Constructive Computer Architecture:

Non-Pipelined and Pipelined
Processors

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

October 7, 2015 http://csg.csail.mit.edu/6.175

L10-1

Processor interface

Testbench calis these methods to start
processor execution and to query final status

&

cpuToHost H hostToCpu

Initial memory contents
automatically loaded into memory
muodels by Bluesim simulator

(wem)
W

interface Proc;-*
method Action hostToCpu(Addr startpc);
method ActionValue#(CpuToHost) cpuToHost;
endinterface

cod

CpuToHost deriving(Bits, EQ);
typedef enum {ExitCode, PrintChar, PrintintLow,
PrintintHigh} CpuToHostType deriving(Bits, EQ);

October 7, 2015 http://csg.csail.mit.edu/6.175

mkProc 6.175 convention

Exit
& stdout

typedef struct {CpuToHostType c2hType; Bit#(16) data;}

e

L10-2

Control and Status Registers
(CSR)

'@ CSRs are used to record and control the machine state
= cycle (clock cycles) // read only
= instret (instruction counts) // read only
= hartid (hardware thread ID) // read only
= mtohost (output to host) // write only
= mepc, mcause etc. will be used for exception handleling later

typedef Bit#(12) Csrindx; // CSR index is 12-bit
CSR is needed as an additional field in DecodedInst and

Execlnst types
Maybe#(Csrindex) csr;

October 7, 2015 http://csg.csail.mit.edu/6.175 L10-3

Instructions to Read and
Write CSR

&

12 5 3 5 7
‘ csr [rsl | funct3 ‘ rd | opcode
= opcode = SYSTEM
» CSRW csr, rs1 (funct3 = CSRRW, rd = x0): csr € rsl
= CSRR rd, csr (funct3 = CSRRS, rs1 = x0): rd & csr
= New enums in IType: Csrr, Csrw

October 7, 2015 http://csg.csail.mit.edu/6.175 L10-4

Code with CSRs

// csrf: module that implements all CSRs
let csrval = csrf.rd(fromMaybe(?, dInst.csr));
let elnst = exec(dlnst, rvall, rval2, pc, csrVval);

pass CSR values to execute CSRR

csrf.wr(elnst.iType == Csrw ? elnst.csr : Invalid,
elnst.data);

write CSR (CSRW instruction) and indicate the
completion of an instruction

We did not show these lines in our processor to
avoid cluttering the slides

October 7, 2015 http://csg.csail.mit.edu/6.175

L10-5

Communicating with the
host

@ We will provide you C library functions like
print and you will almost never encode

anything directly to communicate with tthe
host

&

October 7, 2015

http://csg.csail.mit.edu/6.175 L10-6

Single-Cycle RISC-V:
Clock Speed

Register File
| — il |
E tDecode_ —Fxecuts
' 1

Inst Data
Memory Memory

tClock > tM + tDEC + tRF + tALU+ tM+ tWB

We can improve the clock speed if we execute each
instruction in two clock cycles

toiook = Max {ty , (toee + tre + tayu+ tyt typ)}

However, this may not improve the performance because

each instruction will now take two cycles to execute
October 7, 2015 http://csg.csail.mit.edu/6.175 L10-7

Structural Hazards

® Sometimes multicycle implementations are
necessary because of resource conflicts, aka,
structural hazards

= Princeton style architectures use the same memory
for instruction and data and consequently, require at
least two cycles to execute Load/Store instructions

= If the register file supported less than 2 reads and
one write concurrently then most instructions would
take more than one cycle to execute

@ Usually extra registers are required to hold
values between cycles

October 7, 2015 http://csg.csail.mit.edu/6.175 L10-8

Two-Cycle RISC-V

Register File

o

]
PC f2d Decode Execute

|

N\ (-Ax‘j r*

Inst
Memory

Introduce register “f2d” to hold a fetched

|

Data
Memory

instruction and register “state” to remember the

state (fetch/execute) of the processor

October 7, 2015 http://csg.csail.mit.edu/6.175

L10-9

Two-Cycle RISC-V

module mkProc(Proc);
Reg#(Addr) pc <- mkRegU;

RFile rf <- mkRFile;
IMemory iMem <- mkIMemory;
DMemory dMem <- mkDMemory;

Reg#(Data) T2d <- mkRegU;
Reg#(State) state <- mkReg(Fetch);

rule doFetch (state == Fetch);
let inst = iMem.req(pc);
f2d <= inst;
state <= Execute;

endrule

October 7, 2015 http://csg.csail.mit.edu/6.175

L10-10

Two-Cycle RISC V

The Execute Cycle

4 NS S N N N
T rule doExecute(stage==Execute);
let inst = f2d;

let dinst = decode(inst);
let rvall = rf.rdl1(fromMaybe(?, dinst.srcl));
let rval2 = rf.rd2(fromMaybe(?, dinst.src2));

let elnst = exec(dInst, rvall, rval2, pc);
if(elnst.iType == Ld)
elnst.data <- dMem.req(MemReqg{op: Ld, addr:
elnst.addr, data: ?});
else if(elnst.iType == St)
let d <- dMem.req(MemReq{op: St, addr:
elnst.addr, data: elnst.data});
if (isvalid(elnst.dst))
rf.wr(fromMaybe(?, elnst.dst), elnst.data);
pc <= elnst.brTaken ? elnst.addr : pc + 4;

state <= Fetch; .
. no change from single-cycle
endrule endmodule 9 9 Y

October 7, 2015 http://csg.csail.mit.edu/6.175

L10-11

Two-Cycle RISC-V: Analysis

Fetch § Execute Register File

PC Decode Execute
A r -‘
Tiss In any given clock Data
Memory cycle, lot of unused Memory
hardware !

Pipeline execution of instructions to increase
the throughput

October 7, 2015 http://csg.csail.mit.edu/6.175

L10-12

Problems in Instruction
pipelining

Inst,; Inst;

Register File

i e il
E{E@ I p— e

| ™
Inst Data
Memory Memory

i

@ Control hazard: Inst,,_; is not known until Inst;is at least
decoded. So which instruction should be fetched?

@ Structural hazard: Two instructions in the pipeline may
require the same resource at the same time, e.g.,
contention for memory

@ Data hazard: Inst;may affect the state of the machine (pc,
rf, dMem) — Inst;,_;must be fully cognizant of this change

none of these hazards were present in the FFT pipeline

October 7, 2015 http://csg.csail.mit.edu/6.175 L10-13

Arithmetic versus
Instruction pipelining

@ The data items in an arithmetic pipeline, e.g.,
FFT, are independent of each other

i [+(10) -

inQ sRegl sReg2 outQ

@ The entities in an instruction pipeline affect
each other
= This causes pipeline stalls or requires other fancy
tricks to avoid stalls
= Processor pipelines are significantly more
complicated than arithmetic pipelines

October 7, 2015 http://csg.csail.mit.edu/6.175

L10-14

The power of computers comes
from the fact that the

instructions in a program are
not independent of each other

= must deal with hazard

October 7, 2015 http://csg.csail.mit.edu/6.175

L10-15

Control Hazards

Inst, Inst; Register File

|PC ‘ﬂ:le f2:| Decode [— 3] Execute

[fem L1 N

&

]

Data
Memory
@ Inst,, is not known until Inst; is at least decoded. So

which instruction should be fetched?
#® General solution — speculate, i.e., predict the next
instruction address

requires the next-instruction-address prediction machinery; can
be as simple as pc+4

prediction machinery is usually elaborate because it dynamically
learns from the past behavior of the program
#® What if speculation goes wrong?

= machinery to kill the wrong-path instructions, restore the correct

processor state and restart the execution at the correct pc
http://csg.csail.mit.edu/6.175

October 7, 2015

L10-16

Two-stage Pipelined SMIPS

Fetch stage || Decode-RegisterFetch-Execute-Memory-
WriteBack stage
Register File
misprediction I
_/ correct pc J
PC ' @ f2d Decode Execute :
AT e R
Inst Data
Memory Memory
Fetch stage must predict In case of a misprediction the
the next instruction to Execute stage must kill the
fetch to have any pipelining mispredicted instruction in f2d
October 7, 2015 http://csg.csail.mit.edu/6.175

L10-17

Pipelining Two-Cycle RISC-V

singlerule
Y« AN S S S E
rule doPipeline ;
let newlnst = iMem.req(pc); fetch
let newPpc = nextAddr(pc); let newPc = ppc;
let newlr=Valid(Fetch2Decode{pc:newPc,ppc:newPpc,
inst:newlinst});
if(isvalid(ir)) begin execute
let x = fromMaybe(?, ir); let irpc = X.pc;
let ppc = x.ppc; let inst = x.inst;
let dinst = decode(inst);
register fetch .._;
let elnst = exec(dInst, rVvall, rVal2, irpc, ppc);
-..memory operation ...
-..rf update ...
if (elnst_mispredict) begin newlr = Invalid;
newPc = elnst.addr; end
end
pc <= newPc; ir <= newlr;
endrule
October 7, 2015 http://csg.csail.mit.edu/6.175 L10-18

