Constructive Computer Architecture

Sequential Circuits - 2

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

September 18, 2015 http://csg.csail.mit.edu/6.175 L05-1

Content

@® So far we have seen modules with methods
which are called by rules outside the body

@ Now we will see examples where a module
may also contain rules
= gcd

@ A common way to implement large
combinational circuits is by folding where
registers hold the state from one iteration to
the next
= Implementing imperative loops
= Multiplication

&

September 18, 2015 http://csg.csail.mit.edu/6.175 LO5-2

Programming with
rules: A simple example

Euclid’s algorithm for computing the
Greatest Common Divisor (GCD):

9 6 subtract
3 6 subtract
6 3 swap
3 3 subtract
0] answer: @ subtract
September 18, 2015 http://csg.csail.mit.edu/6.175 L0O5-3
Euclidean Algorithm
< Reg#(Bit#(32)) x <- mkReg(0);
Reg#(Bit#(32)) y <- mkReg(0);
rule ged;) A rule inside a module
it (x >=y) begin may execute anytime
X <= X —-Y;
end else if (x 1= 0) begin If x is O then the rule
X <= Yoy s=X has no effect
end
endrule
method Action start(Bit#(32) a, Bit#(32) b);
X <= a; y <= b; endmethod
method Bit#(32) result; return y; endmethod
method Bool resultRdy; return x == 0; endmethod
method Bool busy; return x '= 0; endmethod
@ Start method should be called only if busy is False.
@ The result is available only when resultRdy is True.
September 18, 2015 http://csg.csail.mit.edu/6.175 LO5-4

Circuits for GCD

A
b x1=0(s;) X>Y(s3)
x1=0(s) —\°__*/
x-y(S,)
x>y(s3) —N\°_1/
a
startEn —\ ! © / startEn

Result
>
Busy
ResultRdy x!=0 (s)) %y (s2) X>Yy (S3)
A
September 18, 2015 http://csg.csail.mit.edu/6.175 LO5-5

Expressing a loop using
registers

ints = s0; We need two registers
for (inti=0;i<32;i=i+1) { to hold s and i values
s = f(s); from one iteration to
be the next.
return s; C-code These registers are
initialized when the

notDone

September 18, 2015

computation starts and
updated every cycle
until the computation
terminates

sel = start
en = start | notDone

http://csg.csail.mit.edu/6.175 LO5-6

Expressing a loop in BSV

® When a rule executes: Reg#(BIt#(32)) s <- mkRegU();

= all the registers are read Reg#(Blt#?G)) 1 <- mkReg(32);
at the beginning of a rule step;
clock cycle it (i < 32) begin

= computations to s <= f(s); 1 <= i+1;
evaluate the next value end
of the registers are
performed endrule

= Registers that need to
be updated are updated
at the end of the clock
cycle
#® Muxes are need to
initialize the registers

sO

sel

sel = start
en = start | notDone

notDone

September 18, 2015 http://csg.csail.mit.edu/6.175 LO5-7

Combinational 32-bit multiply

4 NS SN N SN NN
function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);
Bit#(32) tp = O;
Bit#(32) prod = 0;
for(Integer 1 = 0; 1 < 32; i1 = i+l) Combinationa
begin circuit uses 31
Bit#(32) m = (a[i]==0)? 0 : b; add32 circuits
Bit#(33) sum = add32(m,tp,0);
prod[i:i] = sum[0];
tp = sum[32:1];
end
return {tp,prod};
endfunction

We can reuse the same add32 circuit if we store
the partial results in a register

September 18, 2015 http://csg.csail.mit.edu/6.175 L05-8

Multiply using registers

function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);
Bit#(32) prod = 0;

Bit#(32) tp = O;
for(Integer 1 = 0; 1 < 32; i1 = i+l)
begin

Bit#(32) m = (a[i]==0)? 0 := b;

Bit#(33) sum = add32(m,tp,0);
prod[i:i] = sum[O0];
tp = sum[32:1];
end
return {tp,prod};
endfunction

Combinationa
version

Need registers to hold a, b, tp, prod and i

Update the registers every cycle until we are done

September 18, 2015 http://csg.csail.mit.edu/6.175 L05-9

Sequential Circuit for Multiply

A4
Reg#(Bit#(32)) a <- mkRegUQ);
Reg#(Bit#(32)) b <- mkRegUQ);
Reg#(Bit#(32)) prod <-mkRegu(); — State
Reg#(Bit#(32)) tp <- mkReg(0): glefnants
Reg#(Bit#(6)) 1 <- mkReg(32); _
rule mulStep if (i < 32); I
Bit#(32) m = (a[i]==0)? 0 : b
Bit#(33) sum = add32(m,tp,0); arule to
prod[i] <= sum[O]; L describe
tp <= sum[32:1]; dy:liﬂc
endrute behavior
similar fo The So that the rule has
loop body in the no effect until i is set
combinational to some other value

version b
September 18, 2015 http://csg.csail.mit.edu/6.175 LO5-10

Dynamic selection

reguires a mux

when the selection
indices are regular then

o a[i] it is better to use a shift
operator (no gates!)
L=
[a]
I o, a[o0].a[1].a[2]...
September 18, 2015 http://csg.csail.mit.edu/6.175 LO5-11

September 18, 2015

Replacing repeated
selections by shifts

Reg#(Bit#(32)) a <- mkRegUQ);
Reg#(Bit#(32)) b <- mkRegUQ);
Reg#(Bit#(32)) prod <-mkRegU(Q);
Reg#(Bit#(32)) tp <- mkReg(0);
Reg#(Bit#(6)) i <- mkReg(32);

&

rule mulStep if (i < 32);

a<=a>>1;

Bit#(33) sum = add32(m,tp,0);
prod <= {sum[0], prod[31:1]}%};

tp <= sum[32:1];
i <= i+1;
endrule

Bit#(32) m = (a[0]==0)? O :

http://csg.csail.mit.edu/6.175 LO5-12

b;

Circuit for Sequential
Multiply

- bln
aln
——
©
I§
l sl 32:1
52: i | §§’|> & |
31:0
|
done result (high) result (low)
sl = start_en
s2 = start_en | 'done
September 18, 2015 http://csg.csail.mit.edu/6.175 L05-13

Circuit analysis

@ Number of add32 circuits has been reduced
from 31 to one, though some registers and
muxes have been added

The longest combinational path has been
reduced from 62 FAs to one add32 plus a few
muxes

@ The sequential circuit will take 31 clock cycles
to compute an answer

&

September 18, 2015 http://csg.csail.mit.edu/6.175

LO5-14

Observations

@ These programs are not very complex and yet
it would have been tedious to express these
programs in a state table or as a circuit
directly

@ BSV method calls are not available in
Verilog/VHDL, and thus such programs
sometimes require tedious programming

@ Even the meaning of double-write errors is not
standardized across tool implementations in
Verilog

September 18, 2015 http://csg.csail.mit.edu/6.175 LO5-15

A subtle problem

I while(lisDone(x)) {
doStep X = doStep(x);
\} J
workQ
o(4one doneQ

let x = workQ.first;

workQ.deq;

ifT (isbDone(x)) begin
doneQ.enq(x);

end else begin
workQ.enq(doStep(x));

end

Double write problem
for 1-element Fifo

Later we will design FIFOs
to permit simultaneous enq
and degq

September 18, 2015 http://csg.csail.mit.edu/6.175 LO5-16

lllegal Actions — Double
Write

®X<=el; x<=eZ;
®x<=el;if(p) x<=-e2;

@®if(p) x<=el; else x <= e2; Not an error

Parallel composition of two actions is illegal if it creates
the possibility of a double-write error, that is, if its
constituent (sub)actions invoke the same action method

September 18, 2015 http://csg.csail.mit.edu/6.175 LO5-17

Shared counters

if (inQA.first.color == Red) begin

redQA.enq(inQA.first.value); inOA redQA
inQA.deq; redC <= redC+1;
end else begin

greenQA.enq(inQA._first.value); greenQA
inQA.deq; greenC <= greenC+1
redC I I greenC

end;
if (inQB.first.color == Red) begin
redQB.enq(inQB.first.value);

; inOB r B
inQB.deq; redC <= redC+1; edQ
end else begin

greenQB.enq(inQB.first.value); greenQB
inQB.deq; greenC <= greenC+1;

end
Ignoring full/empty conditions ‘

What is wrong with this code? Double write error

September 18, 2015 http://csg.csail.mit.edu/6.175 LO5-18

Pipelining Combinational
Functions

Xi+1 X; Xi1
3 different
_ 1 datasets in
the pipeline

@ Lot of area and long combinational delay

@ Folded or multi-cycle version can save area
and reduce the combinational delay but
throughput per clock cycle gets worse

@ Pipelining: a method to increase the circuit
throughput by evaluating multiple inputs

September 18, 2015 http://csg.csail.mit.edu/6.175 LO5-19

Inelastic vs Elastic pipeline

e H{(10) w

inQ sRegl sReg2 outQ

&

Inelastic: all pipeline stages move synchronously

()
inQ fifol fifo2 outQ

Elastic: A pipeline stage can process data if its
input FIFO is not empty and output FIFO is not Full

Most complex processor pipelines are a combination of the two styles
September 18, 2015 http://csg.csail.mit.edu/6.175 LO5-20

10

