Super Advanced BSV* J

Andy Wright

October 24, 2014

*Edited for 6.175 Tutorial 6

Andy Wright Super Advanced BSV* October 24, 2014 1/25

Super Advanced BSV Scheduling!

Andy Wright Super Advanced BSV* October 24, 2014 2/25

|
Adding Conditions (Guards) to the Body of a Rule

@ Sometimes you would like to have a path in a rule be impossible to
reach.

Andy Wright Super Advanced BSV* October 24, 2014 3/25

|
Adding Conditions (Guards) to the Body of a Rule

@ Sometimes you would like to have a path in a rule be impossible to
reach.

@ Arvind teaches the when syntax in 6.175 to introduce an action in the
body of a rule that has a guard when teaching about scheduling.

Andy Wright Super Advanced BSV* October 24, 2014 3/25

|
Adding Conditions (Guards) to the Body of a Rule

@ Sometimes you would like to have a path in a rule be impossible to
reach.

@ Arvind teaches the when syntax in 6.175 to introduce an action in the
body of a rule that has a guard when teaching about scheduling.

e a when e; has an action a with an implicit condition e

Andy Wright Super Advanced BSV* October 24, 2014 3/25

|
Adding Conditions (Guards) to the Body of a Rule

@ Sometimes you would like to have a path in a rule be impossible to
reach.

@ Arvind teaches the when syntax in 6.175 to introduce an action in the
body of a rule that has a guard when teaching about scheduling.

e a when e; has an action a with an implicit condition e
e ... but unfortunately, a when e; is not part of BSV

Andy Wright Super Advanced BSV* October 24, 2014 3/25

|
Adding Conditions (Guards) to the Body of a Rule

@ Sometimes you would like to have a path in a rule be impossible to
reach.

@ Arvind teaches the when syntax in 6.175 to introduce an action in the
body of a rule that has a guard when teaching about scheduling.

e a when e; has an action a with an implicit condition e
e ... but unfortunately, a when e; is not part of BSV
e Instead, lets make our own!

Andy Wright Super Advanced BSV* October 24, 2014 3/25

when Module Interface

The interface of a when module:

1 interface When;
2 method Action when(Action a, Bool e);
3 endinterface

Values of type Action are statements like “reg <= 0".

Andy Wright Super Advanced BSV* October 24, 2014 4 /25

when Implementation

The implementation of a when module:

1 module mkWhen(When);

2 FIFO#(void) blockingFifo <- mkFIFO;

3

4 method Action when(Action a, Bool e);
5 if(!'e) blockingFifo.deq();

6 a;

7 endmethod

g endmodule

Andy Wright Super Advanced BSV* October 24, 2014 5/25

when Implementation

The implementation of a when module:

1 module mkWhen(When);

2 FIFO#(void) blockingFifo <- mkFIFO;

3

4 method Action when(Action a, Bool e);
5 if(!'e) blockingFifo.deq();

6 a;

7 endmethod

g endmodule

The problem with this is you need one when module per when statement.

Andy Wright Super Advanced BSV* October 24, 2014 5/25

when Implementation

The implementation of a when module:

1 module mkWhen(When);

2 FIFO#(void) blockingFifo <- mkFIFO;

3

4 method Action when(Action a, Bool e);
5 if(!'e) blockingFifo.deq();

6 a;

7 endmethod

g endmodule

The problem with this is you need one when module per when statement.
Also, this may synthesize an unnecessary FIFO.

Andy Wright Super Advanced BSV* October 24, 2014 5/25

Alternate when Implementation

Luckily, BSV has an undocumented implementation of when.

1 function Action _when_(Bool e, Action a);

Andy Wright Super Advanced BSV* October 24, 2014 6 /25

Alternate when Implementation

Luckily, BSV has an undocumented implementation of when.

1 function Action _when_(Bool e, Action a);

This function causes a compilation error if the condition e comes from an
ActionValue method of a synthesized module.

Andy Wright Super Advanced BSV* October 24, 2014 6 /25

Bluespec Schedules

What is a schedule?

Andy Wright Super Advanced BSV* October 24, 2014 7/25

Bluespec Schedules

What is a schedule? What information does it contain?

Andy Wright Super Advanced BSV* October 24, 2014 7/25

Bluespec Schedules

What is a schedule? What information does it contain?

If you look into compiled BSV designs using Bluetcl, you can see the
schedule expressed as the following information:

Andy Wright Super Advanced BSV* October 24, 2014 7/25

Bluespec Schedules

What is a schedule? What information does it contain?

If you look into compiled BSV designs using Bluetcl, you can see the
schedule expressed as the following information:

@ Order of execution of all rules and methods.

Andy Wright Super Advanced BSV* October 24, 2014 7/25

Bluespec Schedules

What is a schedule? What information does it contain?
If you look into compiled BSV designs using Bluetcl, you can see the
schedule expressed as the following information:

@ Order of execution of all rules and methods.

@ Urgency relation for rules and methods with conflicts.

o An urgency relation for rules rl1 and r2 says if r1 will fire, r2 will not fire.
o If two rules are not able to fire in the same cycle due to a conflict,
there is an urgency relation saying which one gets priority.

Andy Wright Super Advanced BSV* October 24, 2014 7/25

Bluespec Schedules

What is a schedule? What information does it contain?
If you look into compiled BSV designs using Bluetcl, you can see the
schedule expressed as the following information:

@ Order of execution of all rules and methods.

@ Urgency relation for rules and methods with conflicts.

o An urgency relation for rules rl1 and r2 says if r1 will fire, r2 will not fire.
o If two rules are not able to fire in the same cycle due to a conflict,
there is an urgency relation saying which one gets priority.

Example schedule:
@ Order of Execution: r1, r2, r3, r4d

@ Urgency Relations: (r1, {r2, r3}), (r2, r4)
o If r1 fires, r2 and r3 will not fire
o If r2 fires, r4 will not fire

Andy Wright Super Advanced BSV* October 24, 2014 7/25

Bluespec Schedules

What is a schedule? What information does it contain?
If you look into compiled BSV designs using Bluetcl, you can see the
schedule expressed as the following information:

@ Order of execution of all rules and methods.

@ Urgency relation for rules and methods with conflicts.

o An urgency relation for rules rl1 and r2 says if r1 will fire, r2 will not fire.
o If two rules are not able to fire in the same cycle due to a conflict,
there is an urgency relation saying which one gets priority.

Example schedule:
@ Order of Execution: r1, r2, r3, r4d

@ Urgency Relations: (r1, {r2, r3}), (r2, r4)
o If r1 fires, r2 and r3 will not fire
o If r2 fires, r4 will not fire

This schedule can be obtained for compiled modules using Bluetcl scripts.

Andy Wright Super Advanced BSV* October 24, 2014 7/25

-
Scheduling Annotations

These annotations can be added above rules to add to the schedule, or to
assert things about the schedule.
@ (* execution_order = "..." %)
e Forces an execution order between rules.

@ (* descending_urgency = "..." *)
e Gives user control of direction of urgency relations if needed.
@ (x preempts = "..." %)

e Include an urgency relation to make a rule appear to preempt another.
@ (* no_implicit_conditions *)

o Asserts that there are no implicit conditions (guards).

o Creates a compiler error if the assertion is invalid.

@ (* fire_when_enabled x*)

o Asserts that WILL_FIRE == CAN_FIRE.
o Creates a compiler error if the assertion is invalid.

Andy Wright Super Advanced BSV* October 24, 2014 8/25

Super Advanced BSV Tuples!

Andy Wright Super Advanced BSV* October 24, 2014 9/25

|
TupleN Type constructors

BSV has built in tuple types:
o Tuple2#(tl, t2)
o Tuple3#(tl, t2, t3)
o Tupled#(tl, t2, t3, t4)
o Tupleb#(tl, t2, t3, t4, tb)
o Tuple6#(tl, t2, t3, t4, t5, t6)

@ and so on...

Andy Wright Super Advanced BSV* October 24, 2014 10 / 25

|
TupleN Type constructors

BSV has built in tuple types:
o Tuple2#(tl, t2)
o Tuple3#(tl, t2, t3)
Tupled#(tl, t2, t3, t4)
Tupleb#(tl, t2, t3, t4, tb)
Tuple6#(tl, t2, t3, t4, t5, t6)
and so on... until you get to 8
Tuple8#(tl, t2, t3, t4, t5, t6, t7, t8)

Andy Wright Super Advanced BSV* October 24, 2014 10 / 25

|
TupleN Type constructors

BSV has built in tuple types:
o Tuple2#(tl, t2)
o Tuple3#(tl, t2, t3)
Tupled#(tl, t2, t3, t4)
Tupleb#(tl, t2, t3, t4, tb)
Tuple6#(tl, t2, t3, t4, t5, t6)
and so on... until you get to 8
Tuple8#(tl, t2, t3, t4, t5, t6, t7, t8)

There are no 94 element tuples

Fun Fact

Tuple2 through Tuple7 existed before 2008. Tuple8 was added more
recently.

Andy Wright Super Advanced BSV* October 24, 2014 10 / 25

|
TupleN Value Constructors

BSV has built in functions to construct tuple values:
tuple2(vl, v2)

tuple3d(vi, v2, v3)

tupled(vi, v2, v3, v4)

tupleb(vl, v2, v3, v4, vb)

tuple6(vl, v2, v3, v4, v5, v6)
tuple7(vl, v2, v3, v4, vb, v6, v7)
tuple8(vl, v2, v3, v4, vb, v6, v7, v8)

Andy Wright Super Advanced BSV* October 24, 2014 11 /25

TupleN Accessor functions

BSV has built in functions to access values within a tuple:
tpl_1(x) — First element

tpl_2(x) — Second element

tpl_3(x) — and so on...

tpl_4(x)

tpl_5(x)

tpl_6(x)

tpl_7(x)

tpl_8(x)

Andy Wright Super Advanced BSV* October 24, 2014 12 /25

TupleN Pattern Matching

You can use tuples in pattern matching.

1 Tuple3#(Bit#(8) ,Bool ,Bit#(2)) my_tuple = tuple3(1,True,O0);

2 let {x, y, 2z} = my_tuple;

October 24, 2014 13 /25

Andy Wright Super Advanced BSV*

Tuple Quiz
1 typedef Bit#(8) Byte;

2 Tuple2#(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)7?

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

Tuple Quiz
1 typedef Bit#(8) Byte;

2 Tuple2#(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

|
Tuple Quiz

1 typedef Bit#(8) Byte;
2 Tuple2#(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3
What is tpl_2(x)?

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

|
Tuple Quiz

1 typedef Bit#(8) Byte;
2 Tuple2#(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3
What is tpl_2(x)? 4

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

|
Tuple Quiz

1 typedef Bit#(8) Byte;
2 Tuple2#(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3
What is tpl_2(x)? 4

3 typedef Tuple2#(Byte, Byte) DoubleByte;
4 typedef Tuple2#(DoubleByte, DoubleByte) Word;
5 Word y = tuple2(tuple2(1l, 2), tuple2(3, 4));

What is tpl_1(y)?

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

|
Tuple Quiz

1 typedef Bit#(8) Byte;
2 Tuple2#(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3
What is tpl_2(x)? 4

3 typedef Tuple2#(Byte, Byte) DoubleByte;
4 typedef Tuple2#(DoubleByte, DoubleByte) Word;
5 Word y = tuple2(tuple2(1l, 2), tuple2(3, 4));

What is tpl_1(y)? (1, 2)

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

|
Tuple Quiz

1 typedef Bit#(8) Byte;
2 Tuple2#(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3
What is tpl_2(x)? 4

3 typedef Tuple2#(Byte, Byte) DoubleByte;
4 typedef Tuple2#(DoubleByte, DoubleByte) Word;
5 Word y = tuple2(tuple2(1l, 2), tuple2(3, 4));

What is tpl_1(y)? (1, 2)
What is tpl_1(tpl_1(y))?

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

|
Tuple Quiz

1 typedef Bit#(8) Byte;
2 Tuple2#(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3
What is tpl_2(x)? 4

3 typedef Tuple2#(Byte, Byte) DoubleByte;
4 typedef Tuple2#(DoubleByte, DoubleByte) Word;
5 Word y = tuple2(tuple2(1l, 2), tuple2(3, 4));

What is tpl_1(y)? (1, 2)
What is tpl_1(tpl_1(y))? 1

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

|
Tuple Quiz

1 typedef Bit#(8) Byte;
2 Tuple2#(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3
What is tpl_2(x)? 4
3 typedef Tuple2#(Byte, Byte) DoubleByte;

4 typedef Tuple2#(DoubleByte, DoubleByte) Word;
5 Word y = tuple2(tuple2(1l, 2), tuple2(3, 4));

What is tpl_1(y)? (1, 2)
What is tpl_1(tpl_1(y))? 1
What is tpl_2(y)?

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

|
Tuple Quiz

1 typedef Bit#(8) Byte;
2 Tuple2#(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3
What is tpl_2(x)? 4
3 typedef Tuple2#(Byte, Byte) DoubleByte;

4 typedef Tuple2#(DoubleByte, DoubleByte) Word;
5 Word y = tuple2(tuple2(1l, 2), tuple2(3, 4));

What is tpl_1(y)? (1, 2)
What is tpl_1(tpl_1(y))? 1
What is tpl_2(y)? 3

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

|
Tuple Quiz

1 typedef Bit#(8) Byte;
2 Tuple2#(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3
What is tpl_2(x)? 4
3 typedef Tuple2#(Byte, Byte) DoubleByte;

4 typedef Tuple2#(DoubleByte, DoubleByte) Word;
5 Word y = tuple2(tuple2(1l, 2), tuple2(3, 4));

What is tpl_1(y)? (1, 2)
What is tpl_1(tpl_1(y))? 1
What is tpl_2(y)? 3

Why? J

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

|
Tuple Quiz

1 typedef Bit#(8) Byte;
2 Tuple2#(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3
What is tpl_2(x)? 4
3 typedef Tuple2#(Byte, Byte) DoubleByte;

4 typedef Tuple2#(DoubleByte, DoubleByte) Word;
5 Word y = tuple2(tuple2(1l, 2), tuple2(3, 4));

What is tpl_1(y)? (1, 2)
What is tpl_1(tpl_1(y))? 1
What is tpl_2(y)? 3

Why?
Word is actually Tuple3#(Tuple2#(Byte, Byte), Byte, Byte) J

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

-
Weird Type Definitions

typedef Tuple2#(tl,Tuple2#(t2,t3)) Tuple3#(t1l,t2,t3)
typedef Tuple2#(tl,Tuple2#(t2,Tuple2#(t3,t4)))
Tuple4#(tl,t2,t3,t4)

typedef Tuple2#(tl,Tuple2#(t2,Tuple2#(t3,Tuple2#(t4,

Tuple2#(t5,Tuple3#(t6,Tuple2#(t7,t8)))))))
Tuple8#(t1,t2,t3,t4,t5,t6,t7,t8)

This may not be exactly how they are implemented in BSV, but this is
how they behave.

Andy Wright Super Advanced BSV* October 24, 2014 15 / 25

-
Weird Pattern Matching

Pattern matching can get weird:

Tuple3#(Bit#(8) ,Bool ,Bit#(2)) my_tuple = tuple3(1,True,0);

let {x, y} = my_tuple;

// == 1

// y == tuple2(True, 0)
|

// tpl_1(tuple2(x,y)) e
=7y

// tpl_2(tuple2(x,y))

[I B N N

Andy Wright Super Advanced BSV* October 24, 2014 16 / 25

-
Weird Pattern Matching

Pattern matching can get weird:

Tuple3#(Bit#(8) ,Bool ,Bit#(2)) my_tuple = tuple3(1,True,0);

let {x, y} = my_tuple;

// x ==

// y == tuple2(True, 0)
|

// tpl_1(tuple2(x,y)) e
=7y

// tpl_2(tuple2(x,y))

[I B N N

There are some benefits to this though...

Andy Wright Super Advanced BSV* October 24, 2014 16 / 25

TupleN Polymorphism

Using a Typeclass

Lets say you want an increment function to add one to each entry in a
Tuple.

1 typeclass CanIncrement#(type t);
2 function t increment (t x);
3 endtypeclass

You could create an instance for each size of tuple, but that would take a
lot of work.

Andy Wright Super Advanced BSV* October 24, 2014 17 / 25

TupleN Polymorphism

Using a Typeclass

Lets say you want an increment function to add one to each entry in a
Tuple.

1 typeclass CanIncrement#(type t);
2 function t increment (t x);
3 endtypeclass

You could create an instance for each size of tuple, but that would take a
lot of work.

@ Instead, you will have instances of this typeclass for Tuple2#(t1,t2)
and for t.

Andy Wright Super Advanced BSV* October 24, 2014 17 / 25

-
TupleN Polymorphism

Instances

Here is your instance of Canlncrement for tuples:

1 instance CanlIncrement#(Tuple2#(tl,t2))

2 provisos (Arith#(t1), CanIncrement#(t2));

3 function Tuple2#(t1l,t2) increment (Tuple2#(tl,t2) t);
4 let {x, y} = t;

5 return tuple2(x+1, increment(y));

6 endfunction
7 endinstance

Andy Wright Super Advanced BSV* October 24, 2014 18 / 25

N

N o o &> W

aoA W N

TupleN Polymorphism

Instances

Here is your instance of Canlncrement for tuples:

instance CanIncrement#(Tuple2#(tl1,t2))
provisos (Arith#(t1), CanIncrement#(t2));
function Tuple2#(t1l,t2) increment (Tuple2#(tl,t2) t);
let {x, y} = t;
return tuple2(x+1, increment(y));
endfunction
endinstance

And here is your instance of Canlncrement for non-tuples:

instance CanIncrement#(t) provisos (Arith#(t));
function t increment (t x);
return x + 1;
endfunction
endinstance

Andy Wright Super Advanced BSV* October 24, 2014

18 /25

-

N o g A~ W N

A W N e

TupleN Polymorphism

Instances

Here is your instance of Canlncrement for tuples:

instance CanIncrement#(Tuple2#(tl1,t2))
provisos (Arith#(t1), CanIncrement#(t2));
function Tuple2#(t1l,t2) increment (Tuple2#(tl,t2) t);
let {x, y} = t;
return tuple2(x+1, increment(y));
endfunction
endinstance

And here is your instance of Canlncrement for non-tuples:

instance CanIncrement#(t) provisos (Arith#(t));
function t increment (t x);
return x + 1;
endfunction
endinstance

With these, you can increment all types of tuples!

Andy Wright Super Advanced BSV* October 24, 2014

18 /25

Super Advanced BSV Functions!

Andy Wright Super Advanced BSV* October 24, 2014 19 / 25

Curried Functions

Assume a function f(x,y) where the type of f is

f :: (Integer, Integer) -> Integer

Andy Wright Super Advanced BSV* October 24, 2014 20 / 25

Curried Functions

Assume a function f(x,y) where the type of f is

f :: (Integer, Integer) -> Integer

The curried form of this function is fc where the type of fc is

fc :: Integer -> (Integer -> Integer)

Andy Wright Super Advanced BSV* October 24, 2014 20 / 25

Curried Functions

Assume a function f(x,y) where the type of f is

f :: (Integer, Integer) -> Integer

The curried form of this function is fc where the type of fc is

fc :: Integer -> (Integer -> Integer)

fc(x) produces a function fcx where the type is

fcx :: Integer -> Integer

Andy Wright Super Advanced BSV* October 24, 2014 20 / 25

Curried Functions

Assume a function f(x,y) where the type of f is

f :: (Integer, Integer) -> Integer

The curried form of this function is fc where the type of fc is

fc :: Integer -> (Integer -> Integer)

fc(x) produces a function fcx where the type is

fcx :: Integer -> Integer

Using the curried function fc(x)(y) is the same as f(x,y).

Andy Wright Super Advanced BSV* October 24, 2014 20 / 25

N o g A~ W N R

Curried Functions in BSV

All functions in BSV are curried.

function Integer add(Integer x, Integer y);
return x + y;

endfunction

let addl = add(1);

add1(5) -> 6

add(1,5) -> 6

add (1) (8) -> 6

Andy Wright Super Advanced BSV* October 24, 2014

21 /25

Defining a Function from its Lookup Table

1 function Bit#(1) generic_op(Bit#(4) table, Bit#(1) a, Bit

#(1) b);
2 let index = {a, b};
3 return table[index];

4 endfunction

let and_f = generic_op(4°b1000);
let or_f = generic_op(4°b1110);
let xor_f = generic_op(4°b0110);

® ~N o

and_f, or_f, and xor_f are all functions that take in two Bit#(1) inputs

and output a Bit#(1).

Andy Wright Super Advanced BSV* October 24, 2014 22 /25

Defining a Function from its Lookup Table

1 function Bit#(1) generic_op(Bit#(4) table, Bit#(1) a, Bit

#(1) b);
2 let index = {a, b};
3 return table[index];

4 endfunction

let and_f = generic_op(4°b1000);
let or_f = generic_op(4°b1110);
let xor_f = generic_op(4°b0110);

® ~N o

and_f, or_f, and xor_f are all functions that take in two Bit#(1) inputs
and output a Bit#(1).
This can be used as an implementation of unpack to convert Bit#(4) to

a function.

Andy Wright Super Advanced BSV* October 24, 2014 22 /25

N o g oA W N

Converting a Function to Bits

function Bit#(4) op_to_bits(function Bit#(1) f(Bit#(1) a,
Bit#(1) b));
return {f(1,1), £(1,0), £(0,1), £(0,0)};

endfunction

let and_f_bits = op_to_bits(and_f);
let or_f_bits = op_to_bits(or_f);
let xor_f_bits = op_to_bits(xor_f);

Andy Wright Super Advanced BSV* October 24, 2014 23 /25

Converting a Function to Bits

1 function Bit#(4) op_to_bits(function Bit#(1) f(Bit#(1) a,
Bit#(1) b));
return {f(1,1), £(1,0), £(0,1), £(0,0)};

endfunction

let and_f_bits = op_to_bits(and_f);
let or_f_bits = op_to_bits(or_f);
let xor_f_bits = op_to_bits(xor_f);

N o g oA W N

Now we can create an instance of a typeclass for a function.

Andy Wright Super Advanced BSV* October 24, 2014 23 /25

Custom Instance of Bits

1 typedef struct {

2 function Bit#(1) f(Bit#(1) a, Bit#(1) b);
3 } BinaryBitOp;

4

5 instance Bits#(BinaryBitOp, 4);

6 function Bit#(4) pack(BinaryBitOp op);
7 return op_top_bits(op.f);

8 endfunction

9 function BinaryBitOp unpack(Bit#(4) x);
10 BinaryBitOp op;

11 op.f = generic_op(x);

12 return op;

13 endfunction

14 endinstance

15

16 // This is now valid!

Reg#(BinaryBitOp) op <- mkReg(BinaryBitOp{f: or_f£f});

Lol
3

Andy Wright Super Advanced BSV* October 24, 2014 24 / 25

© © N o U W N R

Custom Instance of FShow

instance FShow#(BinaryBitOp);
function Fmt fshow(BinaryBitOp op);
return $format ("(table: %b)", pack(op));
endfunction
endinstance

Reg#(BinaryBitOp) op <- mkReg(BinaryBitOp{f: or_f});
// This is now valid!
$display("op = ", fshow(op));

Andy Wright Super Advanced BSV* October 24, 2014

25 / 25

