
Constructive Computer Architecture

Tutorial 9:
Final Project: Part 1
Overview and Advice

Andy Wright
6.175 TA

October 7, 2013 http://csg.csail.mit.edu/6.s195 T05-1

Final Project: Part 1

Make four modules:
 mkMessageFIFO
 mkMessageRouter
 mkParentProtocolProcessor
 mkNBCache

To pass five sets of tests:
 message-fifo-test
 message-router-test
 ppp-test
 nb-cache-mini-test
 nb-cache-test

October 7, 2013 T05-2 http://csg.csail.mit.edu/6.s195

MSI Overview

Three states for each cache line:

 Invalid

 Shared

 Modified

CacheTypes.bsv has an MSI
enumeration

 Also has instance of Ord typeclass so
y > I is a valid expression

October 7, 2013 T05-3 http://csg.csail.mit.edu/6.s195

Coherency Messages

Each message is either a request or a
response
 Responses can have data, requests

cannot

 Cache to Parent messages:
 upgrades are requests

 downgrades are responses

 Parent to Cache messages:
 downgrades are requests

 upgrades are responses

October 7, 2013 T05-4 http://csg.csail.mit.edu/6.s195

Coherency Message Types

CacheMemResp: (struct)
 CacheID child
 Addr addr
 MSI state
 CacheLine data

CacheMemReq: (struct)
 CacheID child
 Addr addr
 MSI state

CacheMemMessage: (tagged union)
 CacheMemResp Resp
 CacheMemReq Req

October 7, 2013 T05-5 http://csg.csail.mit.edu/6.s195

new (or next) state

new (or next) state

child sending or receiving request

child sending or receiving request

Data for I -> S,M or M -> S,I transitions

Message FIFO

Combination of two FIFOs: request FIFO and
response FIFO

The Dequeue logic should prefer dequeuing
from the response FIFO over the request FIFO

October 7, 2013 T05-6 http://csg.csail.mit.edu/6.s195

Message Router

Sends messages from
caches to the parent
protocol processor, and
from the parent to the
correct cache

 It must not allow requests
to block responses from
passing through the router

October 7, 2013 T05-7 http://csg.csail.mit.edu/6.s195

Parent Protocol Processor

Handles cache coherency
for children caches and
communicates with main
memory

 Contains an MIS state, a
waitc state, and the
current tag for each cache
line in each child cache

October 7, 2013 T05-8 http://csg.csail.mit.edu/6.s195

Parent Protocol Processor

Performs 3 of the 8 rules for our
MSI coherency protocol
 Rule 2 – Cache n is requesting an

upgrade that is compatible with other
caches, so send an upgrade response

 Rule 4 – Send a downgrade request
to a cache

 Rule 6 – Receive a downgrade
response from a cache

October 7, 2013 T05-9 http://csg.csail.mit.edu/6.s195

Parent Protocol Processor

Rules 2 and 6 deals with responses
that may have data
 When sending an upgrade response

from I to S or M, the parent protocol
processor first needs to read the main
memory for the data to send

 When receiving a downgrade response
from M to S or I, the parent protocol
processor needs to write the cache line
back to main memory

October 7, 2013 T05-10 http://csg.csail.mit.edu/6.s195

Non-Blocking Cache

Handles requests and
responses coming from
two directions
 Load and store requests

come from the processor

 Upgrade responses from
the parent protocol
processor bring in new
cache lines

 Downgrade requests from
the parent protocol
processor downgrade or
evict cache lines

Uses store queue and load
buffer to keep track of
requests in flight

October 7, 2013 T05-11 http://csg.csail.mit.edu/6.s195

Non-Blocking Cache
Handling load and store requests

if load request:
 if hit in store queue -> return hit
 if hit in data cache -> return hit
 otherwise:

 insert into load buffer
 send upgrade request if possible

if store request:
 if hit in data cache and store queue empty ->

update data cache
 otherwise:

 insert into store queue
 send upgrade request if possible

October 7, 2013 T05-12 http://csg.csail.mit.edu/6.s195

*Send upgrade request if possible implies rule 8 if necessary

Non-Blocking Cache
FSM for handling responses from memory

Ready state (if memory to cache message FIFO has response)
 update cache according to response
 save response to register
 go to load hit stage

load hit state
 if hit in load buffer -> remove entry and return hit
 if no hit in load buffer -> go to store hit state

store hit state
 if hit at head of store queue -> dequeue hit and update data cache
 if no hit at head of store queue -> go to store req state

store req state
 send upgrade request for head of store queue if possible
 go to load req state

load req state
 if conflicting address in load buffer -> send upgrade request if possible
 go to ready state

October 7, 2013 T05-13 http://csg.csail.mit.edu/6.s195

*Send upgrade request if possible implies rule 8 if necessary

Non-Blocking Cache
Handling requests from memory

receiving downgrade to y request from
parent
if cache line’s tag matches incoming
address and the cache line’s state > y:
 Do rule 5:

 Update cache
 send downgrade response

if cache line’s tag doesn’t match incoming
address or the cache line’s state <= y:
 Do rule 7:

 Ignore downgrade request

October 7, 2013 T05-14 http://csg.csail.mit.edu/6.s195

Module Tests

Modules are tested with
testbenches that emulate the use
of each module in a larger system

Testbenches are written using the
StmtFSM library

October 7, 2013 T05-15 http://csg.csail.mit.edu/6.s195

StmtFSM example

1: Stmt test = (seq

2: fifo.enq(1);

3: fifo.enq(2);

4: action

5: fifo.enq(3);

6: fifo.deq;

7: endaction

8: action

9: $display(“Done”);

10: $finish;

11: endaction

12: endseq);

13: mkAutoFSM(test);

October 7, 2013 T05-16 http://csg.csail.mit.edu/6.s195

Each action in this
seq is performed
one at a time

Creates the requested FSM. Starts
automatically and quits simulation
when it finishes.

Performed together

StmtFSM – Generated Rules
Reg#(State) i <- mkReg(0);

rule L2C16(i == 0);

 fifo.enq(1);

 i <= 1;

endrule

rule L3C16(i == 1);

 fifo.enq(2);

 i <= 2;

endrule

rule L4C16(i == 2);

 fifo.enq(3);

 fifo.deq(4);

 i <= 3;

endrule

rule L8C16(i == 3);

 $display(“Done”);

 $finish;

endrule

October 7, 2013 T05-17 http://csg.csail.mit.edu/6.s195

Generated rules have
“l<line_num>c<column_num>”
in their name

If an action in an StmtFSM has
a guard that is false, the FSM
will stall until the guard is true.
There is an additional FSM in
the provided tests to cause a
failure if the FSM has been
stalled for too long.

Provided Testbenches

Lets look at some of the actual
testbenches

October 7, 2013 T05-18 http://csg.csail.mit.edu/6.s195

Advice

Never use “?”
 You can pass a poorly written test benches

by just returning “?”. These modules won’t
pass any tests in hardware

 Instead you can use “unpack(0)” to
initialize something with all 0’s if its exact
value doesn’t matter

Work together
 It is often more efficient to write the same

module together than to work separately

October 7, 2013 T05-19 http://csg.csail.mit.edu/6.s195

Advice – Non-Blocking Cache

Combine rules 1 and 8 into one cycle
 Rule 8 produces a response and rule 1 produces

a request, so they can happen in the same
cycle.

Make two functions for “send upgrade
request if possible”
 One to check if it is possible
 One to send the request (and response if

necessary)

Use vectors of registers, not RegFile
Don’t copy the code from lecture
 Instead follow the pseudo code here and in the

handout

October 7, 2013 T05-20 http://csg.csail.mit.edu/6.s195

Advice

Start early

Understand what you are doing

Take a structured approach to
debugging

 Record what steps you have taken
when debugging

Ask questions

October 7, 2013 T05-21 http://csg.csail.mit.edu/6.s195

Questions?

October 7, 2013 T05-22 http://csg.csail.mit.edu/6.s195

