Constructive Computer Architecture

FFT: An example of complex combinational circuits

Arvind
Computer Science \& Artificial Intelligence Lab. Massachusetts Institute of Technology

Contributors to the course material

- Arvind, Rishiyur S. Nikhil, Joel Emer,

Muralidaran Vijayaraghavan

- Staff and students in 6.375 (Spring 2013),
6.S195 (Fall 2012), 6.S078 (Spring 2012)
- Asif Khan, Richard Ruhler, Sang Woo Jun, Abhinav Agarwal, Myron King, Kermin Fleming, Ming Liu, LiShiuan Peh
* External
- Prof Amey Karkare \& students at IIT Kanpur
- Prof Jihong Kim \& students at Seoul Nation University
- Prof Derek Chiou, University of Texas at Austin
- Prof Yoav Etsion \& students at Technion

Contents

* FFT and IFFT: Another complex combinational circuit and its folded implementations
- FFT: Converts signals from time domain to frequency domain
- IFFT: Converts signals from frequency domain to time domain
- Two calculations are identical- the same hardware can be used
- New BSV concepts
- structure type
- overloading

Combinational IFFT

All numbers are complex and represented as two sixteen bit quantities.
Fixed-point arithmetic is used to reduce area, power, ...

4-way Butterfly Node

function Vector\#(4,Complex) bfly4
(Vector\# (4,Complex) t, Vector\#(4,Complex) x);

- t's (twiddle coefficients) are mathematically derivable constants for each bfly4 and depend upon the position of bfly4 the in the network
- FFT and IFFT calculations differ only in the use of Twiddle coefficients in various butterfly nodes

BSV code: 4-way Butterfly

```
function Vector#(4,Complex#(s)) bfly4
    (Vector#(4,Complex#(s)) t, Vector#(4,Complex#(s)) x);
```

 Vector\#(4,Complex\#(s)) m, y, z;
 $\mathrm{m}[0]=\mathrm{x}[0] * t[0] ; \mathrm{m}[1]=\mathrm{x}[1] * t[1] ;$
$\mathrm{m}[2]=\mathrm{x}[2] * \mathrm{t}[2] ; \mathrm{m}[3]=\mathrm{x}[3] * \mathrm{t}[3] ;$
$\mathrm{y}[0]=\mathrm{m}[0]+\mathrm{m}[2] ; \mathrm{y}[1]=\mathrm{m}[0]-\mathrm{m}[2] ;$
$\mathrm{y}[2]=\mathrm{m}[1]+\mathrm{m}[3] ; \mathrm{y}[3]=\mathrm{i}(\mathrm{m}[1]-\mathrm{m}[3]) ;$

$\mathrm{z}[0]=\mathrm{y}[0]+\mathrm{y}[2] ; \mathrm{z}[1]=\mathrm{y}[1]+\mathrm{y}[3] ;$
$\mathrm{z}[2]=\mathrm{y}[0]-\mathrm{y}[2] ; \mathrm{z}[3]=\mathrm{y}[1]-\mathrm{y}[3] ;$
return (z);
endfunction

Note: Vector does not mean storage; just a group of wires with names

Polymorphic code: works on any type of numbers for which *, + and have been defined

Language notes: Sequential assignments

Sometimes it is convenient to reassign a variable (x is zero every where except in bits 4 and 8):

$$
\begin{aligned}
& \operatorname{Bit\# }(32) \mathrm{x}=0 ; \\
& \mathrm{x}[4]=1 ; \mathrm{x}[8]=1 ;
\end{aligned}
$$

- This will usually result in introduction of muxes in a circuit as the following example illustrates:

```
Bit#(32) x = 0;
let y = x+1;
if(p) x = 100;
let z = x+1;
```


Complex Arithmetic

- Addition

$$
\begin{aligned}
& z_{R}=x_{R}+y_{R} \\
& z_{I}=x_{I}+y_{I}
\end{aligned}
$$

- Multiplication

$$
\begin{aligned}
& \text { - } z_{R}=x_{R} * y_{R}-x_{I} * y_{I} \\
& - \\
& z_{I}=x_{R} * y_{I}+x_{I} * y_{R}
\end{aligned}
$$

Representing complex numbers as a struct

typedef struct\{
 Int\# (t) r; Int\# (t) i;

\} Complex\# (numeric type t) deriving (Eq, Bits);
Notice the Complex type is parameterized by the size of
Int chosen to represent its real and imaginary parts
If x is a struct then its fields can be selected by writing x.r and $x . i$

BSV code for Addition

```
typedef struct{
    Int#(t) r;
    Int#(t) i;
} Complex#(numeric type t) deriving (Eq,Bits);
function Complex#(t) cAdd
    (Complex#(t) x, Complex#(t) y);
    Int#(t) real = x.r y.r;
    Int#(t) imag = x.i + y.i;
    return(Complex{r:real, i:imag});
endfunction
What is the type of this + ?
```


Overloading (Type classes)

- The same symbol can be used to represent different but related operators using Type classes
- A type class groups a bunch of types with similarly named operations. For example, the type class Arith requires that each type belonging to this type class has operators,+- , *, / etc. defined
We can declare Complex type to be an instance of Arith type class

Overloading +, *

```
instance Arith#(Complex#(t));
function Complex#(t) \+
                            (Complex#(t) x, Complex#(t) y);
    Int#(t) real = x.r + y.r;
    Int#(t) imag = x.i + y.i;
    return(Complex{r:real, i:imag});
endfunction
```

function Complex\#(t) *
(Complex\#(t) x, Complex\# (t) y);
Int\# (t) real $=x \cdot r^{*} y \cdot r-x \cdot i^{*} y \cdot i ;$
Int\# (t) imag $=x \cdot r^{*} y \cdot i+x \cdot i^{*} y . r ;$
return (Complex\{r:real, i:imag\});
endfunction
endinstance

The context allows the compiler to pick the appropriate definition of an operator

Combinational IFFT

function Vector\# (64, Complex\#(n)) stage_f (Bit\#(2) stage, Vector\#(64, Complex\#(n)) stage_in);
function Vector\#(64, Complex\#(n)) ifft (Vector\#(64, Complex\#(n)) in_data);
repeat stage_f three times

BSV Code: Combinational IFFT

function Vector\#(64, Complex\#(n)) ifft (Vector\# (64, Complex\#(n)) in_data);
//Declare vectors

```
Vector#(4,Vector#(64, Complex#(n))) stage_data;
stage_data[0] = in_data;
for (Bit#(2) stage = 0; stage < 3; stage = stage + 1)
stage_data[stage+1] = stage_f(stage,stage_data[stage]);
```

return(stage_data[3]);
endfunction

The for-loop is unfolded and stage_f is inlined during static elaboration

Note: no notion of loops or procedures during execution

BSV Code: Combinational IFFT- Unfolded

```
function Vector#(64, Complex#(n)) ifft
    (Vector#(64, Complex#(n)) in_data);
//Declare vectors
    Vector#(4,Vector#(64, Complex#(n))) stage_data;
    stage_data[0] = in_data;
    _ stage_data[1] = stage_f(0,stage_data[0]); stage + 1)
    -stage_data[2] = stage_f(1,stage_data[1]); data[stage]);
    stage_data[3] = stage_f(2,stage_data[2]);
return(stage_data[3]);
endfunction
```

Stage_f can be inlined now; it could have been inlined before loop unfolding also.

Does the order matter?

BSV Code for stage_f

function Vector\# (64, Complex\# (n)) stage_f (Bit\# (2) stage, Vector\# (64, Complex\# (n)) stage_in); Vector\# (64, Complex\# (n)) stage_temp, stage_out;

```
for (Integer i = 0; i < 16; i = i + 1)
    begin
        Integer idx = i * 4;
        Vector#(4, Complex#(n)) x;
        x[0] = stage in[idx]; x[1] = stage_in[idx+1];
        x[2] = stage_in[idx+2]; x[3] = stage_in[idx+3];
        let twid =getTwiddle(stage, fromInteger(i));
        let y = bfly4(twid, x);
        stage_temp[idx] = y[0]; stage_temp[idx+1] = y[1];
        stage_temp[idx+2]=y[2]; stage_temp[idx+3]=y[3];
    end
```

//Permutation
for (Integer $i=0 ; i<64 ; i=i+1$)
stage_out[i] = stage_temp[permute[i]];
return(stage out);
\qquad
Permutation
for (Integer $i=0 ; i<64 ; i=i+1$)
stage_out[i] = stage_temp[permute[i]];
return(stage out);

Higher-order functions: Stage functions f1, f2 and f3

function $f 0(x)=$ stage_f $(0, x)$;
function $f 1(x)=$ stage_f(1,x);
function $f 2(x)=$ stage_f(2,x);

What is the type of $\mathrm{fO}(\mathrm{x})$?

$$
\begin{array}{r}
\text { function Vector\# }(64, \text { Complex) } \\
\text { f0 } \\
(\text { Vector\# }(64, \\
\text { Complex) }
\end{array} \text { x); }
$$

Suppose we want to reduce the area of the circuit

Reusing a combinational block

we expect:
Throughput to decrease - less parallelism Area to decrease - reusing a block

The clock needs to run faster for the same throughput

Folded IFFT: Reusing the stage combinational circuit

Input and Output FIFOs

- If IFFT is implemented as a sequential circuit it may take several cycles to process an input
- Sometimes it is convenient to think of input and output of a combinational function being connected to FIFOs

- FIFO operations:
- enq - when the FIFO is not full
- deq, first - when the FIFO is not empty
- These operations can be performed only when the guard condition is satisfied

Folded implementation rules

Folded implementation expressed as a single rule


```
rule folded-pipeline (True);
    let \(\operatorname{sxIn}=\) ? ;
    if (stage==0)
        begin sxIn= inQ.first(); inQ.deq(); end
    else \(\quad\) sxIn= sReg;
    let sxOut \(=f(\) stage, sxIn \()\);
    if (stage==n-1) outQ.enq(sxOut);
    else sReg <= sxOut;
    stage \(<=\) (stage \(==\mathrm{n}-1\) )? 0 : stage +1 ;
endrule
```


Shared Circuit

- The Twiddle constants can be expressed in a table or in a case or nested case expression

Pipelining Combinational

 IFFT3 different datasets in the pipeline

Lot of area and long combinational delay

- Folded or multi-cycle version can save area and reduce the combinational delay but throughput per clock cycle gets worse
- Pipelining: a method to increase the circuit throughput by evaluating multiple IFFTs

Design comparison

Area estimates

Tool: Synopsys Design Compiler

- Comb. FFT
- Combinational area:
- Noncombinational area:
- Folded FFT
- Combinational area:
- Noncombinational area:
- Pipelined FFT
- Combinational area:
- Noncombinational area: 18558

20610

29330
11603
Are the results 16536 surprising? 9279

Why is folded implementation not smaller?

Explanation: Because of constant propagation optimization, each bfly4 gets reduced by 60\% when twiddle factors are specified. Folded design disallows this optimization because of the sharing of bfly4's

Syntax: Vector of Registers

- Register
- suppose x and y are both of type Reg. Then

```
x <= y means x._write(y._read())
```

- Vector of Int
- x[i] means sel(x,i)
- $x[i]=y[j]$ means $x=$ update($x, i, \operatorname{sel}(y, j))$
- Vector of Registers
- $x[i]$ <= y[j] does not work. The parser thinks it means (sel(x,i). read). write(sel (y, j). read), which will not type chēk
- (x[i]) <= y[j] parses as
sel (x,i)._write(sel(y,j) ._read), and works correctly

Don't ask me why

Optional: Superfolded FFT

Superfolded IFFT: Just one Bfly-4 node!

Optional

- f will be invoked for 48 dynamic values of stage; each invocation will modify 4 numbers in sReg
- after 16 invocations a permutation would be done on the whole sReg

Superfolded IFFT: stage function f

```
function Vector#(64, fomplex) stage_f
(Bit#(2) stage, Vector#(64, Complex) stage_in);
    Vector#(64, complest(n)) stage_temp, stage_out;
    for (Integer i = 0; i< 16;i= i + 1)
    begin Bit#(2) stage
```

 Integer idx \(=i\) * 4;
 let twid = getTwiddle(stage, fromInteger(i));
 let \(y=b f l y 4\left(t w i d, ~ s t a g e _i n[i d x: i d x+3]\right)\);
 stage_temp[idx] = y[0]; stage_temp[idx+1] = y[1];
 stage_temp[idx+2] = y[2]; stage_temp[idx+3] = y[3];
 end
 //Permutation
 for (Integer \(i=0 ; i<64 ; i=i+1)\)
 stage_out[i] = stage_temp[permute[i]];
 return(stage_out);
endfunction
should be done only when $\mathrm{i}=15$

Code for the Superfolded stage function

```
Function Vector#(64, Complex) f
    (Bit#(6) stagei, Vector#(64, Complex) stage_in);
```

 let i = stagei \({ }^{\text {mod }} 16\);
 let twid = getTwiddle(stagei `div` 16, i);
 let \(y=\) bfly4(twid, stage_in[i:i+3]);
 let stage_temp = stage_in;
 stage_temp[i] =y[0];
 stage_temp \([i+1]=y[1] ;\)
 One Bfly-4 case
 stage_temp \([i+2]=y[2] ;\)
 stage_temp[i+3] = y[3];
 let stage_out = stage_temp;
 if (i == 15)
for (Integer i = 0; i < 64; i = i + 1)
stage_out[i] = stage_temp[permute[i]];
return(stage_out);
endfunction

