
1

Constructive Computer Architecture:

Non-Pipelined and Pipelined
Processors

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

October 7, 2015 http://csg.csail.mit.edu/6.175 L10-1

Processor interface

interface Proc;
method Action hostToCpu(Addr startpc);
method ActionValue#(CpuToHost) cpuToHost;

endinterface
typedef struct {CpuToHostType c2hType; Bit#(16) data;}
CpuToHost deriving(Bits, Eq);
typedef enum {ExitCode, PrintChar, PrintIntLow,
PrintIntHigh} CpuToHostType deriving(Bits, Eq);

Exit
code
& stdout

October 7, 2015 http://csg.csail.mit.edu/6.175 L10-2

6.175 convention

2

Control and Status Registers
(CSR)

CSRs are used to record and control the machine state
 cycle (clock cycles) // read only
 instret (instruction counts) // read only
 hartid (hardware thread ID) // read only
 mtohost (output to host) // write only
 mepc, mcause etc. will be used for exception handleling later

October 7, 2015 http://csg.csail.mit.edu/6.175 L10-3

typedef Bit#(12) CsrIndx; // CSR index is 12-bit

CSR is needed as an additional field in DecodedInst and
ExecInst types

Maybe#(CsrIndex) csr;

Instructions to Read and
Write CSR

 opcode = SYSTEM
 CSRW csr, rs1 (funct3 = CSRRW, rd = x0): csr  rs1
 CSRR rd, csr (funct3 = CSRRS, rs1 = x0): rd  csr
 New enums in IType: Csrr, Csrw

October 7, 2015 http://csg.csail.mit.edu/6.175 L10-4

csr funct3rs1 rd opcode
12 5 3 5 7

3

Code with CSRs
// csrf: module that implements all CSRs
let csrVal = csrf.rd(fromMaybe(?, dInst.csr));
let eInst = exec(dInst, rVal1, rVal2, pc, csrVal);

csrf.wr(eInst.iType == Csrw ? eInst.csr : Invalid,
eInst.data);

write CSR (CSRW instruction) and indicate the
completion of an instruction

pass CSR values to execute CSRR

We did not show these lines in our processor to
avoid cluttering the slides

October 7, 2015 http://csg.csail.mit.edu/6.175 L10-5

Communicating with the
host

We will provide you C library functions like
print and you will almost never encode
anything directly to communicate with tthe
host

October 7, 2015 L10-6http://csg.csail.mit.edu/6.175

4

Single-Cycle RISC-V:
Clock Speed

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

+4

tClock > tM + tDEC + tRF + tALU+ tM+ tWB

We can improve the clock speed if we execute each
instruction in two clock cycles
tClock > max {tM , (tDEC + tRF + tALU+ tM+ tWB)}
However, this may not improve the performance because
each instruction will now take two cycles to execute

October 7, 2015 http://csg.csail.mit.edu/6.175 L10-7

Structural Hazards
Sometimes multicycle implementations are
necessary because of resource conflicts, aka,
structural hazards
 Princeton style architectures use the same memory

for instruction and data and consequently, require at
least two cycles to execute Load/Store instructions

 If the register file supported less than 2 reads and
one write concurrently then most instructions would
take more than one cycle to execute

Usually extra registers are required to hold
values between cycles

October 7, 2015 http://csg.csail.mit.edu/6.175 L10-8

5

Two-Cycle RISC-V

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

+4 f2d

state

Introduce register “f2d” to hold a fetched
instruction and register “state” to remember the
state (fetch/execute) of the processor

October 7, 2015 http://csg.csail.mit.edu/6.175 L10-9

Two-Cycle RISC-V
module mkProc(Proc);
Reg#(Addr) pc <- mkRegU;
RFile rf <- mkRFile;
IMemory iMem <- mkIMemory;

DMemory dMem <- mkDMemory;
Reg#(Data) f2d <- mkRegU;
Reg#(State) state <- mkReg(Fetch);

rule doFetch (state == Fetch);
let inst = iMem.req(pc);
f2d <= inst;
state <= Execute;

endrule

October 7, 2015 http://csg.csail.mit.edu/6.175 L10-10

6

Two-Cycle RISC V

The Execute Cycle
rule doExecute(stage==Execute);

let inst = f2d;
let dInst = decode(inst);
let rVal1 = rf.rd1(fromMaybe(?, dInst.src1));
let rVal2 = rf.rd2(fromMaybe(?, dInst.src2));
let eInst = exec(dInst, rVal1, rVal2, pc);
if(eInst.iType == Ld)

eInst.data <- dMem.req(MemReq{op: Ld, addr:
eInst.addr, data: ?});

else if(eInst.iType == St)
let d <- dMem.req(MemReq{op: St, addr:

eInst.addr, data: eInst.data});
if (isValid(eInst.dst))

rf.wr(fromMaybe(?, eInst.dst), eInst.data);
pc <= eInst.brTaken ? eInst.addr : pc + 4;
state <= Fetch;

endrule endmodule
no change from single-cycle

October 7, 2015 http://csg.csail.mit.edu/6.175 L10-11

Two-Cycle RISC-V: Analysis

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

+4 fr

stage

In any given clock
cycle, lot of unused

hardware !

ExecuteFetch

Pipeline execution of instructions to increase
the throughput

October 7, 2015 http://csg.csail.mit.edu/6.175 L10-12

7

Problems in Instruction
pipelining

Control hazard: Insti+1 is not known until Insti is at least
decoded. So which instruction should be fetched?
Structural hazard: Two instructions in the pipeline may
require the same resource at the same time, e.g.,
contention for memory
Data hazard: Insti may affect the state of the machine (pc,
rf, dMem) – Insti+1must be fully cognizant of this change

PC Decode

Register File

Execute

Data
Memory

Inst
Memory

+4 f2d

InstiInsti+1

none of these hazards were present in the FFT pipeline
October 7, 2015 http://csg.csail.mit.edu/6.175 L10-13

Arithmetic versus
Instruction pipelining

The data items in an arithmetic pipeline, e.g.,
FFT, are independent of each other

The entities in an instruction pipeline affect
each other
 This causes pipeline stalls or requires other fancy

tricks to avoid stalls
 Processor pipelines are significantly more

complicated than arithmetic pipelines

sReg1 sReg2
x

inQ

f0 f1 f2

outQ

October 7, 2015 http://csg.csail.mit.edu/6.175 L10-14

8

The power of computers comes
from the fact that the
instructions in a program are
not independent of each other

 must deal with hazard

October 7, 2015 http://csg.csail.mit.edu/6.175 L10-15

Control Hazards

Insti+1 is not known until Insti is at least decoded. So
which instruction should be fetched?
General solution – speculate, i.e., predict the next
instruction address
 requires the next-instruction-address prediction machinery; can

be as simple as pc+4
 prediction machinery is usually elaborate because it dynamically

learns from the past behavior of the program
What if speculation goes wrong?
 machinery to kill the wrong-path instructions, restore the correct

processor state and restart the execution at the correct pc

PC Decode

Register File

Execute

Data
Memory

Inst
Memory

+4 f2d

InstiInsti+1

October 7, 2015 http://csg.csail.mit.edu/6.175 L10-16

9

Two-stage Pipelined SMIPS

PC Decode

Register File

Execute

Data
Memory

Inst
Memory

pred
f2d

Fetch stage must predict
the next instruction to
fetch to have any pipelining

Fetch stage Decode-RegisterFetch-Execute-Memory-
WriteBack stage

In case of a misprediction the
Execute stage must kill the
mispredicted instruction in f2d

kill misprediction
correct pc

October 7, 2015 http://csg.csail.mit.edu/6.175 L10-17

Pipelining Two-Cycle RISC-V
singlerule
rule doPipeline ;
let newInst = iMem.req(pc);
let newPpc = nextAddr(pc); let newPc = ppc;
let newIr=Valid(Fetch2Decode{pc:newPc,ppc:newPpc,

inst:newIinst});
if(isValid(ir)) begin
let x = fromMaybe(?, ir); let irpc = x.pc;
let ppc = x.ppc; let inst = x.inst;
let dInst = decode(inst);
... register fetch ...;
let eInst = exec(dInst, rVal1, rVal2, irpc, ppc);
...memory operation ...
...rf update ...
if (eInst.mispredict) begin newIr = Invalid;

newPc = eInst.addr; end
end

pc <= newPc; ir <= newIr;
endrule

fetch

execute

October 7, 2015 http://csg.csail.mit.edu/6.175 L10-18

