
1

Constructive Computer Architecture:

Data Hazards
in Pipelined Processors

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-1

Consider a different two-
stage pipeline

PC Decode

Register File

Execute

Data
Memory

Inst
Memory

pred f2d

Suppose we move the pipeline stage from Fetch to after Decode
and Register fetch for a better balance of work in two stages

Fetch Execute, Memory, WriteBack

InstiInsti+1

Pipeline will still have control hazards

Decode,
RegisterFetch

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-2

2

A different 2-Stage pipeline:
2-Stage-DH pipeline

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

d2e

re
di

re
ct

fE
po

ch

eEpoch

pred

Fifos
Use the same epoch solution for
control hazards as before

Fetch, Decode, RegisterFetch Execute, Memory, WriteBack

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-3

Converting the old pipeline
into the new one
rule doFetch;

... let instF = iMem.req(pc);

f2d.enq(Fetch2Execute{... inst: instF ...}); ...

endrule

rule doExecute;
... let dInst = decode(instD);

let rVal1 = rf.rd1(fromMaybe(?, dInst.src1));
let rVal2 = rf.rd2(fromMaybe(?, dInst.src2));
let eInst = exec(dInst, rVal1, rVal2, pcD, ppcD);

...
endrule

instF

Not quite correct. Why?
Fetch is potentially reading stale values from rf

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-4

3

Data Hazards
fetch &
decode execute

d2e

time t0 t1 t2 t3 t4 t5 t6 t7
FDstage FD1 FD2 FD3 FD4 FD5
EXstage EX1 EX2 EX3 EX4 EX5

I1 R1  R2+R3
I2 R4  R1+R2

I2 must be stalled until I1 updates the register file

pc rf dMem

time t0 t1 t2 t3 t4 t5 t6 t7
FDstage FD1 FD2 FD2 FD3 FD4 FD5
EXstage EX1 EX2 EX3 EX4 EX5

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-5

Dealing with data hazards
Keep track of instructions in the pipeline and
determine if the register values to be fetched
are stale, i.e., will be modified by some older
instruction still in the pipeline. This condition
is referred to as a read-after-write (RAW)
hazard
Stall the Fetch from dispatching the instruction
as long as RAW hazard prevails
RAW hazard will disappear as the pipeline
drains

Scoreboard: A data structure to keep
track of the instructions in the pipeline
beyond the Fetch stage

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-6

4

Data Hazard
Data hazard depends upon the match between
the source registers of the fetched instruction
and the destination register of an instruction
already in the pipeline
Both the source and destination registers must
be Valid for a hazard to exist
function Bool isFound

(Maybe#(RIndex) x, Maybe#(RIndex) y);
if(x matches Valid .xv &&& y matches Valid .yv

&&& yv == xv)
return True;

else return False;
endfunction

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-7

Scoreboard: Keeping track of
instructions in execution

Scoreboard: a data structure to keep track of
the destination registers of the instructions
beyond the fetch stage
 method insert: inserts the destination (if any) of an

instruction in the scoreboard when the instruction is
decoded

 method search1(src): searches the scoreboard for a
data hazard

 method search2(src): same as search1
 method remove: deletes the oldest entry when an

instruction commits

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-8

5

2-Stage-DH pipeline:
Scoreboard and Stall logic

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

d2e

re
di

re
ct

fE
po

ch

eEpoch

pred

scoreboard

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-9

2-Stage-DH pipeline
module mkProc(Proc);
Reg#(Addr) pc <- mkRegU;
RFile rf <- mkRFile;
IMemory iMem <- mkIMemory;
DMemory dMem <- mkDMemory;
Fifo#(Decode2Execute) d2e <- mkFifo;
Reg#(Bool) fEpoch <- mkReg(False);
Reg#(Bool) eEpoch <- mkReg(False);
Fifo#(Addr) redirect <- mkFifo;

Scoreboard#(1) sb <- mkScoreboard;
// contains only one slot because Execute
// can contain at most one instruction

rule doFetch …
rule doExecute …

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-10

6

2-Stage-DH pipeline
doFetch rule
rule doFetch;

if(redirect.notEmpty) begin
fEpoch <= !fEpoch; pc <= redirect.first;

redirect.deq; end
else

begin
let instF = iMem.req(pc);

let ppcF = nextAddrPredictor(pc); pc <= ppcF;

let dInst = decode(instF);

let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2);

if(!stall) begin
let rVal1 = rf.rd1(fromMaybe(?, dInst.src1));
let rVal2 = rf.rd2(fromMaybe(?, dInst.src2));
d2e.enq(Decode2Execute{pc: pc, ppc: ppcF,

dIinst: dInst, epoch: fEpoch,

rVal1: rVal1, rVal2: rVal2});

sb.insert(dInst.rDst); end

end
endrule

What should happen to pc when Fetch stalls?

pc should change only
when the instruction
is enqueued in d2e

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-11

2-Stage-DH pipeline
doFetch rule corrected
rule doFetch;

if(redirect.notEmpty) begin
fEpoch <= !fEpoch; pc <= redirect.first;

redirect.deq; end
else

begin
let instF = iMem.req(pc);

let ppcF = nextAddrPredictor(pc); pc <= ppcF;

let dInst = decode(instF);

let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2);

if(!stall) begin
let rVal1 = rf.rd1(fromMaybe(?, dInst.src1));
let rVal2 = rf.rd2(fromMaybe(?, dInst.src2));
d2e.enq(Decode2Execute{pc: pc, ppc: ppcF,

dIinst: dInst, epoch: fEpoch,

rVal1: rVal1, rVal2: rVal2});

sb.insert(dInst.rDst); end

end
endrule

pc <= ppcF; end

To avoid structural
hazards, scoreboard must
allow two search ports

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-12

7

2-Stage-DH pipeline
doExecute rule
rule doExecute;

let x = d2e.first;

let dInstE = x.dInst; let pcE = x.pc;

let ppcE = x.ppc; let epoch = x.epoch;

let rVal1E = x.rVal1; let rVal2E = x.rVal2;

if(epoch == eEpoch) begin

let eInst = exec(dInstE, rVal1E, rVal2E, pcE, ppcE);
if(eInst.iType == Ld) eInst.data <-

dMem.req(MemReq{op:Ld, addr:eInst.addr, data:?});
else if (eInst.iType == St) let d <-

dMem.req(MemReq{op:St, addr:eInst.addr, data:eInst.data});
if (isValid(eInst.dst))

rf.wr(fromMaybe(?, eInst.dst), eInst.data);
if(eInst.mispredict) begin

redirect.enq(eInst.addr); eEpoch <= !eEpoch; end
end

d2e.deq; sb.remove;
endrule

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-13

A correctness issues

If the search by Decode does not see an
instruction in the scoreboard, then its effect must
have taken place. This means that any updates
to the register file by that instruction must be
visible to the subsequent register reads 
 remove and wr should happen atomically
 search and rd1, rd2 should happen atomically

doFetch doExecute

d2e

redirect

Register File

Scoreboard
removesearch insert

wrrd1 rd2

Fetch and Execute can execute in any order
October 14, 2015 http://csg.csail.mit.edu/6.175 L13-14

8

Concurrently executable
Fetch and Execute

Case 1: doExecute < dofetch 
 rf: wr < rd (bypass rf)
 sb: remove < {search, insert}
 d2e: {first, deq} {<, CF} enq (pipelined or CF Fifo)
 redirect: enq {<, CF} {deq, first} (bypass or CF Fifo)

Case 2: doFetch < doExecute 
 rf: rd < wr (normal rf)
 sb: {search, insert} < remove
 d2e: enq {<, CF} {deq, first} (bypass or CF Fifo)
 redirect: {first, deq} {<, CF} enq (pipelined or CF Fifo)

doFetch doExecute

d2e

redirect

Register File

Scoreboard
removesearch insert

wrrd1 rd2 which is
better?

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-15

Performance issues

To avoid a stall due to a RAW hazard between successive
instructions
 sb: remove ? search
 rf: wr ? rd

To minimize stalls due to control hazards
 redirect: ?

What kind of fifo should be used for d2e ?
 Either a pipeline or CF fifo would do fine

doFetch doExecute

d2e

redirect

Register File

Scoreboard
removesearch insert

wrrd1 rd2

<
< (bypass rf)

bypass fifo

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-16

9

2-Stage-DH pipeline
with proper specification of Fifos, rf, scoreboard
module mkProc(Proc);
Reg#(Addr) pc <- mkRegU;
RFile rf <- mkBypassRFile;
IMemory iMem <- mkIMemory;
DMemory dMem <- mkDMemory;
Fifo#(Decode2Execute) d2e <- mkPipelineFifo;
Reg#(Bool) fEpoch <- mkReg(False);
Reg#(Bool) eEpoch <- mkReg(False);
Fifo#(Addr) redirect <- mkBypassFifo;

Scoreboard#(1) sb <- mkPipelineScoreboard;
// contains only one slot because Execute
// can contain at most one instruction

rule doFetch …
rule doExecute …

Can a destination register name
appear more than once in the
scoreboard ?

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-17

WAW hazards
If multiple instructions in the scoreboard can
update the register which the current
instruction wants to read, then the current
instruction has to read the update for the
youngest of those instructions
This is not a problem in our design because
 instructions are committed in order
 the RAW hazard for the instruction at the decode

stage will remain as long as the any instruction with
the required destination is present in sb

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-18

10

An alternative design for sb
Instead of keeping track of the destination of
every instruction in the pipeline, we can
associated a counter with every register to
indicate the number of instructions in the
pipeline for which this register is the
destination
 The appropriate counter is incremented when an

instruction enters the execute stage and
decremented when the instruction is committed

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-19

This design is more efficient (less hardware)
because it avoids an associative search

Summary
Instruction pipelining requires dealing with
control and data hazards
Speculation is necessary to deal with control
hazards
Data hazards are avoided by withholding
instructions in the decode stage until the hazard
disappears
Performance issues are subtle
 For instance, the value of having a bypass network

depends on how frequently it is exercised by programs
 Bypassing necessarily increases combinational path

lenths which can slow down the clock
The rest of the slides will be discussed in the Recitation

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-20

11

Normal Register File
module mkRFile(RFile);
Vector#(32,Reg#(Data)) rfile <- replicateM(mkReg(0));

method Action wr(RIndx rindx, Data data);
if(rindx!=0) rfile[rindx] <= data;

endmethod
method Data rd1(RIndx rindx) = rfile[rindx];
method Data rd2(RIndx rindx) = rfile[rindx];

endmodule

{rd1, rd2} < wr

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-21

Bypass Register File using EHR
module mkBypassRFile(RFile);
Vector#(32,Ehr#(2, Data)) rfile <-

replicateM(mkEhr(0));

method Action wr(RIndx rindx, Data data);
if(rindex!=0) (rfile[rindex])[0] <= data;

endmethod
method Data rd1(RIndx rindx) = (rfile[rindx])[1];
method Data rd2(RIndx rindx) = (rfile[rindx])[1];

endmodule

wr < {rd1, rd2}

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-22

12

Bypass Register File
with external bypassing
module mkBypassRFile(BypassRFile);

RFile rf <- mkRFile;
Fifo#(1, Tuple2#(RIndx, Data))

bypass <- mkBypassSFifo;
rule move;
begin rf.wr(bypass.first); bypass.deq end;

endrule
method Action wr(RIndx rindx, Data data);
if(rindex!=0) bypass.enq(tuple2(rindx, data));

endmethod
method Data rd1(RIndx rindx) =

return (!bypass.search1(rindx)) ? rf.rd1(rindx)
: bypass.read1(rindx);

method Data rd2(RIndx rindx) =
return (!bypass.search2(rindx)) ? rf.rd2(rindx)

: bypass.read2(rindx);
endmodule

wr < {rd1, rd2}

rf

move

rd

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-23

Scoreboard implementation
using searchable Fifos
function Bool isFound

(Maybe#(RIndx) dst, Maybe#(RIndx) src);
return isValid(dst) && isValid(src) &&

(fromMaybe(?,dst)==fromMaybe(?,src));
endfunction

module mkCFScoreboard(Scoreboard#(size));

SFifo#(size, Maybe#(RIndx), Maybe#(RIndx))

f <- mkCFSFifo(isFound);

method insert = f.enq;

method remove = f.deq;

method search1 = f.search1;

method search2 = f.search2;

endmodule

October 14, 2015 http://csg.csail.mit.edu/6.175 L13-24

