Constructive Computer Architecture:

Multirule systems and
Concurrent Execution of Rules

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology /1

September 28, 2015 http://csg.csail.mit.edu/6.175 L08-1

Rewriting Elastic pipeline
as a multirule system

— O

inQ fifol fifo2 outQ

rule stagel;
if(inQ.notEmpty && fifol.notFull)
begin fifol.enq(fO(inQ.first)); inQ.deq; end endrule
rule stage2;
if(fifol.notEmpty && Fifo2.notFull)
begin fifo2.enq(fl(fifol.first)); fifol.deq; end endrule
rule stage3;
if(fifo2.notEmpty && outQ.notFull)
begin outQ.enq(f2(fifo2.first)); fifo2.deq; end endrule

#® How does such a system function?

September 28, 2015 http://csg.csail.mit.edu/6.175 LO8-2

September 28, 2015 http://csg.csail.mit.edu/6.175 LO8-3

Bluespec Execution Model

Repeatedly:
@ Select a rule to execute

User annotations
@ Compute the state updates can be used in
@ Make the state updates rule selection

Highly non-
deterministic;

One-rule-at-a-time-semantics: Any legal
behavior of a Bluespec program can be
explained by observing the state updates
obtained by applying only one rule at a time

However, for performance we need to execute
multiple rules concurrently if possible

Multi-rule versus single rule
elastic pipeline

rule elasticPipeline; I@ I@ |® I
if(inQ.notEmpty && Ffifol.notFull) e L el Tritod outh
begin fifol_enq(Ff1(inQ.first)); inQ.deq; end
if(fifol.notEmpty && Fifo2.notFull)
begin fifo2.enq(f2(fifol.first)); fifol.deq; end
if(fifo2.notEmpty && outQ.notFull)
begin outQ.enq(f3(Ffifo2.first)); fifo2.deq; end
endrule

rule stagel;
if(inQ.notEmpty && fifol.notFull)
begin fifol.enq(f1(inQ.first)); inQ.deq; end endrule
rule stage2;
if(fifol.notEmpty && Fifo2_notFull)
begin fifo2.enq(f2(fifol.first)); fifol.deq; end endrule
rule stage3;
if(fifo2.notEmpty && outQ.notFull)
begin outQ.enq(f3(fifo2.first)); fifo2.deq; end endrule

How are these two systems the same (or different)?

September 28, 2015 http://csg.csail.mit.edu/6.175 LO8-4

Elastic pipeline

Do these systems see the same state changes?

= The single rule system — fills up the pipeline and then
processes a message at every pipeline stage for every
rule firing — no more than one slot in any fifo would be
filled unless the OutQ blocks

s The multirule system has many more possible states.
It can mimic the behavior of one-rule system but one
can also execute rules in different orders, e.g., stagel;
stagel; stageZ2; stagel; stage3; stage2; stage3;
(assuming stage fifos have more than one slot)

® When can some or all the rules in a multirule
system execute concurrently?

September 28, 2015 http://csg.csail.mit.edu/6.175 LO8-5

Evaluating or applying a rule

@ The state of the system s is defined ‘ ‘ ‘
as the value of all its registers)*(¥ 3

@ An expression is evaluated by
computing its value on the current
state iy

#® An action defines the next value of
some of the state elements based on
the current value of the state X’) y" 2

@ A rule is evaluated by evaluating the
corresponding action and
simultaneously updating all the
affected state elements

H«

Given action a and state S, let a(S) represent
the state after the application of action a

September 28, 2015 http://csg.csail.mit.edu/6.175 LO8-6

One-rule-at-a-time semantics

@ Given a program with a set of rules {rule r; a;}
and an initial state S, , S is a legal state if and
only if there exists a sequence of rules rj,,....,
Iin such that S= a;,(...(j:(Sp))---)

September 28, 2015 http://csg.csail.mit.edu/6.175 LO8-7

Concurrent execution of
two rules

@ Concurrent execution of two rules, rule r; a;
and rule r, a,, means executing a rule whose
body looks like (a;; a,), that is a rule which is
a parallel composition of the actions of the two
rules

@ However, we want to preserve one-rule-at-a-
time semantics of Bluespec; (a;; a,) does not
always preserve that!

September 28, 2015 http://csg.csail.mit.edu/6.175 LO8-8

Concurrent scheduling of
rules

rule r; a, and rule r, a, can be scheduled
concurrently, preserving one-rule-at-a-time
semantics, if and only if
= Either VS. (a;; a,)(S) = a,(a,(S))

or VS. (a;; a2)(S) = a1(ax(S))

@ rule r, a, to rule r, a, can be scheduled
concurrently, preserving one-rule-at-a-time
semantics, if and only if there exists a
permutation (p,,...,p,) of (1,...,n) such that
» VS, (a5;.:8,)(8) = apn(--(ap(S))

September 28, 2015 http://csg.csail.mit.edu/6.175 LO8-9

A compiler can determine if two
rules can be executed in parallel
without violating the one-rule-
at-a-time semantics

James Hoe, Ph.D., 2000

Construct a conflict matrix (CM) for rules

September 28, 2015 http://csg.csail.mit.edu/6.175 L08-10

Extending CM to rules

@ CM between two rules is computed exactly the
same way as CM for the methods of a module
@ Given rule rl al and rule r2 a2 such that
mcalls(al)={gl1,912...g1ln}
mcalls(a2)={g21,922...g2m}
® Compute
= Conflict(x,y) = if x and y are methods of the same
module then CM[x,y] else CF
s CM[rl,r2] = conflict(gll,921) n conflict(g11l,922) ...
n conflict(gl2,921) n conflict(g12,922) ...

n conflict(gln,g21) n conflict(g12,922) ...
@ Conflict relation is not transitive
s rl <r2,r2 <r3does notimply rl <r3

September 28, 2015 http://csg.csail.mit.edu/6.175 L08-11

Using CMs for concurrent
scheduling of rules

Two rules that are conflict free can be scheduled
together without violating the one-rule-at-a-time
semantics. In general, use the following theorem

Theorem: Given a set of rules {rule r; a;}, if
there exists a permutation {p,, p, ... p» of
{1..n} such that

Vi<]j.CM(a,, a,) is CF or <
then vV S. (a;;..-;8,)(S) = a,(.--(a51(S))-

Thus, rules ry, r, ... r, can be scheduled
concurrently with the effect V i, j. rp < r

September 28, 2015 http://csg.csail.mit.edu/6.175 L08-12

'Example 1: Compiler Analysis

rule ra; mcalls(ra) = {z.r, X.w, X.r}
if (z>10) mcalls(rb) = {z.r, y.w, y.r}
X <= x+1;
endrule CM(ra, rb) =

conflict(z.r, z.r) n conflict(z.r, y.w)

rule rb; N conflict(z.r, y.r) n conflict(x.w, z.r)
it (z>20) N conflict(x.w, y.w) n conflict(x.w, y.r)
y <= y+2; N conflict(x.r, z.r) n conflict(x.r, y.w)
endrule N Conflict(x.r, y.r)

=CFNnCFnNnCFNCF..=CF

Rules ra and rb can be scheduled together without violating
the one-rule-at-a-time-semantics. We say rules ra and rb
are CF

September 28, 2015 http://csg.csail.mit.edu/6.175 L08-13

Example 2: Compiler Analysis

rule ra; mcalls(ra) = {z.r, x.w, y.r}
if (z>10) mcalls(rb) = {z.r, y.w, x.r}
X <= y+1;

endrule CM(ra, rb) =

conflict(z.r, z.r) n conflict(z.r, y.w)

rule rb; n conflict(z.r, x.r) n conflict(x.w, z.r)
if (z>20) N conflict(x.w, y.w) n conflict(x.w, X.r)
y <= x+2; N conflict(y.r, z.r) n conflict(y.r, y.w)

endrule N Conflict(y.r, X.r)

=CFnCF

N CFnCF

N CFn>

N CFn<

NCF=C

Rules ra and rb cannot be scheduled together without violating the

one-rule-at-a-time-semantics. Rules ra and rb are C

September 28, 2015 http://csg.csail.mit.edu/6.175 L08-14

'Example 3: Compiler Analysis

rule ra: mcalls(ra) = {z.r, x.w, y.r}
if (z2>10) mcalls(rb) = {z.r, y.w, y.r}
X <= y+1;
endrule CM(ra, rb) =

conflict(z.r, z.r) n conflict(z.r, y.w)
rule rb: N conflict(z.r, y.r) n conflict(x.w, z.r)
if (z>20) N conflict(x.w, y.w) n conflict(x.w, y.r)

y <= y+2; N conflict(y.r, z.r) n conflict(y.r, y.w)

endrule N Conflict(y.r, y.r)

=CFnCF

N CF N CF

N CF N CF

N CFn<

NCF=<

Rules ra and rb can be scheduled together without violating

the one-rule-at-a-time-semantics. Rule ra < rb

September 28, 2015 http://csg.csail.mit.edu/6.175 L08-15

Multi-rule versus single rule
elastic pipeline

rule elasticPipeline; I@ I@ I@ I
if(inQ.notEmpty && Fifol.notFull) * o fol oz outh
begin fifol.enq(f1(inQ.first)); inQ.deq; end
if(fifol.notEmpty && fifo2.notFull)
begin fifo2.enq(f2(fifol.first)); fifol.deq; end
if(fifo2.notEmpty && outQ.notFull)
begin outQ.enq(Ff3(Ffifo2.first)); fifo2.deq; end
endrule

rule stagel;
if(inQ.notEmpty && fifol.notFull)
begin fifol.enq(f1(inQ.first)); inQ.deq; end endrule
rule stage?;
if(fifol.notEmpty && Fifo2_.notFull)
begin fifo2.enq(f2(fifol.first)); fifol.deq; end endrule
rule stage3;
if(fifo2_.notEmpty && outQ.notFull)
begin outQ.enq(f3(fifo2.first)); fifo2.deq; end endrule

If we do concurrent scheduling in the multirule system then
the multi-rule system behaves like the single rule system
September 28, 2015 http://csg.csail.mit.edu/6.175 L08-16

Concurrency when the FIFOs do
not permit concurrent enq and deq

RGN 8

X
inQ fifol fifo2 outQ
not not not not full
empty empty empty
& &
not full not full

At best alternate stages in the pipeline will
be able to fire concurrently

September 28, 2015 http://csg.csail.mit.edu/6.175 L08-17

Practical scheduling concerns

@ Rules often have a top level predicate or
guard:
= rule rlif (pl1); al

@ It does make sense to schedule such a rule for
execution unless it’'s predicate is true

@ We can evaluate the guards of many™ rules in
parallel every (clock) cycle and then select for
parallel execution only among those rules
whose guards are true. Of course the selected
rules must preserve one-rule-at-a-time
semantics.

*Not all guards can be evaluated in parallel because
of EHRs and method parameters

September 28, 2015 http://csg.csail.mit.edu/6.175 L08-18

Scheduling and control logic

““Modules Rules ‘CAN_FIRE" “WILL_FIRE” Modules
(Current state) cf, wfy (Next state)
P, — : Scheduler :
. cf, wf, —
N =
LA |
i . .
L] e o o L]
. ns, — ‘
cond| D, — o J
l _ : Muxing : |:|
action| g
1 A i
ACompiler synthesizes a scheduler such that at any give&j:|

time will-fire for only non—conflicting rules are true
5

September 28, 2015 http://csg.csail.mit.edu/6.1 L08-19
some insight into
Concurrent rule execution
4
i Rj |
RUIES eeel A oeel PR LA PO A TR N N PONK A oA lees |rue
; steps
|’ o | l
HW I | -R:‘-(I I clocks
R

@ There are more intermediate states in the rule
semantics (a state after each rule step)

@ In the HW, states change only at clock edges

September 28, 2015 http://csg.csail.mit.edu/6.175 L08-20

Parallel execution
reorders reads and writes

AN
Rules rule

- < = . PR PR——a—

Ireads erteEI reads erte§|reads erteslreads ertesl reads ertesI steps
/x /, e
,,/ i \x\\\ // — \\\x
/ //
e I ¥ T
reads write§| reads write§|
>

>| clocks

HW

@ In the rule semantics, each rule sees (reads)
the effects (writes) of previous rules

@ In the HW, rules only see the effects from
previous clocks, and only affect subsequent

clocks
September 28, 2015 http://csg.csail.mit.edu/6.175 L08-21
Correctness
;
i Ri K rule
RUIES eoel feeel A AT Aeee R o A qeeel 4 A oleee 1
| - steps
| I |
Rk
HW I I‘ oo I I clocks
R |
@ The compiler will schedule rules concurrently
only if the net state change is equivalent to
sequential rule execution (which is what our
theorem ensures)
September 28, 2015 http://csg.csail.mit.edu/6.175 L08-22

11

