X
“Constructive Computer Architecture

Tutorial 5:

Programming SMIPS:
Single-Core Assembly

Andy Wright
6.175 TA

N

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-1

Two Ways to Program SMIPS

N

Assembly
s .S files
s Register level control of processor

s Direct translation into machine code
(vmh files) by assembler

®C

s .C files
s Higher level control of processor
= Compiled by smips-gcc

October 10, 2014 http://csg.csail.mit.edu/6.175

T04-2

SMIPS Assembly Files

) baseline.S
1V
start: mfcO $x -> register
11 $30, O
nop
..100 nop’s 1n total..
mfcO $29, $10

subu $29, $29, $28

mtcO0 $29, $18

11 $29, @ immediate value
mtcO0 S$29, $19

mtcO $30, $21

end: beq 350, $0, tag for branch instruction
J

\ J \
| /

tags assembly instructions

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-3

SMIPS Registers Overview

N
¥

32 GPR Registers - $0 to $31

= $0 always has the value O

= Application Binary Interface (ABI) specifies how
registers and stack should be used

+ Compiled C programs will typically follow the ABI

32 COP Registers - $0 to $31
= Only a few are actually used in our processor
= $10 - Number of clock cycles passed (R)
= $11 - Number of instructions executed (R)
= $18 - Write integer to console (W)
= $19 - Write char to console (W)
s $21 — Write finish code (W)

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-4

SMIPS GPR Registers

$zero
$at
$v0 - $vi
$a0 - $a3
$t0 - $t7
$s0 - $s7
$t8 - $t9
$k0 - $k1

$gp
$sp
$fp
$ra

October 10, 2014

2-3
4 -7
8 - 15
16 - 23
24 - 25
26 — 27
28
29
30
31

According to ABI
1 mm_

Always 0

Temporary register for assembler to use

Method call return values

Method call arguments

Temporary register (not preserved during method call)
Saved register (preserved during method calls)
Temporary register (not preserved during method call)
Kernel registers (OS only)

Global pointer

Stack pointer

Frame pointer

Return address

http://csg.csail.mit.edu/6.175

T04-5

SMIPS Method Calls

Caller

%

N

Caller saves any registers that may get
written over by method call

= $a0 - $a3 - Argument registers

= $v0, $v1 - Return registers

s $t0 - $t9 - Temporary registers
Caller sets argument register(s) $a0-%$a3
Caller jumps to function using jal

a After call, method will eventually return to
instruction after jal

Get return value(s) from $vO, $v1
Restore caller-saved registers

October 10, 2014 http://csg.csail.mit.edu/6.175

T04-6

SMIPS Method Calls
Method

N

Get called

Move stack pointer to reserve more space on
the stack

Save return address $(ra) and saved
registers ($s0-$s7) to the stack

k4 Do”method including any necessary method
calls

Restore the return address ($ra) and saved
registers ($s0-s7) from the stack

Move stack pointer to release space on the
stack

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-7

SMIPS Assembly Instructions

ALU Instructions

%

#® aluop $1, $2, $3
= $1 is the destination
s $1 <-$2 (aluop) $3
® aluopi $1, $2, X
= X iS an immediate value

+ sign-extended for addi, slti, sltiu
+ zero-extended for andi, ori, xori, lui

m $1 <-$2 (aluop) x

shiftop $1, $2, shamt
s shamt is the shift amount
s $1 <- $2 (shiftop) x

m Shiftop is shift left logical (sll), shift right logical (srl),
or shift right arithmetic (sra)

N

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-8

ADDU vs ADD

#® Our processor only supports ADDU and ADDIU, not ADD
or ADDI

» ADD and ADDI should cause errors

Is this a problem?

= No, ADD and ADDU should give the same output bits
regardless of the interpretation of the input bits (signed vs
unsigned)
® Vxhy?are there different ADD and ADDU instructions
then:

= ADD and ADDI generate exceptions on overflow

= NO one writes programs that use those exceptions
anyways...
But there definitely is a difference between ADDIU and
ADDI, right?
= No, ADDIU still uses a sign-extended immediate value!

N

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-9

SMIPS Assembly Instructions

Memory Instructions

%

N

® LW $1, offset($2)

s $1 <- M[$2 + offset]

s Offset is a signed immediate value
® SW $1, offset($2)

s M[$2 + offset] <- $1

s Offset is a signed immediate value

® There are many unsupported memory
Instructions In our processor
= Smaller Accesses: LB, LH, LBU, LHU, SB, SH

s Atomic Accesses: LL, SC
+ We will implement these two for the final project

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-10

SMIPS Assembly Instructions

Control Flow

! #®] address
JAL address

s Address can be a tag found in the assembly
program

= JAL saves the return address (PC+4) to $ra

($31)
JR $1
= Jumps to instruction in $1, typically $ra
® B<op> $1, $2, offset
= Jump to PC + 4 + (offset << 2) if $1 <op> $2
s Example:
* beq $1, $2, -1 is an infinite loop if $1 == $2

s Offset can also be a tag found in the assembly
program

N

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-11

SMIPS Assembly Instructions

Mnemonics

%

®|i $1, X

s Loads register $1 with sign extended
immediate value Xx

s Alias for addiu $1, $0, x

®b offset

s Always branches to offset
= Alias for beqg $0, $0, offset

N

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-12

Writing an Assembly

Program

" # Add start tag to first instruction

a This lets the assembler know where the
program starts

Write interesting assembly
= Include mtco $7?, $18/%$19 to print reg $7?7

Include mtco $??, $21 at end

o $?('.j? is the register which contains the return
code

+ 0 for success, !0 for failure.

Include infinite loop after final mtcO
m end: J end

Put program in programs/src/assembly
Build program by running make in programs

N

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-13

Example Assembly Code

N

Assembly if statement:
beqg $7, $8, abc
addiu $7, S$7, 1

abc:

C if statement:
if($7 != $8) {
ST++;

J

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-14

Example Assembly Code

N

Assembly loop:
1i $8, 10

begin: addiu $8, $8, -1
bne $8, $0, begin

C loop:
1 = 10;
do {

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-15

Assembly Overview

N

A great way to build low level tests!

= You have control over every instruction
and every register

= YOU can reproduce any processor state
with little effort

» At least for our current pipeline complexity...

A great way to introduce new errors
into your testing procedure

s Assembly programming is not easy

October 10, 2014 http://csg.csail.mit.edu/6.175

T04-16

C Programs

N

#We have a compiler to turn C
programs into SMIPS programs

#You can create larger tests and
performance benchmarks with
ease

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-17

C Programs
What's missing

%

N

#smips-gcc sometimes produces
unsupported instructions

s Using types smaller than int (such as
char) causes unsupported loads and
stores to be implemented

= Mul and div instructions are unsupported
SO using * and / causes problems

No standard libraries
= Can’t use malloc, printf, etc.

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-18

C Programs
What we have

%

Start code

= Jumps to main and sends return
value to COP

#®Print library
= Can print chars, ints, and strings

#®Cop library

s Can read number of instructions and
things like that.

N

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-19

C Programs

N

We are going to talk about details in a
later tutorial (when we talk about
multicore programming)

= If you want to do it on your own, start with
an existing example and modify it

= Also add the necessary lines to the makefile

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-20

Searchable FIFO

N

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-21

Searchable FIFO

Interface

%

N

interface SFifo# (numeric type n, type dt, type st);
method Bool notFull;
method Action eng(dt x);

method Bool notEmpty;
method dt first;
method Action deg;

method Action clear;
Bool search (st x);

endinterface

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-22

Searchable FIFO

Internal States

N
¥

Standard FIFO states:

(

(
Reg# (Bool) full <- mkReg(False);
Regi# (Bool) empty <- mkReg (Empty) ;

Need any more?

October 10, 2014 http://csg.csail.mit.edu/6.175

Bit# (TLog# (n))) engP <- mkReg (0) ;
(TLog# (n))) degP <- mkReg(0) ;

T04-23

Searchable FIFO
Method Calls

N

#® {notFull, enqg}
= R: full, engP, degP
= W: full, empty, engP, data
#® {notEmpty, deq, first}
= R: empty, engP, degP, data
= W: full, empty, degP
search
= R: (empty or full), engP, degP, data
clear
= W: empty, full, enqg, degP

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-24

Searchable FIFO

Potential Conflicts

%

N

#® {notFull, enqg}

= R: full, ean,

= W: full, empty,

{notEmpty, deq, + 7= enqg < deq
= R: empty, <l
o . > eng eq

@ Segvrlclflu”’ empty, Same as FIFO
= R: (empty or full), engP, degP, data

clear

= W: empty, full, enqg, degP

Search is read-only -> it can always come first

Clear is write-only -> it can always come last
October 10, 2014 http://csg.csail.mit.edu/6.175 T04-25

Searchable FIFO

Implementation 1

%

N

®Implementation:
s MkCFFifo with a search method

#®#Schedule:

s Search < {notFull, enqg, notEmpty,
deq, first} < clear

= {notFull, eng} CF {notEmpty, deq,
first}

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-26

Searchable FIFO

Implementation 1

%
module mkSFifol (SFifo#(n, t, t)) provisos (Eg# (t));

// mkCFFifo implementation

N

method Bool search(t x);

Bool found = False;

for (Integer i = 0; 1 < valueOf(n); 1 = 1+1) begin
Bool validEntry = full[0] ||
(engP[0]>deqgP[0] && 1i>=deqgP[0] && i<engP[0]) ||
(engP[0]<degP[0] && (1>=deqgP[0] || 1i<engP[0]));
if (validEntry && (datal[i] == x)) found = True;
end
return found;
endmethod
endmodule

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-27

Searchable FIFO

Custom Search Function

N

v
module mkSFifol (function Bool isFound(dt x, st vy),

SFifo#(n, dt, st) ifc);
// mkCFFifo implementation

method Bool search (st x);
Bool found = False;
for (Integer 1 = 0; 1 < valueOf(n); 1 = 1+1) begin
Bool validEntry = full[0] ||
(engP[0]>deqgP[0] && 1i>=deqP[0] && i<engP[0]) ||
(engP[0]<degP[0] && (1>=deqgP[0] || i<engP[0]) ;
if (validEntry && isFound(datali], x)) found = True;

end
return found;
endmethod
endmodule

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-28

Scoreboard

N

#\When using a SFifo for a scoreboard,
the following functions are used
together:

s {search, notFull, enqg}
s {notEmpty, deqg}

Are eng and deq still commutative
like in the CFFifo case?

= No! Search has to be able to be done
with enqg, and search is not commutative
with deg

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-29

Two SFifo Implementations
for a Scoreboard

N

#® Implementation 1:
= {search, notFull, eng} < {deq, notEmpty}

= "Conflict Free” Scoreboard
+ Can be implemented with previously shown SFifo

Implementation 2:
s {deqg, notEmpty} < {search, notFull, enqg}

= "Pipeline” Scoreboard

+ Design is straight forward using technique from
Lab 4

October 10, 2014 http://csg.csail.mit.edu/6.175 T04-30

