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Combinational circuits
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Combinational circuits are 
acyclic interconnections of 
gates

And, Or, Not
Nand, Nor, Xor
…
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Arithmetic-Logic Unit (ALU)

ALU performs all the arithmetic 
and logical functions 

Op
- Add, Sub, ...
- And, Or, Xor, Not, ...
- GT, LT, EQ, Zero, ...

 Result
Comp?

A

B
ALU

Each individual function can be described 
as a combinational circuit
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Half Adder
A B S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Boolean equations
s = (~a·b) + (a·~b)
c = a·b

“Optimized”
s = a  b  
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Full Adder
A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Boolean equations
s   = (~a·~b·cin)+(~a·b·~cin)+(a·~b·~cin)+(a·b·cin)
cout = (~a·b·cin) +(a·~b·cin) +(a·b·~cin) +(a·b·cin)

“Optimized” 
t = ab s = tcin cout = a·b + cin·t
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Full Adder: A one-bit adder
function fa(a, b, c_in);

t = (a ^ b);     
s = t ^ c_in; 
c_out = (a & b) | (c_in & t); 
return {c_out,s}; 

endfunction

Structural code –
only specifies 
interconnection 
between boxes

Not quite correct –
needs type annotations
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Full Adder: A one-bit adder
corrected
function Bit#(2) fa(Bit#(1) a, Bit#(1) b, 

Bit#(1) c_in);
Bit#(1) t = a ^ b;
Bit#(1) s = t ^ c_in; 
Bit#(1) c_out = (a & b) | (c_in & t); 
return {c_out,s}; 

endfunction
“Bit#(1) a” type 
declaration says that 
a is one bit wide

{c_out,s} represents 
bit concatenation

How big is {c_out,s}?

2 bits
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Types
A type is a grouping of values:
 Integer: 1, 2, 3, …
 Bool: True, False
 Bit: 0,1
 A pair of Integers: Tuple2#(Integer, Integer)
 A function fname from Integers to Integers: 

function Integer fname (Integer arg)

Every expression in a BSV program has a type; 
sometimes it is specified explicitly and sometimes 
it is deduced by the compiler
Thus we say an expression has a type or belongs 
to a type

The type of each expression is unique
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Parameterized types: #
A type declaration itself can be 
parameterized by other types
Parameters are indicated by using the 
syntax ‘#’
 For example Bit#(n) represents n bits and 

can be instantiated by specifying a value of n
Bit#(1), Bit#(32), Bit#(8), …  
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Type synonyms
typedef bit [7:0] Byte;

typedef Bit#(8) Byte;

typedef Bit#(32) Word;

typedef Tuple2#(a,a) Pair#(type a); 

typedef Int#(n) MyInt#(type n); 

typedef Int#(n) MyInt#(numeric type n); 

The same

The same

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-12



7

Type declaration versus 
deduction

The programmer writes down types of some 
expressions in a program and the compiler 
deduces the types of the rest of expressions
If the type deduction cannot be performed or 
the type declarations are inconsistent then the 
compiler complains

function Bit#(2) fa(Bit#(1) a, Bit#(1) b, 
Bit#(1) c_in);

Bit#(1) t = a ^ b;
Bit#(1) s = t ^ c_in; 
Bit#(2) c_out = (a & b) | (c_in & t); 
return {c_out,s}; 

endfunction

type error

Type checking prevents lots of silly mistakes
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2-bit Ripple-Carry Adder

function Bit#(3) add(Bit#(2) x, Bit#(2) y, 
Bit#(1) c0);

Bit#(2) s = 0;    Bit#(3) c=0; c[0] = c0;
let cs0 = fa(x[0], y[0], c[0]);

c[1] = cs0[1];  s[0] = cs0[0];
let cs1 = fa(x[1], y[1], c[1]);

c[2] = cs1[1];  s[1] = cs1[0];
return {c[2],s}; 

endfunction

fa fa

x[0] y[0]

c[0]

s[0]

x[1] y[1]

c[1]

s[1]

c[2]

fa can be used as a 
black-box as long as 
we understand its type 
signature

The “let” syntax avoids having 
to write down types explicitly 
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“let” syntax
The “let” syntax: No need to write the type if 
the compiler can deduce it: 
 let cs0 = fa(x[0], y[0], c[0]); 

 Bit#(2) cs0 = fa(x[0], y[0], c[0]); 
The same
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Selecting a wire: x[i]

Constant Selector: e.g., x[2]

Dynamic selector: x[i]

[2]
x0
x1
x2
x3

x0
x1
x2
x3

[i]
x0
x1
x2
x3

i
x0
x1
x2
x3

i

no hardware; 
x[2] is just 
the name of 
a wire

4-way mux

assume x is 4 bits wide
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A 2-way multiplexer

(s==0)? A : B

A

B

S

Gate-level implementation

Conditional expressions are also synthesized 
using muxes

AND

AND

OR

S

A

B
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A 4-way multiplexer
case {s1,s0} matches

0:  A;
1:  B;
2:  C;
3:  D;

endcase

S0

S0

S1

A

B

C

D
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An w-bit Ripple-Carry Adder
function Bit#(w+1) addN(Bit#(w) x, Bit#(w) y,

Bit#(1) c0); 
Bit#(w) s; Bit#(w+1) c=0; c[0] = c0;
for(Integer i=0; i<w; i=i+1)
begin

let cs = fa(x[i],y[i],c[i]);
c[i+1] = cs[1]; s[i] = cs[0];

end
return {c[w],s}; 
endfunction

Not quite correct

Unfold the loop to get 
the wiring diagram

fa fa

x[0] y[0]

c[0]

s[0]

x[1] y[1]

c[1]

s[1]

c[2]cs fa

x[w-1] y[w-1]

s[w-1]

c[w]c[w-1]
…

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-19

Instantiating the parametric Adder
function Bit#(w+1) addN(Bit#(w) x, Bit#(w) y,

Bit#(1) c0); 

// concrete instances of addN!
function Bit#(33) add32(Bit#(32) x, Bit#(32) y,

Bit#(1) c0) = 
addN(x,y,c0);

function Bit#(4) add3(Bit#(3) x, Bit#(3) y,
Bit#(1) c0) = addN(x,y,c0);

Now we define add32, add3 … using addN

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-20



11

valueOf(w) versus w 
Each expression has a type and a value and 
these come from two entirely disjoint worlds
w in Bit#(w) resides in the types world
Sometimes we need to use values from the 
types world into actual computation. The 
function valueOf allows us to do that
 Thus 

i<w is not type correct
i<valueOf(w)is type correct
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TAdd#(w,1) versus w+1 
Sometimes we need to perform operations in 
the types world that are very similar to the 
operations in the value world
 Examples: Add, Mul, Log

We define a few special operators in the types 
world for such operations
 Examples: TAdd#(m,n), TMul#(m,n), …
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A w-bit Ripple-Carry Adder
corrected
function Bit#(TAdd#(w,1)) addN(Bit#(w) x, Bit#(w) y,

Bit#(1) c0); 
Bit#(w) s; Bit#(TAdd#(w,1)) c; c[0] = c0;
let valw = valueOf(w);
for(Integer i=0; i<valw; i=i+1)
begin

let cs = fa(x[i],y[i],c[i]);
c[i+1] = cs[1]; s[i] = cs[0];

end
return {c[valw],s}; 
endfunction

types world
equivalent of w+1

Lifting a type 
into the value 
world

Structural interpretation of a loop – unfold it to 
generate an acyclic graph
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Static Elaboration phase
When BSV programs are compiled, first type 
checking is done and then the compiler gets 
rid of many constructs which have no direct 
hardware meaning, like Integers, loops

cs0 = fa(x[0], y[0], c[0]); c[1]=cs0[1]; s[0]=cs0[0]; 
cs1 = fa(x[1], y[1], c[1]); c[2]=cs1[1]; s[1]=cs1[0]; 
…
csw = fa(x[valw-1], y[valw-1], c[valw-1]); 

c[valw] = csw[1]; s[valw-1] = csw[0]; 

for(Integer i=0; i<valw; i=i+1) begin
let cs = fa(x[i],y[i],c[i]);
c[i+1] = cs[1]; s[i] = cs[0];

end
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Integer versus Int#(32)
In mathematics integers are unbounded but in 
computer systems integers always have a 
fixed size
BSV allows us to express both types of 
integers, though unbounded integers are used 
only as a programming convenience

for(Integer i=0; i<valw; i=i+1)
begin

let cs = fa(x[i],y[i],c[i]);
c[i+1] = cs[1]; s[i] = cs[0];

end
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Shift operators
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0 0

Logical right shift by 2

Fixed size shift operation is cheap in hardware 
– just wire the circuit appropriately
Rotate, sign-extended shifts – all are equally 
easy

a b c d

0 0 a b
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Conditional operation: 
shift versus no-shift

We need a mux to select the appropriate wires: if 
s is one the mux will select the wires on the left 
otherwise it would select wires on the right

s

(s==0)?{a,b,c,d}:{0,0,a,b};

0 0
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Logical right shift by n
Shift n can be broken down in 
log n steps of fixed-length shifts 
of size 1, 2, 4, …
 Shift 3 can be performed by doing a 

shift 2 and shift 1
We need a mux to omit a 
particular size shift 
Shift circuit can be expressed as 
log n nested conditional 
expressions  

00

0

s0

s1
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A digression on types
Suppose we have a variable c whose values 
can represent three different colors
 We can declare the type of c to be Bit#(2) and say 

that 00 represents Red, 01 Blue and 10 Green
A better way is to create a new type called 
Color as follows:

typedef enum {Red, Blue, Green} 
Color deriving(Bits, Eq);

The compiler will automatically assign some bit 
representation to the three colors and also provide a 
function to test if the two colors are equal. If you do 
not use “deriving” then you will have to specify the 
representation and equality

Types prevent 
us from mixing 
bits that 
represent 
color from raw 
bits 
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Enumerated types
typedef enum {Red, Blue, Green} 
Color deriving(Bits, Eq);

typedef enum {Eq, Neq, Le, Lt, Ge, Gt, AT, NT} 
BrFunc deriving(Bits, Eq);

typedef enum {Add, Sub, And, Or, Xor, Nor, Slt, Sltu, 
LShift, RShift, Sra} 
AluFunc deriving(Bits, Eq);

Each enumerated type defines a new type
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Combinational ALU
function Data alu(Data a, Data b, AluFunc func);
Data res = case(func)

Add   : (a + b);
Sub   : (a - b);
And   : (a & b);
Or    : (a | b);
Xor : (a ^ b);
Nor   : ~(a | b);
Slt : zeroExtend( pack( signedLT(a, b) ) );
Sltu : zeroExtend( pack( a < b ) );
LShift: (a << b[4:0]);
RShift: (a >> b[4:0]);
Sra : signedShiftRight(a, b[4:0]);

endcase;
return res;

endfunction

Given an implementation of 
the primitive operations like 
addN, Shift, etc. the ALU 
can be implemented simply 
by introducing a mux 
controlled by op to select the 
appropriate circuit
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Comparison operators
function Bool aluBr(Data a, Data b, BrFunc brFunc);
 Bool brTaken = case(brFunc)
 Eq : (a == b);
 Neq : (a != b);
 Le  : signedLE(a, 0);
 Lt  : signedLT(a, 0);
 Ge : signedGE(a, 0);
 Gt : signedGT(a, 0);
 AT  : True;
 NT  : False;
 endcase;
 return brTaken;
endfunction

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-33

ALU including Comparison 
operators

mux

a

func

…

mux brFunc

AddLShiftEq…

b
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