 http://csg.csail.mit.edu/6.175

Two SFifo Implementations
for a Scoreboard

Implementation 1:
 {search, notFull, enq} < {deq, notEmpty}

 “Conflict Free” Scoreboard
 Can be implemented with previously shown SFifo

Implementation 2:
 {deq, notEmpty} < {search, notFull, enq}

 “Pipeline” Scoreboard
 Design is straight forward using technique from

Lab 4

October 10, 2014 T04-30 http://csg.csail.mit.edu/6.175

