
Constructive Computer Architecture

Tutorial 9:
Final Project: Part 1
Overview and Advice

Andy Wright
6.175 TA

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-1

Final Project: Part 1

Make four modules:
 mkMessageFIFO
 mkMessageRouter
 mkParentProtocolProcessor
 mkNBCache

To pass five sets of tests:
 message-fifo-test
 message-router-test
 ppp-test
 nb-cache-mini-test
 nb-cache-test

October 7, 2013 T05-2 http://csg.csail.mit.edu/6.s195

MSI Overview

Three states for each cache line:

 Invalid

 Shared

 Modified

CacheTypes.bsv has an MSI
enumeration

 Also has instance of Ord typeclass so
y > I is a valid expression

October 7, 2013 T05-3 http://csg.csail.mit.edu/6.s195

Coherency Messages

Each message is either a request or a
response
 Responses can have data, requests

cannot

 Cache to Parent messages:
 upgrades are requests

 downgrades are responses

 Parent to Cache messages:
 downgrades are requests

 upgrades are responses

October 7, 2013 T05-4 http://csg.csail.mit.edu/6.s195

Coherency Message Types

CacheMemResp: (struct)
 CacheID child
 Addr addr
 MSI state
 CacheLine data

CacheMemReq: (struct)
 CacheID child
 Addr addr
 MSI state

CacheMemMessage: (tagged union)
 CacheMemResp Resp
 CacheMemReq Req

October 7, 2013 T05-5 http://csg.csail.mit.edu/6.s195

new (or next) state

new (or next) state

child sending or receiving request

child sending or receiving request

Data for I -> S,M or M -> S,I transitions

Message FIFO

Combination of two FIFOs: request FIFO and
response FIFO

The Dequeue logic should prefer dequeuing
from the response FIFO over the request FIFO

October 7, 2013 T05-6 http://csg.csail.mit.edu/6.s195

Message Router

Sends messages from
caches to the parent
protocol processor, and
from the parent to the
correct cache

 It must not allow requests
to block responses from
passing through the router

October 7, 2013 T05-7 http://csg.csail.mit.edu/6.s195

Parent Protocol Processor

Handles cache coherency
for children caches and
communicates with main
memory

 Contains an MIS state, a
waitc state, and the
current tag for each cache
line in each child cache

October 7, 2013 T05-8 http://csg.csail.mit.edu/6.s195

Parent Protocol Processor

Performs 3 of the 8 rules for our
MSI coherency protocol
 Rule 2 – Cache n is requesting an

upgrade that is compatible with other
caches, so send an upgrade response

 Rule 4 – Send a downgrade request
to a cache

 Rule 6 – Receive a downgrade
response from a cache

October 7, 2013 T05-9 http://csg.csail.mit.edu/6.s195

Parent Protocol Processor

Rules 2 and 6 deals with responses
that may have data
 When sending an upgrade response

from I to S or M, the parent protocol
processor first needs to read the main
memory for the data to send

 When receiving a downgrade response
from M to S or I, the parent protocol
processor needs to write the cache line
back to main memory

October 7, 2013 T05-10 http://csg.csail.mit.edu/6.s195

Non-Blocking Cache

Handles requests and
responses coming from
two directions
 Load and store requests

come from the processor

 Upgrade responses from
the parent protocol
processor bring in new
cache lines

 Downgrade requests from
the parent protocol
processor downgrade or
evict cache lines

Uses store queue and load
buffer to keep track of
requests in flight

October 7, 2013 T05-11 http://csg.csail.mit.edu/6.s195

Non-Blocking Cache
Handling load and store requests

if load request:
 if hit in store queue -> return hit
 if hit in data cache -> return hit
 otherwise:

 insert into load buffer
 send upgrade request if possible

if store request:
 if hit in data cache and store queue empty ->

update data cache
 otherwise:

 insert into store queue
 send upgrade request if possible

October 7, 2013 T05-12 http://csg.csail.mit.edu/6.s195

*Send upgrade request if possible implies rule 8 if necessary

Non-Blocking Cache
FSM for handling responses from memory

Ready state (if memory to cache message FIFO has response)
 update cache according to response
 save response to register
 go to load hit stage

load hit state
 if hit in load buffer -> remove entry and return hit
 if no hit in load buffer -> go to store hit state

store hit state
 if hit at head of store queue -> dequeue hit and update data cache
 if no hit at head of store queue -> go to store req state

store req state
 send upgrade request for head of store queue if possible
 go to load req state

load req state
 if conflicting address in load buffer -> send upgrade request if possible
 go to ready state

October 7, 2013 T05-13 http://csg.csail.mit.edu/6.s195

*Send upgrade request if possible implies rule 8 if necessary

Non-Blocking Cache
Handling requests from memory

receiving downgrade to y request from
parent
if cache line’s tag matches incoming
address and the cache line’s state > y:
 Do rule 5:

 Update cache
 send downgrade response

if cache line’s tag doesn’t match incoming
address or the cache line’s state <= y:
 Do rule 7:

 Ignore downgrade request

October 7, 2013 T05-14 http://csg.csail.mit.edu/6.s195

Module Tests

Modules are tested with
testbenches that emulate the use
of each module in a larger system

Testbenches are written using the
StmtFSM library

October 7, 2013 T05-15 http://csg.csail.mit.edu/6.s195

StmtFSM example

1: Stmt test = (seq

2: fifo.enq(1);

3: fifo.enq(2);

4: action

5: fifo.enq(3);

6: fifo.deq;

7: endaction

8: action

9: $display(“Done”);

10: $finish;

11: endaction

12: endseq);

13: mkAutoFSM(test);

October 7, 2013 T05-16 http://csg.csail.mit.edu/6.s195

Each action in this
seq is performed
one at a time

Creates the requested FSM. Starts
automatically and quits simulation
when it finishes.

Performed together

StmtFSM – Generated Rules
Reg#(State) i <- mkReg(0);

rule L2C16(i == 0);

 fifo.enq(1);

 i <= 1;

endrule

rule L3C16(i == 1);

 fifo.enq(2);

 i <= 2;

endrule

rule L4C16(i == 2);

 fifo.enq(3);

 fifo.deq(4);

 i <= 3;

endrule

rule L8C16(i == 3);

 $display(“Done”);

 $finish;

endrule

October 7, 2013 T05-17 http://csg.csail.mit.edu/6.s195

Generated rules have
“l<line_num>c<column_num>”
in their name

If an action in an StmtFSM has
a guard that is false, the FSM
will stall until the guard is true.
There is an additional FSM in
the provided tests to cause a
failure if the FSM has been
stalled for too long.

Provided Testbenches

Lets look at some of the actual
testbenches

October 7, 2013 T05-18 http://csg.csail.mit.edu/6.s195

Advice

Never use “?”
 You can pass a poorly written test benches

by just returning “?”. These modules won’t
pass any tests in hardware

 Instead you can use “unpack(0)” to
initialize something with all 0’s if its exact
value doesn’t matter

Work together
 It is often more efficient to write the same

module together than to work separately

October 7, 2013 T05-19 http://csg.csail.mit.edu/6.s195

Advice – Non-Blocking Cache

Combine rules 1 and 8 into one cycle
 Rule 8 produces a response and rule 1 produces

a request, so they can happen in the same
cycle.

Make two functions for “send upgrade
request if possible”
 One to check if it is possible
 One to send the request (and response if

necessary)

Use vectors of registers, not RegFile
Don’t copy the code from lecture
 Instead follow the pseudo code here and in the

handout

October 7, 2013 T05-20 http://csg.csail.mit.edu/6.s195

Advice

Start early

Understand what you are doing

Take a structured approach to
debugging

 Record what steps you have taken
when debugging

Ask questions

October 7, 2013 T05-21 http://csg.csail.mit.edu/6.s195

Questions?

October 7, 2013 T05-22 http://csg.csail.mit.edu/6.s195

