
Constructive Computer Architecture

Tutorial 7:
SMIPS Epochs

Andy Wright
6.175 TA

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-1

N-Stage pipeline:
Two predictors

Both Decode and Execute can redirect the PC; Execute
redirect should never be overruled

We will use separate epochs for each redirecting stage
 feEpoch and deEpoch are estimates of eEpoch at Fetch and

Decode, respectively. deEpoch is updated by the incoming eEpoch

 fdEpoch is Fetch’s estimates of dEpoch

 Initially set all epochs to 0

Execute stage logic does not change

Execute d2e Decode f2d Fetch PC

miss
pred?

miss
pred?

redirect PC

redirect PC
deEpoch

eEpoch feEpoch e
R
e
c
ir
e
c
t

fdEpoch dEpoch

d
R
e
c
ir
e
c
t

...

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-2

Decode stage
Redirection logic

Execute d2e Decode f2d Fetch PC

miss
pred?

miss
pred?

deEpoch

eEpoch feEpoch e
R
e
c
ir
e
c
t

fdEpoch dEpoch

d
R
e
c
ir
e
c
t

...

{..., ieEp} {pc, ppc, ieEp, idEp}

{pc, newPc, taken
mispredict, ...}

{pc, newPc,
idEp, ideEp...}

Is ieEp = deEp ?

Is idEp = dEp ? Current instruction is OK but
Execute has redirected the pc;
Set <deEp, dEp> to <ieEp, idEp>
check the ppc prediction via BHT,
Switch dEp if misprediction

yes no

yes no

Current instruction
is OK; check the
ppc prediction via
BHT, Switch dEp if
misprediction

Wrong path
instruction; drop it

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-3

N-Stage pipeline: Two predictors
Redirection logic

Execute d2e Decode f2d Fetch PC

miss
pred?

miss
pred?

deEpoch

eEpoch feEpoch e
R
e
c
ir
e
c
t

fdEpoch dEpoch

d
R
e
c
ir
e
c
t

...

At execute:
 (correct pc?) if (ieEp!=eEp) then poison the instruction
 (correct ppc?) if (correct pc) & mispred then change eEp;
 For every non-poisoned control instruction send <pc, newPc, taken, mispred, ...> to

Fetch for training and redirection

At fetch:
 msg from execute: train btb & if (mispred) set pc, change feEp,
 msg from decode: if (no redirect message from Execute)
 if (ideEp=feEp) then set pc, change fdEp to idEp

At decode: …

{..., ieEp} {pc, ppc, ieEp, idEp}

{pc, newPc, taken
mispredict, ...}

{pc, newPc,
 ieEp,ideEp...}

make sure that the msg
from Decode is not from
a wrong path instruction October 27, 2014 http://csg.csail.mit.edu/6.175 L16-4

now some coding ...

4-stage pipeline (F, D&R, E&M, W)

Direction predictor training is incompletely
specified

You will explore the effect of
predictor training in the lab

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-5

4-Stage pipeline with Branch
Prediction
module mkProc(Proc);

 Reg#(Addr) pc <- mkRegU;

 RFile rf <- mkBypassRFile;

 IMemory iMem <- mkIMemory;

 DMemory dMem <- mkDMemory;

 Fifo#(1, Decode2Execute) d2e <- mkPipelineFifo;

 Fifo#(1, Exec2Commit) e2c <- mkPipelineFifo;

 Scoreboard#(2) sb <- mkPipelineScoreboard;

 Reg#(Bool) feEp <- mkReg(False);

 Reg#(Bool) fdEp <- mkReg(False);

 Reg#(Bool) dEp <- mkReg(False);

 Reg#(Bool) deEp <- mkReg(False);

 Reg#(Bool) eEp <- mkReg(False);

 Fifo#(ExecRedirect) redirect <- mkBypassFifo;

 Fifo#(DecRedirect) decRedirect <- mkBypassFifo;

 NextAddrPred#(16) btb <- mkBTB;

 DirPred#(1024) dirPred <- mkBHT;

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-6

4-Stage-BP pipeline
Fetch rule: multiple predictors
rule doFetch;

 let inst = iMem.req(pc);

 if(redirect.notEmpty)

 begin redirect.deq; btb.update(redirect.first); end

 if(redirect.notEmpty && redirect.first.mispredict)

 begin pc <= redirect.first.nextPc; feEp <= !feEp; end

 else if(decRedirect.notEmpty) begin

 if(decRedirect.first.eEp == feEp) begin

 fdEp <= !fdEp; pc <= decRedirect.first.nextPc; end

 decRedirect.deq; end;

 else begin

 let ppc = btb.predPc(pc);

 f2d.enq(Fetch2Decoode{pc: pc, ppc: ppc, inst: inst,

 eEp: feEp, dEp: fdEp});

 end

 endrule

Not enough information is being passed from
Fetch to Decode to train BHT – lab problem

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-7

4-Stage-BP pipeline
Decode&RegRead Action
function Action decAndRegFetch(DInst dInst, Addr pc, Addr ppc,

 Bool eEp);

action

 let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2);

 if(!stall)

 begin

 let rVal1 = rf.rd1(validRegValue(dInst.src1));

 let rVal2 = rf.rd2(validRegValue(dInst.src2));

 d2e.enq(Decode2Execute{pc: pc, ppc: ppc,

 dInst: dInst, epoch: eEp,

 rVal1: rVal1, rVal2: rVal2});

 sb.insert(dInst.rDst);

 end

endaction

endfunction

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-8

4-Stage-BP pipeline
Decode&RegRead rule
rule doDecode;

 let x = f2d.first; let inst = x.inst; let pc = x.pc;

 let ppc = x.ppc; let idEp = x.dEp; let ieEp = x.eEp;

 let dInst = decode(inst);

 let nextPc = dirPrec.predAddr(pc, dInst);

 if(ieEp != deEp) begin // change Decode’s epochs and

 // continue normal instruction execution

 deEp <= ieEp; let newdEp = idEp;

 decAndRegRead(inst, pc, nextPc, ieEp);

 if(ppc != nextPc) begin newdEp = !newdEp;

 decRedirect.enq(DecRedirect{pc: pc,

 nextPc: nextPc, eEp: ieEp}); end

 dEp <= newdEp end

 else if(idEp == dEp) begin

 decAndRegRead(inst, pc, nextPc, ieEp);

 if(ppc != nextPc) begin

 dEp <= !dEp; decRedirect.enq(DecRedirect{pc: pc,

 newPc: newPc, eEp: ieEp}); end

 end // if idEp!=dEp then drop,ie, no action

 f2d.deq;

endrule BHT update is missing– lab problem
October 27, 2014 http://csg.csail.mit.edu/6.175 L16-9

4-Stage-BP pipeline
Execute rule: predictor training
rule doExecute;

 let x = d2e.first;

 let dInst = x.dInst; let pc = x.pc;

 let ppc = x.ppc; let epoch = x.epoch;

 let rVal1 = x.rVal1; let rVal2 = x.rVal2;

 if(epoch == eEpoch) begin

 let eInst = exec(dInst, rVal1, rVal2, pc, ppc);

 if(eInst.iType == Ld) eInst.data <-

 dMem.req(MemReq{op:Ld, addr:eInst.addr, data:?});

 else if (eInst.iType == St) let d <-

 dMem.req(MemReq{op:St, addr:eInst.addr, data:eInst.data});

 e2c.enq(Exec2Commit{dst:eInst.dst, data:eInst.data});

 if(eInst.mispredict) eEpoch <= !eEpoch

 if(eInst.iType == J || eInst.iType == Jr || eInst.iType == Br)

 redirect.enq(Redirect{pc: pc, nextPc: eInst.addr,

 taken: eInst.brTaken, mispredict: eInst.mispredict,

 brType: eInst.iType}); end

 else e2c.enq(Exec2Commit{dst:Invalid, data:?});

 d2e.deq;

endrule

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-10

4-Stage-BP pipeline
Commit rule
 rule doCommit;

 let dst = eInst.first.dst;

 let data = eInst.first.data;

 if(isValid(dst))

 rf.wr(tuple2(validValue(dst), data);

 e2c.deq;

 sb.remove;

 endrule

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-11

Uses of Jump Register (JR)
Switch statements (jump to address of
matching case)

Dynamic function call (jump to run-time
function address)

Subroutine returns (jump to return address)

How well does BTB or BHT work for each of these cases?

BTB works well if the same case is used repeatedly

BTB works well if the same function is usually called, (e.g., in
C++ programming, when objects have same type in virtual
function call)

BTB works well if return is usually to the same place

However, often one function is called from many
distinct call sites!

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-12

Subroutine Return Stack
A small structure to accelerate JR
for subroutine returns is typically
much more accurate than BTBs

pc of fb call

pc of fc call

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

pc of fd call k entries
(typically k=8-16)

Pop return address
when subroutine
return decoded

Push call address
when function call
executed

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-13

Multiple Predictors: BTB +
BHT + Ret Predictors

One of the PowerPCs has all the three predictors
Performance analysis is quite difficult – depends upon the
sizes of various tables and program behavior
Correctness: The system must work even if every prediction
is wrong

Need
next PC

immediately

Instr type,
PC relative

targets
available

Simple
conditions,

register targets
available

Complex
conditions
available

Next Addr
Pred

tight
loop

P
C

Decode
Reg
Read

Execute
Write
Back

mispred
insts

must be
filtered

Br Dir
Pred, RAS

correct
JR pred

correct
mispred

October 27, 2014 http://csg.csail.mit.edu/6.175 L16-14

October 7, 2013 T05-15 http://csg.csail.mit.edu/6.s195

Epoch Tutorial

October 7, 2013 T05-16 http://csg.csail.mit.edu/6.s195

Handling Multiple Epochs

If only one epoch changes, it acts
just like the case where there is
only one epoch.

First we are going to look at the
execute epoch and the decode
epoch separately.

October 7, 2013 T05-17 http://csg.csail.mit.edu/6.s195

Correcting PC in Execute

October 7, 2013 T05-18 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

fEpoch

PC

Redirect

1 2 3 4 5 6

Mispredicted Write Back

Correcting PC in Execute

October 7, 2013 T05-19 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

fEpoch

PC

Redirect

2 3 4 5 6 1

Poisoning Write Back

Correcting PC in Execute

October 7, 2013 T05-20 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

fEpoch

PC

Redirect

3 4 5 6 1 2

Poisoning Write Back

Correcting PC in Execute

October 7, 2013 T05-21 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

fEpoch

PC

Redirect

4 5 6 1 2 3

Poisoning Killing

Correcting PC in Execute

October 7, 2013 T05-22 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

fEpoch

PC

Redirect

5 6 1 2 3 4

Executing Killing

Correcting PC in Execute

October 7, 2013 T05-23 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

fEpoch

PC

Redirect

6 1 2 3 4 5

Executing Killing

Correcting PC in Execute

October 7, 2013 T05-24 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

fEpoch

PC

Redirect

1 2 3 4 5 6

Executing Write Back

Correcting PC in Decode

October 7, 2013 T05-25 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem

fEpoch

PC

Redirect

dEpoch

1 2 3 4 5 6

Mispredicted Write Back

Correcting PC in Decode

October 7, 2013 T05-26 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem

fEpoch

PC

Redirect

dEpoch

2 3 4 5 6 1

Killing Write Back

Correcting PC in Decode

October 7, 2013 T05-27 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem

fEpoch

PC

Redirect

dEpoch

3 4 5 1 2

Decoding Write Back

Correcting PC in Decode

October 7, 2013 T05-28 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem

fEpoch

PC

Redirect

dEpoch

4 5 1 2 3

Decoding Write Back

Correcting PC in Decode

October 7, 2013 T05-29 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem

fEpoch

PC

Redirect

dEpoch

5 1 2 3 4

Decoding Write Back

Correcting PC in Decode

October 7, 2013 T05-30 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem

fEpoch

PC

Redirect

dEpoch

1 2 3 4 5

Decoding Stall

Correcting PC in Decode

October 7, 2013 T05-31 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem

fEpoch

PC

Redirect

dEpoch

2 3 4 5 6

Decoding Write Back

1

Correcting PC in Both
Decode and Execute

October 7, 2013 T05-32 http://csg.csail.mit.edu/6.s195

Correcting PC in Both
Decode and Execute

October 7, 2013 T05-33 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

1 2 3 4 5 6

Executing Write Back

dEpoch

Decoding

fdEpoch

deEpoch

Fetch has local estimates of eEpoch and dEpoch

Decode has a local estimate of eEpoch How does this work?

Two separate
FIFOs

Estimating eEpoch in
Decode

October 7, 2013 T05-34 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

1 2 3 4 5 6

Mispredicted Write Back Decoding

deEpoch

Estimating eEpoch in
Decode

October 7, 2013 T05-35 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

2 3 4 5 6 1

Poisoning Write Back

deEpoch

Decoding

Estimating eEpoch in
Decode

October 7, 2013 T05-36 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

3 4 5 1 2

Poisoning Write Back Decoding

deEpoch

6

Estimating eEpoch in
Decode

October 7, 2013 T05-37 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

4 5 1 2 3

Killing Decoding

deEpoch

6

Poisoning

Estimating eEpoch in
Decode

October 7, 2013 T05-38 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

5 1 2 3 4

Executing Killing Decoding

deEpoch

6

Estimating eEpoch in
Decode

October 7, 2013 T05-39 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

1 2 3 4 5

Executing Decoding

deEpoch

6

Killing

Estimating eEpoch in
Decode

October 7, 2013 T05-40 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

2 3 4 5 6

Executing Write Back Decoding

1

deEpoch

Estimating eEpoch in
Decode

Decode has no way to know what
the execute epoch really is.

 Its best guess is whatever execute
epoch is coming in.

 It only keeps track of the old epoch
to know if there was a change.

 In that case, it needs to change its
decode epoch to match the incoming
instruction

October 7, 2013 T05-41 http://csg.csail.mit.edu/6.s195

Correcting PC from Multiple
Stages Concurrently

What if decode and execute see
mispredictions in the same cycle?

 If execute sees a misprediction, then
the decode instruction is a wrong
path instruction. The redirect coming
from decode should be ignored by the
fetch stage.

October 7, 2013 T05-42 http://csg.csail.mit.edu/6.s195

Redirection in Execute then
Decode

What if execute sees a
misprediction, then decode sees
one in the next cycle?

 The decode instruction will be a
wrong path instruction, but the
decode stage will not no it, so it will
send a redirect message. The fetch
stage should ignore this message.

October 7, 2013 T05-43 http://csg.csail.mit.edu/6.s195

Redirection in Execute
then Decode

October 7, 2013 T05-44 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

1 2 3 4 5 6

Mispredicted Write Back

dEpoch

Decoding

fdEpoch

deEpoch

Assume this instruction is a mispredicted jump
instruction. It will be in the decode stage next cycle

Redirection in Execute
then Decode

October 7, 2013 T05-45 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

2 3 4 5 6 1

Poisoning Write Back

dEpoch

fdEpoch

deEpoch

The decode stage’s estimate of eEpoch is old, so it isn’t able to
recognize it is decoding a wrong path instruction.

Mispredicted

Redirection in Execute
then Decode

October 7, 2013 T05-46 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

2 3 4 5 6 1

Poisoning Write Back

dEpoch

fdEpoch

deEpoch

Fetch will remove the redirection from the redirect FIFO without
changing the PC because the execute epochs don’t match.

Mispredicted

1

Redirection in Execute
then Decode

October 7, 2013 T05-47 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

3 4 5 1 2

Poisoning Write Back

dEpoch

Decoding

fdEpoch

deEpoch

6

The Decode stage sees the change in the execute epoch and
corrects its decode epoch to match the incoming instruction

Redirection in Execute
then Decode

October 7, 2013 T05-48 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

4 5 1 2 3

Killing

dEpoch

Decoding

fdEpoch

deEpoch

6

Poisoning

Redirection in Execute
then Decode

October 7, 2013 T05-49 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

5 1 2 3 4

Executing Killing

dEpoch

Decoding

fdEpoch

deEpoch

6

Redirection in Execute
then Decode

October 7, 2013 T05-50 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

1 2 3 4 5

Executing

dEpoch

Decoding

fdEpoch

deEpoch

6

Killing

Redirection in Execute
then Decode

October 7, 2013 T05-51 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

2 3 4 5 6

Executing Write Back

dEpoch

Decoding

fdEpoch

deEpoch

1

Redirection in Decode
then Execute

What if decode sees a
misprediction, then execute sees
one in the next cycle?

 The decode instruction will be a
wrong path instruction, but it won’t
be known to be wrong path until later

October 7, 2013 T05-52 http://csg.csail.mit.edu/6.s195

Redirection in Decode
then Execute

October 7, 2013 T05-53 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

1 2 3 4 5 6

Executing Write Back

dEpoch

Mispredicted

fdEpoch

feEpoch

Assume this instruction is a mispredicted branch
instruction. It will be in the execute stage next cycle

Redirection in Decode
then Execute

October 7, 2013 T05-54 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

2 3 4 5 6 1

Mispredicted Write Back

dEpoch

Killing

fdEpoch

feEpoch

The PC was just “corrected” to a different wrong path
instruction

Redirection in Decode
then Execute

October 7, 2013 T05-55 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

3 4 5 1 1

Poisoning Write Back

dEpoch

fdEpoch

feEpoch

The PC was just corrected to a correct path instruction

Decoding

Redirection in Decode
then Execute

October 7, 2013 T05-56 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

4 5 1 2

Stalling Write Back

dEpoch

Decoding

fdEpoch

feEpoch

1

Redirection in Decode
then Execute

October 7, 2013 T05-57 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

5 1 2 3

Killing

dEpoch

Decoding

fdEpoch

feEpoch

1

Poisoning

Redirection in Decode
then Execute

October 7, 2013 T05-58 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

1 2 3 4

Executing Stalling

dEpoch

Decoding

fdEpoch

feEpoch

1

Redirection in Decode
then Execute

October 7, 2013 T05-59 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

1 2 3 4 5

Executing

dEpoch

Decoding

fdEpoch

feEpoch

1

Killing

Redirection in Decode
then Execute

October 7, 2013 T05-60 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

1 2 3 4 5 6

Executing Write Back

dEpoch

Decoding

fdEpoch

feEpoch

Global Epoch States

What if there were no estimates at
epochs and everyone looked at the
same epoch state

 How would this work?

October 7, 2013 T05-61 http://csg.csail.mit.edu/6.s195

Global Epoch States

October 7, 2013 T05-62 http://csg.csail.mit.edu/6.s195

eEpoch

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem PC

Redirect

1 2 3 4 5 6

Executing Write Back

dEpoch

Decoding

Global Epoch States

What if execute sees a
misprediction, then decode sees
one in the next cycle?

 The decode instruction will be a
wrong path instruction, so it will not
redirect the PC

October 7, 2013 T05-63 http://csg.csail.mit.edu/6.s195

Global Epoch States

October 7, 2013 T05-64 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem PC

Redirect

1 2 3 4 5 6

Mispredicted Write Back Decoding

Assume this instruction
is a mispredicted jump
instruction.

eEpoch dEpoch

Global Epoch States

October 7, 2013 T05-65 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem PC

Redirect

2 3 4 5 6 1

Poisoning Write Back Killing

eEpoch dEpoch

Global Epoch States

October 7, 2013 T05-66 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem PC

Redirect

3 4 5 1 1

Poisoning Write Back Decoding

eEpoch dEpoch

Global Epoch States

October 7, 2013 T05-67 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem PC

Redirect

4 5 1 2 3

Stalling Killing Decoding

eEpoch dEpoch

Global Epoch States

October 7, 2013 T05-68 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem PC

Redirect

5 1 2 3 4

Executing Killing Decoding

eEpoch dEpoch

Global Epoch States

October 7, 2013 T05-69 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem PC

Redirect

1 2 3 4 5

Executing Stalling Decoding

eEpoch dEpoch

Global Epoch States

October 7, 2013 T05-70 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem PC

Redirect

2 3 4 5 6

Executing Write Back Decoding

1

eEpoch dEpoch

Global Epoch States

What if decode sees a
misprediction, then execute sees
one in the next cycle?

 The decode instruction will be a
wrong path instruction, but it won’t
be known to be wrong path until later

October 7, 2013 T05-71 http://csg.csail.mit.edu/6.s195

Global Epoch States

October 7, 2013 T05-72 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem PC

Redirect

1 2 3 4 5 6

Executing Write Back Mispredicted

Assume this instruction is a
mispredicted branch
instruction.

eEpoch dEpoch

Global Epoch States

October 7, 2013 T05-73 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem PC

Redirect

2 3 4 5 6 1

Mispredicted Write Back Killing

eEpoch dEpoch

Global Epoch States

October 7, 2013 T05-74 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem PC

Redirect

3 4 5 1 1

Poisoning Write Back Killing

eEpoch dEpoch

Global Epoch States

October 7, 2013 T05-75 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem PC

Redirect

4 5 1 2

Stalling Write Back Decoding

eEpoch dEpoch

Global Epoch States

October 7, 2013 T05-76 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem PC

Redirect

5 1 2 3

Stalling Killing Decoding

eEpoch dEpoch

Global Epoch States

October 7, 2013 T05-77 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem PC

Redirect

1 2 3 4

Executing Stalling Decoding

eEpoch dEpoch

Global Epoch States

October 7, 2013 T05-78 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem PC

Redirect

1 2 3 4 5

Executing Stalling Decoding

eEpoch dEpoch

Global Epoch States

October 7, 2013 T05-79 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem PC

Redirect

1 2 3 4 5 6

Executing Write Back Decoding

eEpoch dEpoch

Implementing Global
Epoch States

How do you implement this?

 There are multiple ways to do this,
but the easiest way is to use EHRs

October 7, 2013 T05-80 http://csg.csail.mit.edu/6.s195

Implementing Global Epoch
States with EHRs

October 7, 2013 T05-81 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem
eEpoch

[k]

eEpoch[i]

PC

Redirect

1 2 3 4 5 6

Executing Write Back

dEpoch[j]

Decoding

dEpoch[i]

eEpoch[j]

Each stage looks at a different
port of each Epoch EHR.

There’s still a problem! PC redirection and epoch update needs to
be atomic!

Implementing Global Epoch
States with EHRs

October 7, 2013 T05-82 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem
eEpoch

[k]

eEpoch[i]

PC
[i]

1 2 3 4 5 6

Write Back

dEpoch[j]

dEpoch[i]

eEpoch[j]

PC
[j]

PC
[k]

Executing Decoding

Make PC an EHR and have each pipeline stage redirect
the PC directly

New Logic for Global
Epoch EHRs

Fetch
 Sends PC to instruction memory, pass current epoch states

along with PC in fetch to decode FIFO

Decode
 Kill in place if instruction epochs don’t match global epochs
 If current instruction is valid, but PPC is incorrect, update

decode epoch and PC EHR
 Drop decode epoch from instruction structure sent to next

stage

Execute
 Poison if instruction execute epoch doesn’t match global

execute epoch
 If current instruction is valid, but PPC is incorrect, update

execute epoch and PC EHR
 Drop execute epoch from instruction structure passed to

next stage

October 7, 2013 T05-83 http://csg.csail.mit.edu/6.s195

Why is Fecth so Simple?

Fetch stage used to have to
prioritize between the two redirect
FIFOs and drop decode redirection
if the execute epochs don’t match

 Why isn’t this needed anymore?

 Try reasoning about this on your own

October 7, 2013 T05-84 http://csg.csail.mit.edu/6.s195

How Does EHR Port Ordering
Change Things?

Originally we had redirect FIFOs from Decode and
Execute to Instruction Fetch. What ordering is
this?
 Fetch – 2
 Decode – 0 or 1
 Execute – 0 or 1 (not the same as Decode)

Does the order between Decode and Execute
matter?
 Not much...

Having Fetch use ports after Decode and Execute
increase the length of combinational logic
 The order between Decode/Execute and Fetch

matters most! (both for length of combinational logic
and IPC)

October 7, 2013 T05-85 http://csg.csail.mit.edu/6.s195

Questions?

October 7, 2013 T05-86 http://csg.csail.mit.edu/6.s195

