
Super Advanced BSV*

Andy Wright

October 24, 2014

*Edited for 6.175 Tutorial 6

Andy Wright Super Advanced BSV* October 24, 2014 1 / 25

Super Advanced BSV Scheduling!

Andy Wright Super Advanced BSV* October 24, 2014 2 / 25

Adding Conditions (Guards) to the Body of a Rule

Sometimes you would like to have a path in a rule be impossible to
reach.

Arvind teaches the when syntax in 6.175 to introduce an action in the
body of a rule that has a guard when teaching about scheduling.

a when e; has an action a with an implicit condition e

... but unfortunately, a when e; is not part of BSV
Instead, lets make our own!

Andy Wright Super Advanced BSV* October 24, 2014 3 / 25

Adding Conditions (Guards) to the Body of a Rule

Sometimes you would like to have a path in a rule be impossible to
reach.

Arvind teaches the when syntax in 6.175 to introduce an action in the
body of a rule that has a guard when teaching about scheduling.

a when e; has an action a with an implicit condition e

... but unfortunately, a when e; is not part of BSV
Instead, lets make our own!

Andy Wright Super Advanced BSV* October 24, 2014 3 / 25

Adding Conditions (Guards) to the Body of a Rule

Sometimes you would like to have a path in a rule be impossible to
reach.

Arvind teaches the when syntax in 6.175 to introduce an action in the
body of a rule that has a guard when teaching about scheduling.

a when e; has an action a with an implicit condition e

... but unfortunately, a when e; is not part of BSV
Instead, lets make our own!

Andy Wright Super Advanced BSV* October 24, 2014 3 / 25

Adding Conditions (Guards) to the Body of a Rule

Sometimes you would like to have a path in a rule be impossible to
reach.

Arvind teaches the when syntax in 6.175 to introduce an action in the
body of a rule that has a guard when teaching about scheduling.

a when e; has an action a with an implicit condition e

... but unfortunately, a when e; is not part of BSV

Instead, lets make our own!

Andy Wright Super Advanced BSV* October 24, 2014 3 / 25

Adding Conditions (Guards) to the Body of a Rule

Sometimes you would like to have a path in a rule be impossible to
reach.

Arvind teaches the when syntax in 6.175 to introduce an action in the
body of a rule that has a guard when teaching about scheduling.

a when e; has an action a with an implicit condition e

... but unfortunately, a when e; is not part of BSV
Instead, lets make our own!

Andy Wright Super Advanced BSV* October 24, 2014 3 / 25

when Module Interface

The interface of a when module:

1 interface When;

2 method Action when(Action a, Bool e);

3 endinterface

Values of type Action are statements like “reg <= 0”.

Andy Wright Super Advanced BSV* October 24, 2014 4 / 25

when Implementation

The implementation of a when module:

1 module mkWhen(When);

2 FIFO#(void) blockingFifo <- mkFIFO;

3

4 method Action when(Action a, Bool e);

5 if(!e) blockingFifo.deq();

6 a;

7 endmethod

8 endmodule

The problem with this is you need one when module per when statement.
Also, this may synthesize an unnecessary FIFO.

Andy Wright Super Advanced BSV* October 24, 2014 5 / 25

when Implementation

The implementation of a when module:

1 module mkWhen(When);

2 FIFO#(void) blockingFifo <- mkFIFO;

3

4 method Action when(Action a, Bool e);

5 if(!e) blockingFifo.deq();

6 a;

7 endmethod

8 endmodule

The problem with this is you need one when module per when statement.

Also, this may synthesize an unnecessary FIFO.

Andy Wright Super Advanced BSV* October 24, 2014 5 / 25

when Implementation

The implementation of a when module:

1 module mkWhen(When);

2 FIFO#(void) blockingFifo <- mkFIFO;

3

4 method Action when(Action a, Bool e);

5 if(!e) blockingFifo.deq();

6 a;

7 endmethod

8 endmodule

The problem with this is you need one when module per when statement.
Also, this may synthesize an unnecessary FIFO.

Andy Wright Super Advanced BSV* October 24, 2014 5 / 25

Alternate when Implementation

Luckily, BSV has an undocumented implementation of when.

1 function Action _when_(Bool e, Action a);

This function causes a compilation error if the condition e comes from an
ActionValue method of a synthesized module.

Andy Wright Super Advanced BSV* October 24, 2014 6 / 25

Alternate when Implementation

Luckily, BSV has an undocumented implementation of when.

1 function Action _when_(Bool e, Action a);

This function causes a compilation error if the condition e comes from an
ActionValue method of a synthesized module.

Andy Wright Super Advanced BSV* October 24, 2014 6 / 25

Bluespec Schedules

What is a schedule?

What information does it contain?
If you look into compiled BSV designs using Bluetcl, you can see the
schedule expressed as the following information:

Order of execution of all rules and methods.

Urgency relation for rules and methods with conflicts.

An urgency relation for rules r1 and r2 says if r1 will fire, r2 will not fire.
If two rules are not able to fire in the same cycle due to a conflict,
there is an urgency relation saying which one gets priority.

Example schedule:

Order of Execution: r1, r2, r3, r4

Urgency Relations: (r1, {r2, r3}), (r2, r4)

If r1 fires, r2 and r3 will not fire
If r2 fires, r4 will not fire

This schedule can be obtained for compiled modules using Bluetcl scripts.

Andy Wright Super Advanced BSV* October 24, 2014 7 / 25

Bluespec Schedules

What is a schedule? What information does it contain?

If you look into compiled BSV designs using Bluetcl, you can see the
schedule expressed as the following information:

Order of execution of all rules and methods.

Urgency relation for rules and methods with conflicts.

An urgency relation for rules r1 and r2 says if r1 will fire, r2 will not fire.
If two rules are not able to fire in the same cycle due to a conflict,
there is an urgency relation saying which one gets priority.

Example schedule:

Order of Execution: r1, r2, r3, r4

Urgency Relations: (r1, {r2, r3}), (r2, r4)

If r1 fires, r2 and r3 will not fire
If r2 fires, r4 will not fire

This schedule can be obtained for compiled modules using Bluetcl scripts.

Andy Wright Super Advanced BSV* October 24, 2014 7 / 25

Bluespec Schedules

What is a schedule? What information does it contain?
If you look into compiled BSV designs using Bluetcl, you can see the
schedule expressed as the following information:

Order of execution of all rules and methods.

Urgency relation for rules and methods with conflicts.

An urgency relation for rules r1 and r2 says if r1 will fire, r2 will not fire.
If two rules are not able to fire in the same cycle due to a conflict,
there is an urgency relation saying which one gets priority.

Example schedule:

Order of Execution: r1, r2, r3, r4

Urgency Relations: (r1, {r2, r3}), (r2, r4)

If r1 fires, r2 and r3 will not fire
If r2 fires, r4 will not fire

This schedule can be obtained for compiled modules using Bluetcl scripts.

Andy Wright Super Advanced BSV* October 24, 2014 7 / 25

Bluespec Schedules

What is a schedule? What information does it contain?
If you look into compiled BSV designs using Bluetcl, you can see the
schedule expressed as the following information:

Order of execution of all rules and methods.

Urgency relation for rules and methods with conflicts.

An urgency relation for rules r1 and r2 says if r1 will fire, r2 will not fire.
If two rules are not able to fire in the same cycle due to a conflict,
there is an urgency relation saying which one gets priority.

Example schedule:

Order of Execution: r1, r2, r3, r4

Urgency Relations: (r1, {r2, r3}), (r2, r4)

If r1 fires, r2 and r3 will not fire
If r2 fires, r4 will not fire

This schedule can be obtained for compiled modules using Bluetcl scripts.

Andy Wright Super Advanced BSV* October 24, 2014 7 / 25

Bluespec Schedules

What is a schedule? What information does it contain?
If you look into compiled BSV designs using Bluetcl, you can see the
schedule expressed as the following information:

Order of execution of all rules and methods.

Urgency relation for rules and methods with conflicts.

An urgency relation for rules r1 and r2 says if r1 will fire, r2 will not fire.
If two rules are not able to fire in the same cycle due to a conflict,
there is an urgency relation saying which one gets priority.

Example schedule:

Order of Execution: r1, r2, r3, r4

Urgency Relations: (r1, {r2, r3}), (r2, r4)

If r1 fires, r2 and r3 will not fire
If r2 fires, r4 will not fire

This schedule can be obtained for compiled modules using Bluetcl scripts.

Andy Wright Super Advanced BSV* October 24, 2014 7 / 25

Bluespec Schedules

What is a schedule? What information does it contain?
If you look into compiled BSV designs using Bluetcl, you can see the
schedule expressed as the following information:

Order of execution of all rules and methods.

Urgency relation for rules and methods with conflicts.

An urgency relation for rules r1 and r2 says if r1 will fire, r2 will not fire.
If two rules are not able to fire in the same cycle due to a conflict,
there is an urgency relation saying which one gets priority.

Example schedule:

Order of Execution: r1, r2, r3, r4

Urgency Relations: (r1, {r2, r3}), (r2, r4)

If r1 fires, r2 and r3 will not fire
If r2 fires, r4 will not fire

This schedule can be obtained for compiled modules using Bluetcl scripts.

Andy Wright Super Advanced BSV* October 24, 2014 7 / 25

Bluespec Schedules

What is a schedule? What information does it contain?
If you look into compiled BSV designs using Bluetcl, you can see the
schedule expressed as the following information:

Order of execution of all rules and methods.

Urgency relation for rules and methods with conflicts.

An urgency relation for rules r1 and r2 says if r1 will fire, r2 will not fire.
If two rules are not able to fire in the same cycle due to a conflict,
there is an urgency relation saying which one gets priority.

Example schedule:

Order of Execution: r1, r2, r3, r4

Urgency Relations: (r1, {r2, r3}), (r2, r4)

If r1 fires, r2 and r3 will not fire
If r2 fires, r4 will not fire

This schedule can be obtained for compiled modules using Bluetcl scripts.

Andy Wright Super Advanced BSV* October 24, 2014 7 / 25

Scheduling Annotations

These annotations can be added above rules to add to the schedule, or to
assert things about the schedule.

(* execution_order = "..." *)

Forces an execution order between rules.

(* descending_urgency = "..." *)

Gives user control of direction of urgency relations if needed.

(* preempts = "..." *)

Include an urgency relation to make a rule appear to preempt another.

(* no_implicit_conditions *)

Asserts that there are no implicit conditions (guards).
Creates a compiler error if the assertion is invalid.

(* fire_when_enabled *)

Asserts that WILL_FIRE == CAN_FIRE.
Creates a compiler error if the assertion is invalid.

Andy Wright Super Advanced BSV* October 24, 2014 8 / 25

Super Advanced BSV Tuples!

Andy Wright Super Advanced BSV* October 24, 2014 9 / 25

TupleN Type constructors

BSV has built in tuple types:

Tuple2#(t1, t2)

Tuple3#(t1, t2, t3)

Tuple4#(t1, t2, t3, t4)

Tuple5#(t1, t2, t3, t4, t5)

Tuple6#(t1, t2, t3, t4, t5, t6)

and so on...

until you get to 8

Tuple8#(t1, t2, t3, t4, t5, t6, t7, t8)

There are no 9+ element tuples

Fun Fact

Tuple2 through Tuple7 existed before 2008. Tuple8 was added more
recently.

Andy Wright Super Advanced BSV* October 24, 2014 10 / 25

TupleN Type constructors

BSV has built in tuple types:

Tuple2#(t1, t2)

Tuple3#(t1, t2, t3)

Tuple4#(t1, t2, t3, t4)

Tuple5#(t1, t2, t3, t4, t5)

Tuple6#(t1, t2, t3, t4, t5, t6)

and so on... until you get to 8

Tuple8#(t1, t2, t3, t4, t5, t6, t7, t8)

There are no 9+ element tuples

Fun Fact

Tuple2 through Tuple7 existed before 2008. Tuple8 was added more
recently.

Andy Wright Super Advanced BSV* October 24, 2014 10 / 25

TupleN Type constructors

BSV has built in tuple types:

Tuple2#(t1, t2)

Tuple3#(t1, t2, t3)

Tuple4#(t1, t2, t3, t4)

Tuple5#(t1, t2, t3, t4, t5)

Tuple6#(t1, t2, t3, t4, t5, t6)

and so on... until you get to 8

Tuple8#(t1, t2, t3, t4, t5, t6, t7, t8)

There are no 9+ element tuples

Fun Fact

Tuple2 through Tuple7 existed before 2008. Tuple8 was added more
recently.

Andy Wright Super Advanced BSV* October 24, 2014 10 / 25

TupleN Value Constructors

BSV has built in functions to construct tuple values:

tuple2(v1, v2)

tuple3(v1, v2, v3)

tuple4(v1, v2, v3, v4)

tuple5(v1, v2, v3, v4, v5)

tuple6(v1, v2, v3, v4, v5, v6)

tuple7(v1, v2, v3, v4, v5, v6, v7)

tuple8(v1, v2, v3, v4, v5, v6, v7, v8)

Andy Wright Super Advanced BSV* October 24, 2014 11 / 25

TupleN Accessor functions

BSV has built in functions to access values within a tuple:

tpl_1(x) – First element

tpl_2(x) – Second element

tpl_3(x) – and so on...

tpl_4(x)

tpl_5(x)

tpl_6(x)

tpl_7(x)

tpl_8(x)

Andy Wright Super Advanced BSV* October 24, 2014 12 / 25

TupleN Pattern Matching

You can use tuples in pattern matching.

1 Tuple3 #(Bit #(8),Bool ,Bit #(2)) my_tuple = tuple3(1,True ,0);

2 let {x, y, z} = my_tuple;

Andy Wright Super Advanced BSV* October 24, 2014 13 / 25

Tuple Quiz

1 typedef Bit #(8) Byte;

2 Tuple2 #(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)?

3
What is tpl_2(x)? 4

3 typedef Tuple2 #(Byte , Byte) DoubleByte;

4 typedef Tuple2 #(DoubleByte , DoubleByte) Word;

5 Word y = tuple2(tuple2(1, 2), tuple2(3, 4));

What is tpl_1(y)? (1, 2)
What is tpl_1(tpl_1(y))? 1
What is tpl_2(y)? 3

Why?

Word is actually Tuple3#(Tuple2#(Byte, Byte), Byte, Byte)

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

Tuple Quiz

1 typedef Bit #(8) Byte;

2 Tuple2 #(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3

What is tpl_2(x)? 4

3 typedef Tuple2 #(Byte , Byte) DoubleByte;

4 typedef Tuple2 #(DoubleByte , DoubleByte) Word;

5 Word y = tuple2(tuple2(1, 2), tuple2(3, 4));

What is tpl_1(y)? (1, 2)
What is tpl_1(tpl_1(y))? 1
What is tpl_2(y)? 3

Why?

Word is actually Tuple3#(Tuple2#(Byte, Byte), Byte, Byte)

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

Tuple Quiz

1 typedef Bit #(8) Byte;

2 Tuple2 #(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3
What is tpl_2(x)?

4

3 typedef Tuple2 #(Byte , Byte) DoubleByte;

4 typedef Tuple2 #(DoubleByte , DoubleByte) Word;

5 Word y = tuple2(tuple2(1, 2), tuple2(3, 4));

What is tpl_1(y)? (1, 2)
What is tpl_1(tpl_1(y))? 1
What is tpl_2(y)? 3

Why?

Word is actually Tuple3#(Tuple2#(Byte, Byte), Byte, Byte)

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

Tuple Quiz

1 typedef Bit #(8) Byte;

2 Tuple2 #(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3
What is tpl_2(x)? 4

3 typedef Tuple2 #(Byte , Byte) DoubleByte;

4 typedef Tuple2 #(DoubleByte , DoubleByte) Word;

5 Word y = tuple2(tuple2(1, 2), tuple2(3, 4));

What is tpl_1(y)? (1, 2)
What is tpl_1(tpl_1(y))? 1
What is tpl_2(y)? 3

Why?

Word is actually Tuple3#(Tuple2#(Byte, Byte), Byte, Byte)

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

Tuple Quiz

1 typedef Bit #(8) Byte;

2 Tuple2 #(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3
What is tpl_2(x)? 4

3 typedef Tuple2 #(Byte , Byte) DoubleByte;

4 typedef Tuple2 #(DoubleByte , DoubleByte) Word;

5 Word y = tuple2(tuple2(1, 2), tuple2(3, 4));

What is tpl_1(y)?

(1, 2)
What is tpl_1(tpl_1(y))? 1
What is tpl_2(y)? 3

Why?

Word is actually Tuple3#(Tuple2#(Byte, Byte), Byte, Byte)

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

Tuple Quiz

1 typedef Bit #(8) Byte;

2 Tuple2 #(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3
What is tpl_2(x)? 4

3 typedef Tuple2 #(Byte , Byte) DoubleByte;

4 typedef Tuple2 #(DoubleByte , DoubleByte) Word;

5 Word y = tuple2(tuple2(1, 2), tuple2(3, 4));

What is tpl_1(y)? (1, 2)

What is tpl_1(tpl_1(y))? 1
What is tpl_2(y)? 3

Why?

Word is actually Tuple3#(Tuple2#(Byte, Byte), Byte, Byte)

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

Tuple Quiz

1 typedef Bit #(8) Byte;

2 Tuple2 #(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3
What is tpl_2(x)? 4

3 typedef Tuple2 #(Byte , Byte) DoubleByte;

4 typedef Tuple2 #(DoubleByte , DoubleByte) Word;

5 Word y = tuple2(tuple2(1, 2), tuple2(3, 4));

What is tpl_1(y)? (1, 2)
What is tpl_1(tpl_1(y))?

1
What is tpl_2(y)? 3

Why?

Word is actually Tuple3#(Tuple2#(Byte, Byte), Byte, Byte)

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

Tuple Quiz

1 typedef Bit #(8) Byte;

2 Tuple2 #(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3
What is tpl_2(x)? 4

3 typedef Tuple2 #(Byte , Byte) DoubleByte;

4 typedef Tuple2 #(DoubleByte , DoubleByte) Word;

5 Word y = tuple2(tuple2(1, 2), tuple2(3, 4));

What is tpl_1(y)? (1, 2)
What is tpl_1(tpl_1(y))? 1

What is tpl_2(y)? 3

Why?

Word is actually Tuple3#(Tuple2#(Byte, Byte), Byte, Byte)

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

Tuple Quiz

1 typedef Bit #(8) Byte;

2 Tuple2 #(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3
What is tpl_2(x)? 4

3 typedef Tuple2 #(Byte , Byte) DoubleByte;

4 typedef Tuple2 #(DoubleByte , DoubleByte) Word;

5 Word y = tuple2(tuple2(1, 2), tuple2(3, 4));

What is tpl_1(y)? (1, 2)
What is tpl_1(tpl_1(y))? 1
What is tpl_2(y)?

3

Why?

Word is actually Tuple3#(Tuple2#(Byte, Byte), Byte, Byte)

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

Tuple Quiz

1 typedef Bit #(8) Byte;

2 Tuple2 #(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3
What is tpl_2(x)? 4

3 typedef Tuple2 #(Byte , Byte) DoubleByte;

4 typedef Tuple2 #(DoubleByte , DoubleByte) Word;

5 Word y = tuple2(tuple2(1, 2), tuple2(3, 4));

What is tpl_1(y)? (1, 2)
What is tpl_1(tpl_1(y))? 1
What is tpl_2(y)? 3

Why?

Word is actually Tuple3#(Tuple2#(Byte, Byte), Byte, Byte)

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

Tuple Quiz

1 typedef Bit #(8) Byte;

2 Tuple2 #(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3
What is tpl_2(x)? 4

3 typedef Tuple2 #(Byte , Byte) DoubleByte;

4 typedef Tuple2 #(DoubleByte , DoubleByte) Word;

5 Word y = tuple2(tuple2(1, 2), tuple2(3, 4));

What is tpl_1(y)? (1, 2)
What is tpl_1(tpl_1(y))? 1
What is tpl_2(y)? 3

Why?

Word is actually Tuple3#(Tuple2#(Byte, Byte), Byte, Byte)

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

Tuple Quiz

1 typedef Bit #(8) Byte;

2 Tuple2 #(Byte ,Byte) x = tuple2(3, 4)

What is tpl_1(x)? 3
What is tpl_2(x)? 4

3 typedef Tuple2 #(Byte , Byte) DoubleByte;

4 typedef Tuple2 #(DoubleByte , DoubleByte) Word;

5 Word y = tuple2(tuple2(1, 2), tuple2(3, 4));

What is tpl_1(y)? (1, 2)
What is tpl_1(tpl_1(y))? 1
What is tpl_2(y)? 3

Why?

Word is actually Tuple3#(Tuple2#(Byte, Byte), Byte, Byte)

Andy Wright Super Advanced BSV* October 24, 2014 14 / 25

Weird Type Definitions

1 typedef Tuple2 #(t1 ,Tuple2 #(t2 ,t3)) Tuple3 #(t1,t2,t3)

2 typedef Tuple2 #(t1 ,Tuple2 #(t2 ,Tuple2 #(t3,t4)))

3 Tuple4 #(t1,t2,t3,t4)

4 ...

5 typedef Tuple2 #(t1 ,Tuple2 #(t2 ,Tuple2 #(t3,Tuple2 #(t4,

6 Tuple2 #(t5,Tuple3 #(t6,Tuple2 #(t7,t8)))))))

7 Tuple8 #(t1,t2,t3,t4,t5,t6,t7,t8)

This may not be exactly how they are implemented in BSV, but this is
how they behave.

Andy Wright Super Advanced BSV* October 24, 2014 15 / 25

Weird Pattern Matching

Pattern matching can get weird:

1 Tuple3 #(Bit #(8),Bool ,Bit #(2)) my_tuple = tuple3(1,True ,0);

2 let {x, y} = my_tuple;

3 // x == 1

4 // y == tuple2(True , 0)

5 // tpl_1(tuple2(x,y)) == x

6 // tpl_2(tuple2(x,y)) != y

There are some benefits to this though...

Andy Wright Super Advanced BSV* October 24, 2014 16 / 25

Weird Pattern Matching

Pattern matching can get weird:

1 Tuple3 #(Bit #(8),Bool ,Bit #(2)) my_tuple = tuple3(1,True ,0);

2 let {x, y} = my_tuple;

3 // x == 1

4 // y == tuple2(True , 0)

5 // tpl_1(tuple2(x,y)) == x

6 // tpl_2(tuple2(x,y)) != y

There are some benefits to this though...

Andy Wright Super Advanced BSV* October 24, 2014 16 / 25

TupleN Polymorphism
Using a Typeclass

Lets say you want an increment function to add one to each entry in a
Tuple.

1 typeclass CanIncrement #(type t);

2 function t increment(t x);

3 endtypeclass

You could create an instance for each size of tuple, but that would take a
lot of work.

Instead, you will have instances of this typeclass for Tuple2#(t1,t2)
and for t.

Andy Wright Super Advanced BSV* October 24, 2014 17 / 25

TupleN Polymorphism
Using a Typeclass

Lets say you want an increment function to add one to each entry in a
Tuple.

1 typeclass CanIncrement #(type t);

2 function t increment(t x);

3 endtypeclass

You could create an instance for each size of tuple, but that would take a
lot of work.

Instead, you will have instances of this typeclass for Tuple2#(t1,t2)
and for t.

Andy Wright Super Advanced BSV* October 24, 2014 17 / 25

TupleN Polymorphism
Instances

Here is your instance of CanIncrement for tuples:

1 instance CanIncrement #(Tuple2 #(t1,t2))

2 provisos(Arith #(t1), CanIncrement #(t2));

3 function Tuple2 #(t1,t2) increment(Tuple2 #(t1,t2) t);

4 let {x, y} = t;

5 return tuple2(x+1, increment(y));

6 endfunction

7 endinstance

And here is your instance of CanIncrement for non-tuples:

1 instance CanIncrement #(t) provisos(Arith #(t));

2 function t increment(t x);

3 return x + 1;

4 endfunction

5 endinstance

With these, you can increment all types of tuples!

Andy Wright Super Advanced BSV* October 24, 2014 18 / 25

TupleN Polymorphism
Instances

Here is your instance of CanIncrement for tuples:

1 instance CanIncrement #(Tuple2 #(t1,t2))

2 provisos(Arith #(t1), CanIncrement #(t2));

3 function Tuple2 #(t1,t2) increment(Tuple2 #(t1,t2) t);

4 let {x, y} = t;

5 return tuple2(x+1, increment(y));

6 endfunction

7 endinstance

And here is your instance of CanIncrement for non-tuples:

1 instance CanIncrement #(t) provisos(Arith #(t));

2 function t increment(t x);

3 return x + 1;

4 endfunction

5 endinstance

With these, you can increment all types of tuples!

Andy Wright Super Advanced BSV* October 24, 2014 18 / 25

TupleN Polymorphism
Instances

Here is your instance of CanIncrement for tuples:

1 instance CanIncrement #(Tuple2 #(t1,t2))

2 provisos(Arith #(t1), CanIncrement #(t2));

3 function Tuple2 #(t1,t2) increment(Tuple2 #(t1,t2) t);

4 let {x, y} = t;

5 return tuple2(x+1, increment(y));

6 endfunction

7 endinstance

And here is your instance of CanIncrement for non-tuples:

1 instance CanIncrement #(t) provisos(Arith #(t));

2 function t increment(t x);

3 return x + 1;

4 endfunction

5 endinstance

With these, you can increment all types of tuples!
Andy Wright Super Advanced BSV* October 24, 2014 18 / 25

Super Advanced BSV Functions!

Andy Wright Super Advanced BSV* October 24, 2014 19 / 25

Curried Functions

Assume a function f(x,y) where the type of f is

f :: (Integer, Integer) -> Integer

The curried form of this function is fc where the type of fc is

fc :: Integer -> (Integer -> Integer)

fc(x) produces a function fcx where the type is

fcx :: Integer -> Integer

Using the curried function fc(x)(y) is the same as f(x,y).

Andy Wright Super Advanced BSV* October 24, 2014 20 / 25

Curried Functions

Assume a function f(x,y) where the type of f is

f :: (Integer, Integer) -> Integer

The curried form of this function is fc where the type of fc is

fc :: Integer -> (Integer -> Integer)

fc(x) produces a function fcx where the type is

fcx :: Integer -> Integer

Using the curried function fc(x)(y) is the same as f(x,y).

Andy Wright Super Advanced BSV* October 24, 2014 20 / 25

Curried Functions

Assume a function f(x,y) where the type of f is

f :: (Integer, Integer) -> Integer

The curried form of this function is fc where the type of fc is

fc :: Integer -> (Integer -> Integer)

fc(x) produces a function fcx where the type is

fcx :: Integer -> Integer

Using the curried function fc(x)(y) is the same as f(x,y).

Andy Wright Super Advanced BSV* October 24, 2014 20 / 25

Curried Functions

Assume a function f(x,y) where the type of f is

f :: (Integer, Integer) -> Integer

The curried form of this function is fc where the type of fc is

fc :: Integer -> (Integer -> Integer)

fc(x) produces a function fcx where the type is

fcx :: Integer -> Integer

Using the curried function fc(x)(y) is the same as f(x,y).

Andy Wright Super Advanced BSV* October 24, 2014 20 / 25

Curried Functions in BSV

All functions in BSV are curried.

1 function Integer add(Integer x, Integer y);

2 return x + y;

3 endfunction

4 let add1 = add (1);

5 add1 (5) -> 6

6 add(1,5) -> 6

7 add(1)(5) -> 6

Andy Wright Super Advanced BSV* October 24, 2014 21 / 25

Defining a Function from its Lookup Table

1 function Bit #(1) generic_op(Bit #(4) table , Bit #(1) a, Bit

#(1) b);

2 let index = {a, b};

3 return table[index];

4 endfunction

5

6 let and_f = generic_op (4’b1000);

7 let or_f = generic_op (4’b1110);

8 let xor_f = generic_op (4’b0110);

and_f, or_f, and xor_f are all functions that take in two Bit#(1) inputs
and output a Bit#(1).

This can be used as an implementation of unpack to convert Bit#(4) to
a function.

Andy Wright Super Advanced BSV* October 24, 2014 22 / 25

Defining a Function from its Lookup Table

1 function Bit #(1) generic_op(Bit #(4) table , Bit #(1) a, Bit

#(1) b);

2 let index = {a, b};

3 return table[index];

4 endfunction

5

6 let and_f = generic_op (4’b1000);

7 let or_f = generic_op (4’b1110);

8 let xor_f = generic_op (4’b0110);

and_f, or_f, and xor_f are all functions that take in two Bit#(1) inputs
and output a Bit#(1).
This can be used as an implementation of unpack to convert Bit#(4) to
a function.

Andy Wright Super Advanced BSV* October 24, 2014 22 / 25

Converting a Function to Bits

1 function Bit #(4) op_to_bits(function Bit #(1) f(Bit #(1) a,

Bit #(1) b));

2 return {f(1,1), f(1,0), f(0,1), f(0,0)};

3 endfunction

4

5 let and_f_bits = op_to_bits(and_f);

6 let or_f_bits = op_to_bits(or_f);

7 let xor_f_bits = op_to_bits(xor_f);

Now we can create an instance of a typeclass for a function.

Andy Wright Super Advanced BSV* October 24, 2014 23 / 25

Converting a Function to Bits

1 function Bit #(4) op_to_bits(function Bit #(1) f(Bit #(1) a,

Bit #(1) b));

2 return {f(1,1), f(1,0), f(0,1), f(0,0)};

3 endfunction

4

5 let and_f_bits = op_to_bits(and_f);

6 let or_f_bits = op_to_bits(or_f);

7 let xor_f_bits = op_to_bits(xor_f);

Now we can create an instance of a typeclass for a function.

Andy Wright Super Advanced BSV* October 24, 2014 23 / 25

Custom Instance of Bits

1 typedef struct {

2 function Bit #(1) f(Bit #(1) a, Bit #(1) b);

3 } BinaryBitOp;

4

5 instance Bits#(BinaryBitOp , 4);

6 function Bit #(4) pack(BinaryBitOp op);

7 return op_top_bits(op.f);

8 endfunction

9 function BinaryBitOp unpack(Bit #(4) x);

10 BinaryBitOp op;

11 op.f = generic_op(x);

12 return op;

13 endfunction

14 endinstance

15

16 // This is now valid!

17 Reg#(BinaryBitOp) op <- mkReg(BinaryBitOp{f: or_f});

Andy Wright Super Advanced BSV* October 24, 2014 24 / 25

Custom Instance of FShow

1 instance FShow #(BinaryBitOp);

2 function Fmt fshow(BinaryBitOp op);

3 return $format("(table: %b)", pack(op));

4 endfunction

5 endinstance

6

7 Reg#(BinaryBitOp) op <- mkReg(BinaryBitOp{f: or_f});

8 // This is now valid!

9 $display("op = ", fshow(op));

Andy Wright Super Advanced BSV* October 24, 2014 25 / 25

