
1

Constructive Computer Architecture

Combinational circuits

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-1

Content
Design of a combinational ALU starting with
primitive gates And, Or and Not
Combinational circuits as acyclic wiring
diagrams of primitive gates
Introduction to BSV
 Intro to types – enum, typedefs, numeric types,

Int#(32) vs Integer, Bool vs Bit#(1), Vector
 Simple operations: concatenation, conditionals, loops
 Functions
 Static elaboration and a structural interpretation of

the textual code

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-2

2

Combinational circuits

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-3

Combinational circuits are
acyclic interconnections of
gates

And, Or, Not
Nand, Nor, Xor
…

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-4

3

Arithmetic-Logic Unit (ALU)

ALU performs all the arithmetic
and logical functions

Op
- Add, Sub, ...
- And, Or, Xor, Not, ...
- GT, LT, EQ, Zero, ...

 Result
Comp?

A

B
ALU

Each individual function can be described
as a combinational circuit

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-5

Half Adder
A B S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Boolean equations
s = (~a·b) + (a·~b)
c = a·b

“Optimized”
s = a  b

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-6

4

Full Adder
A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Boolean equations
s = (~a·~b·cin)+(~a·b·~cin)+(a·~b·~cin)+(a·b·cin)
cout = (~a·b·cin) +(a·~b·cin) +(a·b·~cin) +(a·b·cin)

“Optimized”
t = ab s = tcin cout = a·b + cin·t

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-7

t

Full Adder: A one-bit adder
function fa(a, b, c_in);

t = (a ^ b);
s = t ^ c_in;
c_out = (a & b) | (c_in & t);
return {c_out,s};

endfunction

Structural code –
only specifies
interconnection
between boxes

Not quite correct –
needs type annotations

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-8

t

5

Full Adder: A one-bit adder
corrected
function Bit#(2) fa(Bit#(1) a, Bit#(1) b,

Bit#(1) c_in);
Bit#(1) t = a ^ b;
Bit#(1) s = t ^ c_in;
Bit#(1) c_out = (a & b) | (c_in & t);
return {c_out,s};

endfunction
“Bit#(1) a” type
declaration says that
a is one bit wide

{c_out,s} represents
bit concatenation

How big is {c_out,s}?

2 bits
September 11, 2015 http://csg.csail.mit.edu/6.175 L02-9

t

Types
A type is a grouping of values:
 Integer: 1, 2, 3, …
 Bool: True, False
 Bit: 0,1
 A pair of Integers: Tuple2#(Integer, Integer)
 A function fname from Integers to Integers:

function Integer fname (Integer arg)

Every expression in a BSV program has a type;
sometimes it is specified explicitly and sometimes
it is deduced by the compiler
Thus we say an expression has a type or belongs
to a type

The type of each expression is unique

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-10

6

Parameterized types: #
A type declaration itself can be
parameterized by other types
Parameters are indicated by using the
syntax ‘#’
 For example Bit#(n) represents n bits and

can be instantiated by specifying a value of n
Bit#(1), Bit#(32), Bit#(8), …

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-11

Type synonyms
typedef bit [7:0] Byte;

typedef Bit#(8) Byte;

typedef Bit#(32) Word;

typedef Tuple2#(a,a) Pair#(type a);

typedef Int#(n) MyInt#(type n);

typedef Int#(n) MyInt#(numeric type n);

The same

The same

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-12

7

Type declaration versus
deduction

The programmer writes down types of some
expressions in a program and the compiler
deduces the types of the rest of expressions
If the type deduction cannot be performed or
the type declarations are inconsistent then the
compiler complains

function Bit#(2) fa(Bit#(1) a, Bit#(1) b,
Bit#(1) c_in);

Bit#(1) t = a ^ b;
Bit#(1) s = t ^ c_in;
Bit#(2) c_out = (a & b) | (c_in & t);
return {c_out,s};

endfunction

type error

Type checking prevents lots of silly mistakes
September 11, 2015 http://csg.csail.mit.edu/6.175 L02-13

2-bit Ripple-Carry Adder

function Bit#(3) add(Bit#(2) x, Bit#(2) y,
Bit#(1) c0);

Bit#(2) s = 0; Bit#(3) c=0; c[0] = c0;
let cs0 = fa(x[0], y[0], c[0]);

c[1] = cs0[1]; s[0] = cs0[0];
let cs1 = fa(x[1], y[1], c[1]);

c[2] = cs1[1]; s[1] = cs1[0];
return {c[2],s};

endfunction

fa fa

x[0] y[0]

c[0]

s[0]

x[1] y[1]

c[1]

s[1]

c[2]

fa can be used as a
black-box as long as
we understand its type
signature

The “let” syntax avoids having
to write down types explicitly

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-14

8

“let” syntax
The “let” syntax: No need to write the type if
the compiler can deduce it:
 let cs0 = fa(x[0], y[0], c[0]);

 Bit#(2) cs0 = fa(x[0], y[0], c[0]);
The same

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-15

Selecting a wire: x[i]

Constant Selector: e.g., x[2]

Dynamic selector: x[i]

[2]
x0
x1
x2
x3

x0
x1
x2
x3

[i]
x0
x1
x2
x3

i
x0
x1
x2
x3

i

no hardware;
x[2] is just
the name of
a wire

4-way mux

assume x is 4 bits wide

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-16

9

A 2-way multiplexer

(s==0)? A : B

A

B

S

Gate-level implementation

Conditional expressions are also synthesized
using muxes

AND

AND

OR

S

A

B

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-17

A 4-way multiplexer
case {s1,s0} matches

0: A;
1: B;
2: C;
3: D;

endcase

S0

S0

S1

A

B

C

D

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-18

10

An w-bit Ripple-Carry Adder
function Bit#(w+1) addN(Bit#(w) x, Bit#(w) y,

Bit#(1) c0);
Bit#(w) s; Bit#(w+1) c=0; c[0] = c0;
for(Integer i=0; i<w; i=i+1)
begin

let cs = fa(x[i],y[i],c[i]);
c[i+1] = cs[1]; s[i] = cs[0];

end
return {c[w],s};
endfunction

Not quite correct

Unfold the loop to get
the wiring diagram

fa fa

x[0] y[0]

c[0]

s[0]

x[1] y[1]

c[1]

s[1]

c[2]cs fa

x[w-1] y[w-1]

s[w-1]

c[w]c[w-1]
…

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-19

Instantiating the parametric Adder
function Bit#(w+1) addN(Bit#(w) x, Bit#(w) y,

Bit#(1) c0);

// concrete instances of addN!
function Bit#(33) add32(Bit#(32) x, Bit#(32) y,

Bit#(1) c0) =
addN(x,y,c0);

function Bit#(4) add3(Bit#(3) x, Bit#(3) y,
Bit#(1) c0) = addN(x,y,c0);

Now we define add32, add3 … using addN

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-20

11

valueOf(w) versus w
Each expression has a type and a value and
these come from two entirely disjoint worlds
w in Bit#(w) resides in the types world
Sometimes we need to use values from the
types world into actual computation. The
function valueOf allows us to do that
 Thus

i<w is not type correct
i<valueOf(w)is type correct

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-21

TAdd#(w,1) versus w+1
Sometimes we need to perform operations in
the types world that are very similar to the
operations in the value world
 Examples: Add, Mul, Log

We define a few special operators in the types
world for such operations
 Examples: TAdd#(m,n), TMul#(m,n), …

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-22

12

A w-bit Ripple-Carry Adder
corrected
function Bit#(TAdd#(w,1)) addN(Bit#(w) x, Bit#(w) y,

Bit#(1) c0);
Bit#(w) s; Bit#(TAdd#(w,1)) c; c[0] = c0;
let valw = valueOf(w);
for(Integer i=0; i<valw; i=i+1)
begin

let cs = fa(x[i],y[i],c[i]);
c[i+1] = cs[1]; s[i] = cs[0];

end
return {c[valw],s};
endfunction

types world
equivalent of w+1

Lifting a type
into the value
world

Structural interpretation of a loop – unfold it to
generate an acyclic graph

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-23

Static Elaboration phase
When BSV programs are compiled, first type
checking is done and then the compiler gets
rid of many constructs which have no direct
hardware meaning, like Integers, loops

cs0 = fa(x[0], y[0], c[0]); c[1]=cs0[1]; s[0]=cs0[0];
cs1 = fa(x[1], y[1], c[1]); c[2]=cs1[1]; s[1]=cs1[0];
…
csw = fa(x[valw-1], y[valw-1], c[valw-1]);

c[valw] = csw[1]; s[valw-1] = csw[0];

for(Integer i=0; i<valw; i=i+1) begin
let cs = fa(x[i],y[i],c[i]);
c[i+1] = cs[1]; s[i] = cs[0];

end

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-24

13

Integer versus Int#(32)
In mathematics integers are unbounded but in
computer systems integers always have a
fixed size
BSV allows us to express both types of
integers, though unbounded integers are used
only as a programming convenience

for(Integer i=0; i<valw; i=i+1)
begin

let cs = fa(x[i],y[i],c[i]);
c[i+1] = cs[1]; s[i] = cs[0];

end

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-25

Shift operators

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-26

14

0 0

Logical right shift by 2

Fixed size shift operation is cheap in hardware
– just wire the circuit appropriately
Rotate, sign-extended shifts – all are equally
easy

a b c d

0 0 a b

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-27

Conditional operation:
shift versus no-shift

We need a mux to select the appropriate wires: if
s is one the mux will select the wires on the left
otherwise it would select wires on the right

s

(s==0)?{a,b,c,d}:{0,0,a,b};

0 0

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-28

15

Logical right shift by n
Shift n can be broken down in
log n steps of fixed-length shifts
of size 1, 2, 4, …
 Shift 3 can be performed by doing a

shift 2 and shift 1
We need a mux to omit a
particular size shift
Shift circuit can be expressed as
log n nested conditional
expressions

00

0

s0

s1

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-29

A digression on types
Suppose we have a variable c whose values
can represent three different colors
 We can declare the type of c to be Bit#(2) and say

that 00 represents Red, 01 Blue and 10 Green
A better way is to create a new type called
Color as follows:

typedef enum {Red, Blue, Green}
Color deriving(Bits, Eq);

The compiler will automatically assign some bit
representation to the three colors and also provide a
function to test if the two colors are equal. If you do
not use “deriving” then you will have to specify the
representation and equality

Types prevent
us from mixing
bits that
represent
color from raw
bits

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-30

16

Enumerated types
typedef enum {Red, Blue, Green}
Color deriving(Bits, Eq);

typedef enum {Eq, Neq, Le, Lt, Ge, Gt, AT, NT}
BrFunc deriving(Bits, Eq);

typedef enum {Add, Sub, And, Or, Xor, Nor, Slt, Sltu,
LShift, RShift, Sra}
AluFunc deriving(Bits, Eq);

Each enumerated type defines a new type

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-31

Combinational ALU
function Data alu(Data a, Data b, AluFunc func);
Data res = case(func)

Add : (a + b);
Sub : (a - b);
And : (a & b);
Or : (a | b);
Xor : (a ^ b);
Nor : ~(a | b);
Slt : zeroExtend(pack(signedLT(a, b)));
Sltu : zeroExtend(pack(a < b));
LShift: (a << b[4:0]);
RShift: (a >> b[4:0]);
Sra : signedShiftRight(a, b[4:0]);

endcase;
return res;

endfunction

Given an implementation of
the primitive operations like
addN, Shift, etc. the ALU
can be implemented simply
by introducing a mux
controlled by op to select the
appropriate circuit

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-32

17

Comparison operators
function Bool aluBr(Data a, Data b, BrFunc brFunc);
 Bool brTaken = case(brFunc)
 Eq : (a == b);
 Neq : (a != b);
 Le : signedLE(a, 0);
 Lt : signedLT(a, 0);
 Ge : signedGE(a, 0);
 Gt : signedGT(a, 0);
 AT : True;
 NT : False;
 endcase;
 return brTaken;
endfunction

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-33

ALU including Comparison
operators

mux

a

func

…

mux brFunc

AddLShiftEq…

b

September 11, 2015 http://csg.csail.mit.edu/6.175 L02-34

