N
““Constructive Computer Architecture

Tutorial 7:

SMIPS Epochs

Andy Wright
6.175 TA

N

October 7, 2013 http://csg.csail.mit.edu/6.s195 TO05-1

N-Stage pipeline:
Two predictors

L/

N

redirect PC

eRecirect

feEpoch
fdEpoch|*

eEpoch

dEpoch||deEpoch

dRecirect

redirect PC

! g

——»f2d|—» Decode —»d2e—» Execute—» -

Both Decode and Execute can redirect the PC; Execute
redirect should never be overruled

We will use separate epochs for each redirecting stage

s feEpoch and deEpoch are estimates of eEpoch at Fetch and
Decode, respectively. deEpoch is updated by the incoming eEpoch
s fdEpoch is Fetch’s estimates of dEpoch

= Initially set all epochs to 0

Execute stage logic does not change

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-2

Decode stage

N

feEpoch|*

Redirection logic

{pc, newPc, taken
mispredict, ...}

eRecirect

eEpoch

fdEpoch |+

{pc, newPc,

dRecirect

{pc, ppc, ieEp, idEp}
L PC|—» Fetch —»f2d|—»

dEpoch

deEpoch

idEp, ideEp...} E ! I ﬁ E

yes
Is idEp = dEp ?
yes/wo

Decode

—»d2e—» Execute[» -

Is ieEp = deEp ?

Current instruction Wrong path

is OK; check the instruction; drop it

ppc prediction via

BHT, Switch dEp if

misprediction
October 27, 2014

no

Current instruction is OK but
Execute has redirected the pc;
Set <dekp, dEp> to <ieEp, idEp>

check the ppc prediction via BHT,

Switch dEp if misprediction

http://csg.csail.mit.edu/6.175 L16-3

N-Stage pipeline: Two predictors

Redirection logic [F] we newre, taken
A 8 | mispredict, ...}
- |feEpoch|* = - eEpoch
fdEpoch [+ % {pC. newpC, dEpoch||deEpoch
% | ieEp,ideEp...}
(] (]

‘ {PC, pp¢, ieEp, idEp} {..., ieEp} T

PC|—» Fetch —»f2d|—» Decode ——»d2e—»|Execute[—» :--

® At execute:

s (correct pc?) if (ieEp!=eEp) then poison the instruction
» (correct ppc?) if (correct pc) & mispred then change eEp;

= For every non-poisoned control instruction send <pc, newPc, taken, mispred, .
Fetch for training and redirection

® At fetch:

= msg from execute: train btb & if (mispred) set pc, change feEp,
= msg from decode: if (no redirect message from Execute)

if (ideEp=feEp) then set pc, change fdEp to idEp
At decode: ... make sure that the msg
from Decode is not from
http://csg.csail.mit.edu/6.175 a wrong pa‘rh Instruction

..> to

October 27, 2014 L16-4

now some coding ...

4-stage pipeline (F, D&R, E&M, W)

Direction predictor training is incompletely
specified

You will explore the effect of
predictor training in the lab

N

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-5

4-Stage pipeline with Branch
Prediction

P
\Vhodule mkProc (Proc) ;

Reg# (Addr) pc <- mkRegU;

RFile rf <- mkBypassRFile;

IMemory iMem <- mkIMemory;

DMemory dMem <- mkDMemory;

Fifo# (1, Decode2Execute) d2e <- mkPipelineFifo;

Fifo# (1, Exec2Commit) e2c <- mkPipelineFifo;

Scoreboard# (2) sb <- mkPipelineScoreboard;

Reg# (Bool) feEp <- mkReg (False) ;

Reg# (Bool) fdEp <- mkReg (False) ;

Reg# (Bool) dEp <- mkReg (False);

Reg# (Bool) deEp <- mkReg (False);

Reg# (Bool) eEp <- mkReg (False);

Fifo# (ExecRedirect) redirect <- mkBypassFifo;
Fifo# (DecRedirect) decRedirect <- mkBypassFifo;
NextAddrPred#{(16)- btbh <— mkBTB;

DirPred# (1024) dirPred <- mkBHT;

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-6

4-Stage-BP pipeline
Fetch rule: multiple predictors

rule doFetch;
let inst = iMem.reqg(pc);
if (redirect.notEmpty)
begin redirect.deqg; btb.update(redirect.first); end

N

if (redirect.notEmpty && redirect.first.mispredict)
begin pc <= redirect.first.nextPc; feEp <= !feEp; end
else if (decRedirect.notEmpty) begin

if (decRedirect.first.ekEp == feEp) begin
fdEp <= !fdEp; pc <= decRedirect.first.nextPc; end

decRedirect.deqg; end;
else begin

let ppc = btb.predPc (pc);
f2d.eng(Fetch2Decoode{pc: pc, ppc: ppc, 1inst: inst,
ekEp: feEp, dEp: fdEp});
end
endrule Not enough information is being passed from
Fetch to Decode to train BHT - lab problem

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-7

4-Stage-BP pipeline
Decode&RegRead Action

\\function Action decAndRegFetch (DInst dInst, Addr pc, Addr ppc,
Bool eEp);
action
let stall = sb.searchl (dInst.srcl) || sb.search2 (dInst.src?2);
if(!stall)
begin
let rVall = rf.rdl (validRegValue (dInst.srcl));
let rvVal2 = rf.rd2(validRegValue (dInst.src2));
d2e.eng(DecodeZ2Execute{pc: pc, ppc: ppc,
dInst: dInst, epoch: eEkp,
rVall: rVall, rVal2: rVal2});
sb.insert (dInst.rDst) ;
end
endaction
endfunction

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-8

4-Stage-BP pipeline
Decode&RegRead rule

\\rule doDecode;
let x = f2d.first; let inst = x.inst; let pc = x.pc;
let ppc = x.ppc; let idEp = x.dEp; let ieEp = x.eEp;
let dInst = decode(inst);
let nextPc = dirPrec.predAddr (pc, dInst);
if (ieEp != deEp) begin // change Decode’s epochs and
// continue normal instruction execution

deEp <= 1eEp; let newdEp = 1dEp;

decAndRegRead (inst, pc, nextPc, ieEp);

if (ppc !'= nextPc) begin newdEp = !newdEp;

decRedirect.eng(DecRedirect{pc: pc,
nextPc: nextPc, eEp: ieEp}); end

dEp <= newdEp end

else if (idEp == dEp) begin
decAndRegRead (inst, pc, nextPc, ieEp);
if (ppc != nextPc) begin
dEp <= !dEp; decRedirect.eng(DecRedirect{pc: pc,

newPc: newPc, eEp: ieEp}); end
end // if idEp!=dEp then drop,ie, no action

f2d.deq; . .
craeaie | BHT update is missing- lab problem

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-9

4-Stage-BP pipeline
Execute rule: predictor training

-
\Jrule doExecute;
let x = d2e.first;
let dInst = x.dInst; let pc = X.pcC;
let ppc = X.ppcC; let epoch = x.epoch;
let rvall = x.rVall; let rVal2 = x.rValz;
i1f (epoch == eEpoch) begin
let eInst = exec(dInst, rVall, rVal2, pc, ppc):;
if (eInst.1Type == Ld) elInst.data <-
dMem.reqg (MemReg{op:Ld, addr:elInst.addr, data:7?});
else if (eInst.iType == St) let d <-

dMem.reqg (MemReg{op:St, addr:elInst.addr, data:elInst.data});
e2c.enqg(Exec2Commit{dst:eInst.dst, data:elInst.data});
if (eInst.mispredict) eEpoch <= !eEpoch
1f (eInst.iType == J || elInst.iType == Jr || elnst.iType == Br)
redirect.eng(Redirect{pc: pc, nextPc: elnst.addr,
taken: eInst.brTaken, mispredict: elInst.mispredict,
brType: elInst.iType}); end
else e2c.eng(Exec2Commit{dst:Invalid, data:?});
d2e.deqg;
endrule

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-10

4-Stage-BP pipeline
Commit rule

N

L/

rule doCommit;
let dst = eInst.first.dst;
let data = eInst.first.data;
if (isValid(dst))
rf.wr (tuple2(validValue (dst),
e2c.deqg;
sb.remove;

endrule

October 27, 2014 http://csg.csail.mit.edu/6.175

data) ;

L16-11

Uses of Jump Register (JR)

Switch statements (jump to address of
matching case)

BTB works well if the same case is used repeatedly

Dynamic function call (jump to run-time
function address)

BTB works well if the same function is usually called, (e.g., in
C++ programming, when objects have same type in virtual
function call)

Subroutine returns (jump to return address)
BTB works well if return is usually to the same place

N

However, often one function is called from many
distinct call sites!

How well does BTB or BHT work for each of these cases?

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-12

Subroutine Return Stack

A small structure to accelerate JR fa() { fb(); }»
for subroutine returns is typically _
much more accurate than BTBs fo() £ fc); ¥

fc() { fd(); *

Pop return address

N

Push call address

when function call \ K when subroutine
executed return decoded
pc of fd call k entries
pc of fc call (typically k=8-16)
pc of fb call

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-13

Multiple Predictors: BTB +
BHT + Ret Predictors

& :
mispred
Next Addr insts
Pred must be
tight filtered
loop Br Dir correct correct
Pred, RAS JR pred mispred /
[[
> P Reg ol deok Write
C eee | Decode|eee Read Execute Back
Instr type, Simple Complex
Need PC relative conditions, conditions
next PC targets register targets available
immediately available available

One of the PowerPCs has all the three predictors

#® Performance analysis is quite difficult — depends upon the
sizes of various tables and program behavior

Correctness: The system must work even if every prediction

wrong

October 27, 25%4 http://csg.csail.mit.edu/6.175 L16-14

N
¥

October 7, 2013 http://csg.csail.mit.edu/6.s195 TO5-15

Epoch Tutorial

N

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-16

Handling Multiple Epochs

N

#®If only one epoch changes, it acts
just like the case where there is
only one epoch.

#First we are going to look at the
execute epoch and the decode
epoch separately.

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-17

Correcting PC in Execute

4

Redirect

PC

IMem

October 7, 2013

—>

Register File

€

Scoreboard

2
Exec
[Mispredicted

20

[Write Back J

DMem

http://csg.csail.mit.edu/6.s195

T05-18

Correcting PC in Execute

4

Redirect

PC

IMem

October 7, 2013

—>

Register File

€

Scoreboard

3
Exec
[Poisoning

[N

[Write Back J

DMem

http://csg.csail.mit.edu/6.s195

T05-19

Correcting PC in Execute

4

Redirect

PC

IMem

October 7, 2013

—>

Register File

€

Scoreboard

4
Exec
[Poisoning

%)

[Write Back J

DMem

http://csg.csail.mit.edu/6.s195

T05-20

Correcting PC in Execute

4

Redirect

PC

IMem

October 7, 2013

—>

Register File

€

Scoreboard

5
Exec
[Poisoning

8

DMem

http://csg.csail.mit.edu/6.s195

(s)

T05-21

Correcting PC in Execute

4

Redirect

PC

IMem

October 7, 2013

—>

Register File

€

Scoreboard

@ [
Executing

2

DMem

http://csg.csail.mit.edu/6.s195

(s)

T05-22

Correcting PC in Execute

4

Redirect

PC

IMem

October 7, 2013

—>

Register File

€

Scoreboard

Halapi{(-
Executing

®)

DMem

http://csg.csail.mit.edu/6.s195

(s)

T05-23

Correcting PC in Execute

4

Redirect

PC

IMem

October 7, 2013

—>

Register File

€

Scoreboard

@ [
Executing

20

[Write Back J

DMem

http://csg.csail.mit.edu/6.s195

T05-24

Correcting PC in Decode

N

%

fEpoch

Redirect

5

Decodg

[Mispredicted

l

—>

Register File <

Scoreboard <

PC

IMem

dEpoch

October 7, 2013

http://csg.csail.mit.edu/6.s195

1
WB

DMem

T05-25

Correcting PC in Decode

Redirect

6

Decodg

[Killing

PC

IMem

October 7, 2013

l

http://csg.csail.mit.edu/6.s195

—>

Register File <

Scoreboard <

Lo

2
WB

DMem

T05-26

Correcting PC in Decode

Redirect

October 7, 2013

—>

Register File <

Scoreboard <

http://csg.csail.mit.edu/6.s195

3
WB

DMem

T05-27

Correcting PC in Decode

Redirect

October 7, 2013

—>

Register File <

Scoreboard <

http://csg.csail.mit.edu/6.s195

4
WB

DMem

T05-28

Correcting PC in Decode

Redirect

October 7, 2013

—>

Register File <

Scoreboard <

http://csg.csail.mit.edu/6.s195

5
WB

DMem

T05-29

Correcting PC in Decode

Redirect

October 7, 2013

—>

Register File <

Scoreboard <

http://csg.csail.mit.edu/6.s195

DMem

T05-30

Correcting PC in Decode

Redirect

October 7, 2013

—>

Register File <

Scoreboard <

http://csg.csail.mit.edu/6.s195

e

DMem

T05-31

Correcting PC in Both
/Decode and Execute

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-32

Correcting PC in Both
ﬂDecode and Execute

Two separate = Register File <
FIFOs
Redirect \—> Scoreboard <«

@

1N

[Write Back J

DMem

Fetch has local estimates of eEpoch and dEpoch

Decode has a local estimate of eEpoch <« How does this work?

October 7, 2013 http://csg.csail.mit.edu/6.s195

T05-33

Estimating eEpoch in
Decode

N

—> Register File <«

Redirect \—> Scoreboard <«

2
Exec WB
[Mispredicted [Write Back]

DMem

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-34

Estimating eEpoch in
Decode

N

—> Register File <«

Redirect \—> Scoreboard <«

6 5 3
Decode Exec WB
[Poisoning [Write Back]

[e

DMem

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-35

Estimating eEpoch in
Decode

N

—> Register File <«

Redirect \—> Scoreboard <«

1 6 4
Decode Exec WB
[Poisoning [Write Back]

[e

DMem

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-36

Estimating eEpoch in
Decode

N

—> Register File <«

Redirect \—> Scoreboard <«

2 1 5
Decods Exec WB
[Poisoning [Killing }

[e

DMem

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-37

Estimating eEpoch in
Decode

N

—> Register File <«

Redirect —> Scoreboard <

DMem

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-38

Estimating eEpoch in
Decode

N

—> Register File <«

Redirect \—> Scoreboard <«

4 1
Decods WB
Executing [Killing]

PC IMem DMem

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-39

Estimating eEpoch in
Decode

N

—> Register File <«

Redirect —> Scoreboard <

2
WB
Executing [Write Back J

DMem

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-40

Estimating eEpoch in
Decode

N

#Decode has no way to know what
the execute epoch really is.

m [ts best guess is whatever execute
epoch is coming in.

m It only keeps track of the old epoch
to know if there was a change.

» In that case, it needs to change its
decode epoch to match the incoming
instruction

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-41

Correcting PC from Multiple
Stages Concurrently

N

#What if decode and execute see
mispredictions in the same cycle?

m If execute sees a misprediction, then
the decode instruction is a wrong
path instruction. The redirect coming
from decode should be ignored by the
fetch stage.

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-42

Redirection in Execute then
Decode

N

#What if execute sees a
misprediction, then decode sees
one in the next cycle?

s The decode instruction will be a
wrong path instruction, but the
decode stage will not no it, so it will
send a redirect message. The fetch
stage should ignore this message.

October 7, 2013 http://csg.csail.mit.edu/6.s195

T05-43

Redirection in Execute
ﬂthen Decode

—> Register File <«

Redirect \—> Scoreboard <«

5 4 2
Decode Exec WB
{Mispredicted [Write Back]

pC | | Mem

Assume this instruction is a mispredicted jump
instruction. It will be in the decode stage next cycle

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-44

DMem

Redirection in Execute
ﬂthen Decode

—> Register File <«

Redirect \—> Scoreboard <«

5 3
Decodg Exec WB
[Mispredicted [Poisoning [Write Back]

l

DMem

PC | IMem

The decode stage’s estimate of eEpoch is old, so it isn’t able to
recognize it is decoding a wrong path instruction.

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-45

Redirection in Execute
ﬂthen Decode

—> Register File <«

Scoreboard <

Exec @ —(m
[Poisoning : [Write Back]

DMem

Decodg
[Mispredicted

dEpoch
PC IMem

Fetch will remove the redirection from the redirect FIFO without
changing the PC because the execute epochs don’t match.

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-46

Redirection in Execute
mthen Decode

—> Register File <«

Redirect \—> Scoreboard <«

1 6 4
Decode Exec WB
[Poisoning [Write Back]

PC | IMem

The Decode stage sees the change in the execute epoch and
corrects its decode epoch to match the incoming instruction

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-47

DMem

Redirection in Execute
mthen Decode

—> Register File <«

Redirect \—> Scoreboard <«

= @ {@]

Exec
DMem

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-48

Redirection in Execute
mthen Decode

—> Register File <«

Redirect \—> Scoreboard <«

DMem

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-49

Redirection in Execute
mthen Decode

—> Register File <«

Redirect \—> Scoreboard <«

DMem

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-50

Redirection in Execute
mthen Decode

—> Register File <«

Redirect \—> Scoreboard <«

2
WB
Executing [Write Back]

DMem

October 7, 2013 http://csg.csail.mit.edu/6.s195 TO05-51

Redirection in Decode
then Execute

N

#What if decode sees a
misprediction, then execute sees
one in the next cycle?

s The decode instruction will be a

wrong path instruction, but it won't
be known to be wrong path until later

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-52

Redirection in Decode
ﬂthen Execute

—> Register File <«

Redirect \—> Scoreboard <«

2
Decodg w —(WB :)
[Mispredicted Executing [Write Back]

DMem

PC IMem feEpoch |

Assume this instruction is a mispredicted branch
instruction. It will be in the execute stage next cycle

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-53

Redirection in Decode
then Execute

—> Register File <«

N

fdEpoch

Redirect \—> Scoreboard <«

5 3
Decodg WB
[Killing) [Mispredicted [Write Back J
PC|| IMem gacROCh

The PC was just “corrected” to a different wrong path
instruction

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-54

DMem

Redirection in Decode
then Execute

—> Register File <«

N

fdEpoch

Redirect \—> Scoreboard <«

4
Decodg Exec w —(WB :)
[Decoding [Poisoning [Write BackJ
PC| | IMem | gacpoch

The PC was just corrected to a correct path instruction

DMem

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-55

Redirection in Decode
then Execute

—> Register File <«

N

fdEpoch

Redirect \—> Scoreboard <«

1 5
Decodg Exec w —(WB :)
[Decoding [Stalling [Write Back J
PC| | IMem | gaEpoch

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-56

DMem

Redirection in Decode
then Execute

—> Register File <«

N

fdEpoch

Redirect \—> Scoreboard <«

1
Decodg Exec w —(WB :)
[Decoding | [Poisoning [Killing }
PC | IMem ﬁmﬂdEp"Ch

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-57

DMem

Redirection in Decode
then Execute

—> Register File <«

N

fdEpoch

Redirect \—> Scoreboard <«

2 1
Decodg WB
[Decoding) Executing [Stalling J
PC| | IMem | gaEpoch

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-58

DMem

Redirection in Decode
then Execute

—> Register File <«

N

fdEpoch

Redirect \—> Scoreboard <«

3 1
Decodg WB
[Decoding) Executing [Killing }
PC| | IMem | gaEpoch

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-59

DMem

Redirection in Decode
then Execute

—> Register File <«

N

fdEpoch

Redirect \—> Scoreboard <«

4 2
Decodg WB
[Decoding Executing [Write Back J
PC|| IMem gacPROCh

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-60

DMem

Global Epoch States

N

#What if there were no estimates at
epochs and everyone looked at the
same epoch state

= How would this work?

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-61

N

Global Epoch States

— Register File

Redirect —> Scoreboard

October 7, 2013

http://csg.csail.mit.edu/6.s195

DMem

T05-62

Global Epoch States

N

#What if execute sees a
misprediction, then decode sees
one in the next cycle?

s The decode instruction will be a

wrong path instruction, so it will not
redirect the PC

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-63

Global Epoch States

Y Assume this instruction
is @ mispredicted jump
instruction.

—>

Register File

Redirect \—>

o)
Decode

PC IMem

October 7, 2013

Scoreboard

/
m

Exec

[Mispredicted

J

/

7
/

1N

[Write Back]

DMem

http://csg.csail.mit.edu/6.s195

T05-64

N

Global Epoch States

—>

Register File

Redirect \—>

S

[Killing

PC

IMem

October 7, 2013

Scoreboard

[Poisoning

Exec

http://csg.csail.mit.edu/6.s195

DMem

T05-65

Global Epoch States

—> Register File <«

N

Redirect \—> Scoreboard <«

1 4
Decode Exec WB
[Poisoning [Write Back]
PC IMem DMem

e

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-66

Global Epoch States

g
4
—> Register File <«
Redirect \—> Scoreboard <«
p) 1 5
Decode Exec WB

[Stalling [Killing]

PC IMem DMem

e

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-67

N

Global Epoch States

—>

Register File

Redirect \—>

PC

IMem

October 7, 2013

Scoreboard

Executing

http://csg.csail.mit.edu/6.s195

DMem

T05-68

Global Epoch States

—> Register File <«

N

Redirect \—> Scoreboard <«

4 1
Decode WB
Executing [Stalling]

PC IMem DMem

e

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-69

Global Epoch States

—> Register File <«

N

Redirect \—> Scoreboard <«

o508

Executing [Write Back]

PC IMem DMem

e

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-70

Global Epoch States

N

#What if decode sees a
misprediction, then execute sees
one in the next cycle?

s The decode instruction will be a

wrong path instruction, but it won't
be known to be wrong path until later

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-71

Global Epoch States

vAssume this instruction is a
mispredicted branch —> Register File
instruction.
Redirect —> Scoreboard
N AN

Decodg
[Mispredicted

Executing

1N

[Write Back J

PC IMem

DMem

e

October 7, 2013 http://csg.csail.mit.edu/6.s195

T05-72

N

Global Epoch States

—>

Register File

Redirect \—>

Decodg

Killing

PC

IMem

October 7, 2013

dEpoch

Scoreboard

Lig

http://csg.csail.mit.edu/6.s195

[Mispredicted

/
/
/

7

DMem

T05-73

N

Redirect

Decodg

Killing

PC

IMem

October 7, 2013

dEpoch

Global Epoch States

—>

Register File

Scoreboard

.ﬁ | [Poisoning

Exec

http://csg.csail.mit.edu/6.s195

DMem

T05-74

N

Redirect

Decodg

Decoding

PC

IMem

October 7, 2013

dEpoch

http://csg.csail.mit.edu/6.s195

Global Epoch States

—>

Register File

Scoreboard

&

Exec

[Stalling

DMem

T05-75

October 7, 2013

http://csg.csail.mit.edu/6.s195

Global Epoch States

g
\J
—> Register File <«
Redirect \—> Scoreboard <«
1
Decodg Exec WB
Decoding [Stalling [Killing }
PC IMem DMem

T05-76

N

Redirect

Decodg
Decoding

PC

IMem

October 7, 2013

dEpoch

http://csg.csail.mit.edu/6.s195

Global Epoch States

—>

Register File

Scoreboard

Executing

we)

DMem

TO05-77

N

Redirect

Decodg

Decoding

PC

IMem

October 7, 2013

dEpoch

http://csg.csail.mit.edu/6.s195

Global Epoch States

—>

Register File

Scoreboard

Executing

we)

DMem

T05-78

N

Redirect

Decodg

Decoding

PC

IMem

October 7, 2013

dEpoch

http://csg.csail.mit.edu/6.s195

Global Epoch States

—>

Register File

Scoreboard

Executing

DMem

T05-79

Implementing Global
Epoch States

N

#How do you implement this?

s There are multiple ways to do this,
but the easiest way is to use EHRs

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-80

Implementing Global Epoch
States with EHRs

Each stage looks at a different 3/
port of each Epoch EHR.

Register File

Redirect \—> Scoreboard

PC

IMem

Executing

DMem

There’s still a problem! PC redirection and epoch update needs to
be atomic!

October 7, 2013

http://csg.csail.mit.edu/6.s195

T05-81

Implementing Global Epoch
States with EHRs

—> Register File <«
—> Scoreboard <
5
Decode WB
Executing [Write Back J

PC |[PC

. IMem . DM

[i] [] =

Make PC an EHR and have each pipeline stage redirect
the PC directly

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-82

New Logic for Global
Epoch EHRs

Fetch

s Sends PC to instruction memory, pass current epoch states
along with PC in fetch to decode FIFO

Decode
= Kill in place if instruction epochs don’t match global epochs

= If current instruction is valid, but PPC is incorrect, update
decode epoch and PC EHR

= Drop decode epoch from instruction structure sent to next
stage

Execute

m Poison if instruction execute epoch doesn’t match global
execute epoch

= If current instruction is valid, but PPC is incorrect, update
execute epoch and PC EHR

s Drop execute epoch from instruction structure passed to
next stage

N

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-83

Why is Fecth so Simple?

N

#®Fetch stage used to have to
prioritize between the two redirect
FIFOs and drop decode redirection
if the execute epochs don’t match

= Why isn’t this needed anymore?
* Try reasoning about this on your own

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-84

How Does EHR Port Ordering
Change Things?

N

Originally we had redirect FIFOs from Decode and
Eﬁe_c)ute to Instruction Fetch. What ordering is
this:

s Fetch - 2
m Decode -0or1l

s Execute - 0 or 1 (not the same as Decode)

#® Does the order between Decode and Execute
matter?

= Not much...

Having Fetch use ports after Decode and Execute
increase the length of combinational logic
= The order between Decode/Execute and Fetch

matters most! (both for length of combinational logic
and IPC)

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-85

Questions?

N

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-86

