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Processor interface

interface Proc;
method Action hostToCpu(Addr startpc);
method ActionValue#(CpuToHost) cpuToHost;

endinterface
typedef struct {CpuToHostType c2hType; Bit#(16) data;} 
CpuToHost deriving(Bits, Eq);
typedef enum {ExitCode, PrintChar, PrintIntLow, 
PrintIntHigh} CpuToHostType deriving(Bits, Eq);

Exit 
code
& stdout
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Control and Status Registers 
(CSR)

CSRs are used to record and control the machine state
 cycle (clock cycles) // read only
 instret (instruction counts) // read only
 hartid (hardware thread ID) // read only
 mtohost (output to host) // write only
 mepc, mcause etc. will be used for exception handleling later
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typedef Bit#(12) CsrIndx; // CSR index is 12-bit 

CSR is needed as an additional field in DecodedInst and 
ExecInst types

Maybe#(CsrIndex) csr; 

Instructions to Read and 
Write CSR

 opcode = SYSTEM
 CSRW csr, rs1 (funct3 = CSRRW, rd = x0): csr  rs1
 CSRR  rd, csr (funct3 = CSRRS, rs1 = x0): rd  csr
 New enums in IType: Csrr, Csrw
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csr funct3rs1 rd opcode
12 5 3 5 7
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Code with CSRs
// csrf: module that implements all CSRs
let csrVal = csrf.rd(fromMaybe(?, dInst.csr));
let eInst = exec(dInst, rVal1, rVal2, pc, csrVal);

csrf.wr(eInst.iType == Csrw ? eInst.csr : Invalid, 
eInst.data);  

write CSR (CSRW instruction) and indicate the 
completion of an instruction

pass CSR values to execute CSRR

We did not show these lines in our processor to 
avoid cluttering the slides 
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Communicating with the 
host

We will provide you C library functions like 
print and you will almost never encode 
anything directly to communicate with tthe
host
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Single-Cycle RISC-V: 
Clock Speed
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tClock >  tM + tDEC + tRF + tALU+ tM+ tWB

We can improve the clock speed if we execute each 
instruction in two clock cycles
tClock >  max {tM , (tDEC + tRF + tALU+ tM+ tWB )}
However, this may not improve the performance because 
each instruction will now take two cycles to execute
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Structural Hazards
Sometimes multicycle implementations are 
necessary because of resource conflicts, aka,  
structural hazards 
 Princeton style architectures use the same memory 

for instruction and data and consequently, require at 
least two cycles to execute Load/Store instructions

 If the register file supported less than 2 reads and 
one write concurrently then most instructions would 
take more than one cycle to execute

Usually extra registers are required to hold 
values between cycles
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Two-Cycle RISC-V
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Introduce register “f2d” to hold a fetched 
instruction and register “state” to remember the 
state (fetch/execute) of the processor
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Two-Cycle RISC-V
module mkProc(Proc);
Reg#(Addr)  pc <- mkRegU;
RFile rf <- mkRFile;
IMemory iMem <- mkIMemory;

DMemory dMem <- mkDMemory; 
Reg#(Data)  f2d <- mkRegU;
Reg#(State) state <- mkReg(Fetch);

rule doFetch (state == Fetch);
let inst = iMem.req(pc);
f2d <= inst;
state <= Execute;

endrule
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Two-Cycle RISC V

The Execute Cycle
rule doExecute(stage==Execute);

let inst = f2d;
let dInst = decode(inst);
let rVal1 = rf.rd1(fromMaybe(?, dInst.src1));
let rVal2 = rf.rd2(fromMaybe(?, dInst.src2));
let eInst = exec(dInst, rVal1, rVal2, pc);
if(eInst.iType == Ld)

eInst.data <- dMem.req(MemReq{op: Ld, addr:
eInst.addr, data: ?});

else if(eInst.iType == St)
let d <- dMem.req(MemReq{op: St, addr: 

eInst.addr, data: eInst.data});
if (isValid(eInst.dst))

rf.wr(fromMaybe(?, eInst.dst), eInst.data);
pc <= eInst.brTaken ? eInst.addr : pc + 4;
state <= Fetch;

endrule endmodule
no change from single-cycle
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Two-Cycle RISC-V: Analysis

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

+4 fr

stage

In any given clock 
cycle, lot of unused 

hardware !

ExecuteFetch

Pipeline execution of instructions to increase 
the throughput 
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Problems in Instruction 
pipelining

Control hazard: Insti+1 is not known until Insti is at least 
decoded. So which instruction should be fetched?
Structural hazard: Two instructions in the pipeline may 
require the same resource at the same time, e.g., 
contention for memory
Data hazard: Insti may affect the state of the machine (pc, 
rf, dMem) – Insti+1must be fully cognizant of this change
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Memory

Inst
Memory

+4 f2d

InstiInsti+1

none of these hazards were present in the FFT pipeline  
October 7, 2015 http://csg.csail.mit.edu/6.175 L10-13

Arithmetic versus 
Instruction pipelining

The data items in an arithmetic pipeline, e.g., 
FFT, are independent of each other

The entities in an instruction pipeline affect 
each other
 This causes pipeline stalls or requires other fancy 

tricks to avoid stalls
 Processor pipelines are significantly more 

complicated than arithmetic pipelines

sReg1 sReg2
x

inQ

f0 f1 f2

outQ
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The power of computers comes 
from the fact that the 
instructions in a program are 
not independent of each other

 must deal with hazard
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Control Hazards

Insti+1 is not known until Insti is at least decoded. So 
which instruction should be fetched?
General solution – speculate, i.e., predict the next 
instruction address
 requires the next-instruction-address prediction machinery; can 

be as simple as pc+4 
 prediction machinery is usually elaborate because it dynamically 

learns from the past behavior of the program
What if speculation goes wrong?
 machinery to kill the wrong-path instructions, restore the correct 

processor state and restart the execution at the correct pc 
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Two-stage Pipelined SMIPS

PC Decode

Register File

Execute

Data
Memory

Inst
Memory

pred
f2d

Fetch stage must predict 
the next instruction to  
fetch to have any pipelining 

Fetch stage Decode-RegisterFetch-Execute-Memory-
WriteBack stage

In case of a misprediction the 
Execute stage must kill the 
mispredicted instruction in f2d

kill misprediction
correct pc
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Pipelining Two-Cycle RISC-V 
singlerule
rule doPipeline ;
let newInst = iMem.req(pc);
let newPpc = nextAddr(pc); let newPc = ppc;
let newIr=Valid(Fetch2Decode{pc:newPc,ppc:newPpc,

inst:newIinst});
if(isValid(ir)) begin
let x = fromMaybe(?, ir); let irpc = x.pc; 
let ppc = x.ppc; let inst = x.inst;
let dInst = decode(inst);
... register fetch ...;
let eInst = exec(dInst, rVal1, rVal2, irpc, ppc);
...memory operation ...
...rf update ...
if (eInst.mispredict) begin newIr = Invalid; 

newPc = eInst.addr;  end
end

pc <= newPc; ir <= newIr;
endrule

fetch

execute
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