Constructive Computer Architecture Combinational circuits

Arvind
Computer Science \& Artificial Intelligence Lab. Massachusetts Institute of Technology
\qquad

Content

- Design of a combinational ALU starting with primitive gates And, Or and Not
- Combinational circuits as acyclic wiring diagrams of primitive gates
- Introduction to BSV
- Intro to types - enum, typedefs, numeric types, Int\#(32) vs Integer, Bool vs Bit\#(1), Vector
- Simple operations: concatenation, conditionals, loops
- Functions
- Static elaboration and a structural interpretation of the textual code

Combinational circuits

Combinational circuits are acyclic interconnections of gates

- And, Or, Not
- Nand, Nor, Xor
- ...

Arithmetic-Logic Unit (ALU)

ALU performs all the arithmetic and logical functions

Each individual function can be described as a combinational circuit

Half Adder

A	B	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Boolean equations
$s=(\sim a \cdot b)+(a \cdot \sim b)$
$c=a \cdot b$
"Optimized"
$s=a \oplus b$

Full Adder

A	B	$\mathrm{C}_{\text {in }}$	S	$\mathrm{C}_{\text {out }}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Boolean equations
$s=\left(\sim a \cdot \sim b \cdot c_{i n}\right)+\left(\sim a \cdot b \cdot \sim c_{i n}\right)+\left(a \cdot \sim b \cdot \sim c_{i n}\right)+\left(a \cdot b \cdot c_{i n}\right)$
$c_{\text {out }}=\left(\sim a \cdot b \cdot c_{\text {in }}\right)+\left(a \cdot \sim b \cdot c_{\text {in }}\right)+\left(a \cdot b \cdot \sim c_{i n}\right)+\left(a \cdot b \cdot c_{\text {in }}\right)$
"Optimized"
$\mathrm{t}=\mathrm{a} \oplus \mathrm{b}$
$\mathrm{s}=\mathrm{t} \oplus \mathrm{c}_{\mathrm{in}}$
$c_{\text {out }}=a \cdot b+c_{\text {in }} \cdot t$
September 11, 2015

Full Adder: A one-bit adder
function fa(a, b, c_in);
$t=(a \wedge b) ;$
$s=t \wedge c _i n ;$
c_out $=(\mathrm{a} \& \mathrm{~b}) \mid(\mathrm{c}$ _in \& t$)$;
return \{c_out,s\};
endfunction
Structural code only specifies interconnection between boxes

Not quite correct needs type annotations

Full Adder: A one-bit adder

 correctedfunction Bit\#(2) fa(Bit\#(1) a, Bit\#(1) b, Bit\#(1) c_in);
Bit\#(1) $t=a \wedge b ;$ Bit\#(1) $s=t \wedge c _i n ;$ Bit\#(1) c_out $=(\mathrm{a} \& \mathrm{~b}) \mid\left(\mathrm{c} _i n \& t\right)$; return \{c_out,s\}; endfunction
"Bit\#(1) a" type declaration says that a is one bit wide
\{c_out, s\} represents bit concatenation

How big is $\left\{c _o u t, s\right\} ?$ 2 bits

Types

- A type is a grouping of values:
- Integer: 1, 2, 3, ...
- Bool: True, False
- Bit: 0,1
- A pair of Integers: Tuple2\#(Integer, Integer)
- A function fname from Integers to Integers:
function Integer fname (Integer arg)
- Every expression in a BSV program has a type; sometimes it is specified explicitly and sometimes it is deduced by the compiler
Thus we say an expression has a type or belongs to a type

The type of each expression is unique

Parameterized types: \#

A type declaration itself can be parameterized by other types
Parameters are indicated by using the syntax '\#'

- For example Bit\#(n) represents n bits and can be instantiated by specifying a value of n Bit\#(1), Bit\#(32), Bit\#(8), ...

Type synonyms

```
typedef bit [7:0] Byte;
                                    The same
typedef Bit#(8) Byte;
typedef Bit#(32) Word;
typedef Tuple2#(a,a) Pair#(type a);
typedef Int#(n) MyInt#(type n);
typedef Int#(n) MyInt#(numeric type n);
The same
typedef Int\#(n) MyInt\#(numeric type n);
```


Type declaration versus deduction

- The programmer writes down types of some expressions in a program and the compiler deduces the types of the rest of expressions
\checkmark If the type deduction cannot be performed or the type declarations are inconsistent then the compiler complains
function Bit\#(2) fa(Bit\#(1) a, Bit\#(1) b, Bit\#(1) c_in);
Bit\#(1) t = a ^ b; Bit\#(1) s = t ^c_in; Bit\#(2) c_out = (a \& b) | (c_in \& t); return \{c_out, s\}; type error endfunction

2-bit Ripple-Carry Adder

fa can be used as a black-box as long as we understand its type signature
function Bit\#(3) add(Bit\#(2) x, Bit\#(2) y, Bit\#(1) c0);
Bit\#(2) s = 0; Bit\#(3) c=0; c[0] = c0; let $\operatorname{cs} 0=\mathrm{fa}(\mathrm{x}[0], \mathrm{y}[0], \mathrm{c}[0])$; $\mathrm{c}[1]=\mathrm{cs0}[1] ; \mathrm{s}[0]=\operatorname{cs0}[0]$;
let cs1 = fa(x[1], y[1], c[1]); $\mathrm{c}[2]=\operatorname{cs1}[1] ; \quad \mathrm{s}[1]=\operatorname{cs1}[0] ;$
return $\{c[2], s\} ; \quad$ The "let" syntax avoids having endfunction to write down types explicitly

"let" syntax

* The "let" syntax: No need to write the type if the compiler can deduce it:
- let cs0 = fa(x[0], y[0], c[0]); \quad The same
- Bit\#(2) cs0 = fa(x[0], y[0], c[0]);

Selecting a wire: x[i]

assume x is 4 bits wide

- Constant Selector: e.g., x[2]

no hardware $x[2]$ is just the name of a wire
Dynamic selector: x[i]

A 2-way multiplexer

Gate-level implementation

Conditional expressions are also synthesized using muxes

A 4-way multiplexer

case $\{s 1, s 0\}$ matches
0: A;
1: B;
2: C;
3: D;
endcase

An w-bit Ripple-Carry Adder

September 11, 2015
http://csg.csail.mit.edu/6.175
Not quite correct

$$
\text { let } c s=f a(x[i], y[i], c[i]) \text {; }
$$

$$
c[i+1]=\operatorname{cs}[1] ; s[i]=\operatorname{cs}[0] ;
$$

end
return $\{c[w], s\}$;
Unfold the loop to get
endfunction
 the wiring diagram

Instantiating the parametric Adder

function Bit\#(w+1) addN(Bit\#(w) x, Bit\#(w) y,
Bit\#(1) c0);

Now we define add32, add3 ... using addN
// concrete instances of addN!
function Bit\#(33) add32(Bit\#(32) x, Bit\#(32) y,

$$
\text { Bit\#(1) c0) = } \quad \underset{\operatorname{addN}(x, y, c 0) ;}{ }
$$

function Bit\#(4) add3(Bit\#(3) x, Bit\#(3) y, Bit\#(1) c0) $=\operatorname{addN}(x, y, c 0)$;

valueOf(w) versus w

- Each expression has a type and a value and these come from two entirely disjoint worlds
w in Bit\#(w) resides in the types world
- Sometimes we need to use values from the types world into actual computation. The function value0f allows us to do that
- Thus
$i<w$ is not type correct
i<valueof(w)is type correct

TAdd\#(w,1) versus w+1

Sometimes we need to perform operations in the types world that are very similar to the operations in the value world

- Examples: Add, Mul, Log

We define a few special operators in the types world for such operations

- Examples: TAdd\#(m,n), TMul\#(m,n), ...

A w-bit Ripple-Carry Adder

 corrected```
function Bit#(TAdd#(w, 1)) addN(Bit#(w) x, Bit#(w) y,
 Bit#(1) c0);
 Bit#(w) s; Bit#(TAdd#(w,1)) c; c[0] = c0;
 let valw vvalueOf(w)
 for(Integer i=0;i<valw; i=i+1) equivalent of w+1
 begin
 let cs = fa(x[i],y[i],c[i]);
 c[i+1] = cs[1]; s[i] = cs[0]; Lifting a type
 end
return {c[valw],s};
endfunction
```

Structural interpretation of a loop - unfold it to generate an acyclic graph

## Static Elaboration phase

- When BSV programs are compiled, first type checking is done and then the compiler gets rid of many constructs which have no direct hardware meaning, like Integers, loops

```
for(Integer i=0; i<valw; i=i+1) begin
 let cs = fa(x[i],y[i],c[i]);
 c[i+1] = cs[1]; s[i] = cs[0];
end
```

$\operatorname{cs0}=\mathrm{fa}(x[0], y[0], c[0]) ; c[1]=\operatorname{cs} 0[1] ; \mathrm{s}[0]=\operatorname{cs} 0[0] ;$
cs1 = fa(x[1], y[1], c[1]); c[2]=cs1[1]; s[1]=cs1[0];
csw $=f a(x[v a l w-1], y[v a l w-1], c[v a l w-1])$;
$c[v a l w]=\operatorname{csw}[1] ; ~ s[v a l w-1]=\operatorname{csw[0];}$

## Integer versus Int\#(32)

$\Delta$ In mathematics integers are unbounded but in computer systems integers always have a fixed size

- BSV allows us to express both types of integers, though unbounded integers are used only as a programming convenience
for(Integer $i=0 ; i<v a l w ; i=i+1)$
begin
let $c s=f a(x[i], y[i], c[i])$; $c[i+1]=\operatorname{cs}[1] ; s[i]=c s[0] ;$
end


## Shift operators

## Logical right shift by 2



- Fixed size shift operation is cheap in hardware - just wire the circuit appropriately

Rotate, sign-extended shifts - all are equally easy

## Conditional operation: shift versus no-shift



- We need a mux to select the appropriate wires: if $s$ is one the mux will select the wires on the left otherwise it would select wires on the right

$$
(s==0) ?\{a, b, c, d\}:\{0,0, a, b\}
$$

## Logical right shift by n

Shift n can be broken down in $\log \mathrm{n}$ steps of fixed-length shifts of size $1,2,4, \ldots$

- Shift 3 can be performed by doing a shift 2 and shift 1
- We need a mux to omit a particular size shift
- Shift circuit can be expressed as $\log \mathrm{n}$ nested conditional
 expressions


## A digression on types

Suppose we have a variable c whose values can represent three different colors

- We can declare the type of c to be Bit\#(2) and say that 00 represents Red, 01 Blue and 10 Green
- A better way is to create a new type called Color as follows:
typedef enum \{Red, Blue, Green\} Color deriving(Bits, Eq);
Types prevent
us from mixing The compiler will automatically assign some bit bits that represent color from raw bits


## Enumerated types

```
typedef enum {Red, Blue, Green}
Color deriving(Bits, Eq);
typedef enum {Eq, Neq, Le, Lt, Ge, Gt, AT, NT}
BrFunc deriving(Bits, Eq);
typedef enum {Add, Sub, And, Or, Xor, Nor, Slt, Sltu,
LShift, RShift, Sra}
AluFunc deriving(Bits, Eq);
```

Each enumerated type defines a new type

## Combinational ALU

```
function Data alu(Data a, Data b, AluFunc func);
 Data res = case(func)
 Add : (a + b);
 Sub : (a - b);
 And : (a & b);
 Or : (a | b);
 Xor : (a ^ b);
 Nor : ~(a | b);
 Given an implementation of
 the primitive operations like
 addN, Shift, etc. the ALU
 can be implemented simply
 by introducing a mux
 controlled by op to select the
 appropriate circuit
 Slt : zeroExtend(pack(signedLT(a, b)));
 Sltu : zeroExtend(pack(a < b));
 LShift: (a << b[4:0]);
 RShift: (a >> b[4:0]);
 Sra : signedShiftRight(a, b[4:0]);
 endcase;
 return res;
 endfunction
```


## Comparison operators

```
function Bool aluBr(Data a, Data b, BrFunc brFunc);
 Bool brTaken = case(brFunc)
 Eq : (a == b);
 Neq : (a != b);
 Le : signedLE(a, 0);
 Lt : signedLT(a, 0);
 Ge : signedGE(a, 0);
 Gt : signedGT(a, 0);
 AT : True;
 NT : False;
 endcase;
 return brTaken;
 endfunction
```


## ALU including Comparison operators



