
1

Constructive Computer Architecture:

Control Hazards

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-1

Control Hazards

General solution – speculate, i.e., predict the next
instruction address
 requires the next-instruction-address prediction machinery; can

be as simple as pc+4
 prediction machinery is usually elaborate because it dynamically

learns from the past behavior of the program
What if speculation goes wrong?
 machinery to kill the wrong-path instructions, restore the correct

processor state and restart the execution at the correct pc

PC Decode

Register File

Execute

Data
Memory

Inst
Memory

+4 f2d

InstiInsti+1 Insti+1 is not known
until Insti is at least
decoded. So which
instruction should be
fetched?

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-2

2

Two-stage Pipelined SMIPS

PC Decode

Register File

Execute

Data
Memory

Inst
Memory

pred
f2d

Fetch stage must predict
the next instruction to
fetch to have any pipelining

Fetch stage Decode-RegisterFetch-Execute-Memory-
WriteBack stage

In case of a misprediction the
Execute stage must kill the
mispredicted instruction in f2d

kill misprediction
correct pc

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-3

Two-stage Pipelined SMIPS

PC Decode

Register File

Execute

Data
Memory

Inst
Memory

pred f2d

Fetch stage Decode-RegisterFetch-Execute-Memory-
WriteBack stage

kill misprediction
correct pc

f2d must contain a Maybe type value because
sometimes the fetched instruction is killed
Fetch2Decode type captures all the information that
needs to be passed from Fetch to Decode, i.e.

Fetch2Decode {pc:Addr, ppc: Addr, inst:Inst}

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-4

3

Pipelining Two-Cycle SMIPS –
single rule
rule doPipeline ;

let instF = iMem.req(pc);
let ppcF = nextAddr(pc); let nextPc = ppcF;
let newf2d = Valid (Fetch2Decode{pc:pc,ppc:ppcF,

inst:instF});
if(isValid(f2d)) begin
let x = fromMaybe(?,f2d); let pcD = x.pc;
let ppcD = x.ppc; let instD = x.inst;
let dInst = decode(instD);
... register fetch ...;
let eInst = exec(dInst, rVal1, rVal2, pcD, ppcD);
...memory operation ...
...rf update ...
if (eInst.mispredict) begin nextPc = eInst.addr;

newf2d = Invalid; end
end

pc <= nextPc; f2d <= newf2d;
endrule

fetch

execute

these values are
being redefined

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-5

Inelastic versus Elastic
pipeline

The pipeline presented is inelastic, that is, it
relies on executing Fetch and Execute together
or atomically
In a realistic machine, Fetch and Execute
behave more asynchronously; for example
memory latency or a functional unit may take
variable number of cycles
If we replace ir by a FIFO (f2d) then it is
possible to make the machine more elastic,
that is, Fetch keeps putting instructions into
f2d and Execute keeps removing and
executing instructions from f2d

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-6

4

An elastic Two-Stage pipeline
rule doFetch ;

let inst = iMem.req(pc);
let ppc = nextAddr(pc); pc <= ppc;
f2d.enq(Fetch2Decode{pc:pc, ppc:ppc, inst:inst});

endrule

rule doExecute ;
let x = f2d.first; let inpc = x.pc;
let ppc = x.ppc; let inst = x.inst;
let dInst = decode(inst);
... register fetch ...;
let eInst = exec(dInst, rVal1, rVal2, inpc, ppc);
...memory operation ...
...rf update ...
if (eInst.mispredict) begin

pc <= eInst.addr; f2d.clear; end
else f2d.deq;

endrule

Can these rules
execute concurrently
assuming the FIFO
allows concurrent enq,
deq and clear?

no –
double writes in pc

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-7

An elastic Two-Stage pipeline:
for concurrency make pc into an EHR
rule doFetch ;

let inst = iMem.req(pc[0]);
let ppc = nextAddr(pc[0]); pc[0] <= ppc;
f2d.enq(Fetch2Decode{pc:pc[0], ppc:ppc, inst:inst});

endrule

rule doExecute;
let x = f2d.first; let inpc = x.pc;
let ppc = x.ppc; let inst = x.inst;
let dInst = decode(inst);
... register fetch ...;
let eInst = exec(dInst, rVal1, rVal2, inpc, ppc);
...memory operation ...
...rf update ...
if (eInst.mispredict) begin

pc[1] <= eInst.addr; f2d.clear; end
else f2d.deq;

endrule

These rules can
execute concurrently
assuming the FIFO has
(enq CF deq) and
(enq < clear)

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-8

5

Correctness issue

<inst, pc, ppc>

Once Execute redirects the PC,
 no wrong path instruction should be executed
 the next instruction executed must be the redirected

one
This is true for the code shown because
 Execute changes the pc and clears the FIFO

atomically
 Fetch reads the pc and enqueues the FIFO atomically

Fetch Execute

PC

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-9

Killing fetched instructions
In the simple design with combinational memory
we have discussed so far, all the mispredicted
instructions were present in f2d. So the Execute
stage can atomically:
 Clear f2d
 Set pc to the correct target

In highly pipelined machines there can be
multiple mispredicted and partially executed
instructions in the pipeline; it will generally take
more than one cycle to kill all such instructions

Need a more general solution then clearing the f2d FIFO

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-10

6

Epoch: a method for
managing control hazards

Add an epoch register in the processor state
The Execute stage changes the epoch
whenever the pc prediction is wrong and sets
the pc to the correct value
The Fetch stage associates the current epoch
with every instruction when it is fetched

PC

iMem

pred f2d

Epoch

Fetch Execute

inst

targetPC

The epoch of the
instruction is examined
when it is ready to
execute. If the processor
epoch has changed the
instruction is thrown away

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-11

An epoch based solution
rule doFetch ;

let instF=iMem.req(pc[0]);
let ppcF=nextAddr(pc[0]); pc[0]<=ppcF;
f2d.enq(Fetch2Decode{pc:pc[0],ppc:ppcF,epoch:epoch,

inst:instF});
endrule
rule doExecute;

let x=f2d.first; let pcD=x.pc; let inEp=x.epoch;
let ppcD = x.ppc; let instD = x.inst;
if(inEp == epoch) begin
let dInst = decode(instD); ... register fetch ...;
let eInst = exec(dInst, rVal1, rVal2, pcD, ppcD);
...memory operation ...
...rf update ...
if (eInst.mispredict) begin

pc[1] <= eInst.addr; epoch <= next(epoch); end
end

f2d.deq; endrule

Can these rules execute concurrently ?

yes

two values for epoch are sufficient

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-12

7

Discussion
Epoch based solution kills one wrong-path
instruction at a time in the execute stage
It may be slow, but it is more robust in more
complex pipelines, if you have multiple stages
between fetch and execute or if you have
outstanding instruction requests to the iMem
It requires the Execute stage to set the pc and
epoch registers simultaneously which may result
in a long combinational path from Execute to
Fetch

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-13

Decoupled Fetch and Execute

<inst, pc, ppc,
epoch>

<corrected pc,
new epoch>

In decoupled systems a subsystem reads and
modifies only local state atomically
 In our solution, pc and epoch are read by both rules

Properly decoupled systems permit greater
freedom in independent refinement of
subsystems

Fetch Execute

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-14

8

A decoupled solution using
epochs

Add fEpoch and eEpoch registers to the processor
state; initialize them to the same value
The epoch changes whenever Execute detects
the pc prediction to be wrong. This change is
reflected immediately in eEpoch and eventually in
fEpoch via a message from Execute to Fetch
Associate fEpoch with every instruction when it is
fetched
In the execute stage, reject, i.e., kill, the
instruction if its epoch does not match eEpoch

fEpoch eEpochFetch Execute

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-15

Control Hazard resolution
A robust two-rule solution

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

+4 f2d

FIFO

FIFO

re
di

re
ct

Execute sends information about
the target pc to Fetch, which
updates fEpoch and pc whenever
it examines the redirect (PC) fifo

fE
po

ch

eE
po

ch

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-16

9

Two-stage pipeline
Decoupled code structure
module mkProc(Proc);

Fifo#(Fetch2Execute) f2d <- mkFifo;
Fifo#(Addr) redirect <- mkFifo;
Reg#(Bool) fEpoch <- mkReg(False);
Reg#(Bool) eEpoch <- mkReg(False);

rule doFetch;
let instF = iMem.req(pc);
...

f2d.enq(... instF ..., fEpoch);
endrule

rule doExecute;

if(inEp == eEpoch) begin
Decode and execute the instruction; update state;
In case of misprediction, redirect.enq(correct pc);

end
f2d.deq;

endrule

endmodule

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-17

The Fetch rule
rule doFetch;

let instF = iMem.req(pc);

if(!redirect.notEmpty)

begin
let ppcF = nextAddrPredictor(pc);

pc <= ppcF;
f2d.enq(Fetch2Execute{pc: pc, ppc: ppcF,

inst: instF, epoch: fEpoch});

end

else

begin
fEpoch <= !fEpoch; pc <= redirect.first;

redirect.deq;

end
endrule

pass the pc and predicted pc
to the execute stage

Notice: In case of PC redirection,
nothing is enqueued into f2d

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-18

10

The Execute rule
rule doExecute;

let instD = f2d.first.inst; let pcF = f2d.first.pc;
let ppcD = f2d.first.ppc; let inEp = f2d.first.epoch;
if(inEp == eEpoch) begin

let dInst = decode(instD);
let rVal1 = rf.rd1(fromMaybe(?, dInst.src1));
let rVal2 = rf.rd2(fromMaybe(?, dInst.src2));
let eInst = exec(dInst, rVal1, rVal2, pcD, ppcD);
if(eInst.iType == Ld) eInst.data <-

dMem.req(MemReq{op: Ld, addr: eInst.addr, data: ?});
else if (eInst.iType == St) let d <-

dMem.req(MemReq{op: St, addr: eInst.addr, data: eInst.data});
if (isValid(eInst.dst))

rf.wr(fromMaybe(?, eInst.dst), eInst.data);
if(eInst.mispredict) begin

redirect.enq(eInst.addr); eEpoch <= !inEp;

end
end
f2d.deq;

endrule

exec returns a flag
if there was a fetch
misprediction

Can these rules execute concurrently?
yes, assuming CF FIFOs

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-19

Epoch mechanism is
independent of the branch
prediction scheme used. We
will study sophisticated
branch prediction schemes
later

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-20

11

module mkCFFifo(Fifo#(2, t)) provisos(Bits#(t, tSz));
Ehr#(3, t) da <- mkEhr(?);
Ehr#(2, Bool) va <- mkEhr(False);
Ehr#(2, t) db <- mkEhr(?);
Ehr#(3, Bool) vb <- mkEhr(False);
rule canonicalize if(vb[2] && !va[2]);
da[2] <= db[2]; va[2] <= True; vb[2] <= False; endrule

method Action enq(t x) if(!vb[0]);
db[0] <= x; vb[0] <= True; endmethod

method Action deq if (va[0]);
va[0] <= False; endmethod

method t first if(va[0]);
return da[0]; endmethod

method Action clear;
va[1] <= False ; vb[1] <= False endmethod

endmodule

Conflict-free FIFO with a
Clear method

If there is only one
element in the FIFO it
resides in da

db da

first CF enq
deq CF enq
first < deq
enq < clear

Canonicalize must be the last rule to fire!

To be discussed
in the tutorial

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-21

Why canonicalize must be
the last rule to fire

first CF enq
deq CF enq
first < deq
enq < clear

rule foo ;
f.deq; if (p) f.clear

endrule

Consider rule foo. If p is false then canonicalize
must fire after deq for proper concurrency.

If canonicalize uses EHR indices between deq and
clear, then canonicalize won’t fire when p is false

October 13, 2015 http://csg.csail.mit.edu/6.175 L12-22

