
1

Constructive Computer Architecture:

Branch Prediction

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

October 21, 2015 http://csg.csail.mit.edu/6.175 L15-1

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch

Branch
executed

Next fetch
started

Control Flow Penalty
Modern processors may have
> 10 pipeline stages between
next PC calculation and branch
resolution !
How much work is lost if
pipeline doesn’t follow correct
instruction flow?
 Loop length x pipeline width

What fraction of executed
instructions are branch
instructions?

superscalarity

October 21, 2015 http://csg.csail.mit.edu/6.175 L15-2

2

How frequent are
branches? ARM Cortex 7

Blem et al [HPCA 2013] Spec INT 2006

ARM Cortex-A9; ARMv7 ISA

Benchmark
Total

Instructions branch % load % store % other %
astar 1.47E+10 16.0 55.6 13.0 15.4
bzip2 2.41E+10 8.7 34.6 14.4 42.2
gcc 5.61E+09 10.2 19.1 11.2 59.5
gobmk 5.75E+10 10.7 25.4 7.2 56.8
hmmer 1.56E+10 5.1 41.8 18.1 35.0
h264 1.06E+11 5.5 30.4 10.4 53.6
libquantum 3.97E+08 11.5 8.1 11.7 68.7
omnetpp 2.67E+09 11.7 19.3 8.9 60.1
perlbench 2.69E+09 10.7 24.6 9.3 55.5
sjeng 1.34E+10 11.5 39.3 13.7 35.5
Average 8.2 31.9 10.9 49.0

Every 12th instruction is a branch
October 21, 2015 http://csg.csail.mit.edu/6.175 L15-3

How frequent are
branches? X86

core i7; x86 ISA

Benchmark
Total

Instructions branch % load % store % other %
astar 5.71E+10 6.9 19.5 6.9 66.7
bzip2 4.25E+10 11.1 31.2 11.8 45.9
hmmer 2.57E+10 5.3 30.5 9.4 54.8
gcc 6.29E+09 15.1 22.1 14.1 48.7
gobmk 8.93E+10 12.1 21.7 13.4 52.7
h264 1.09E+11 7.1 46.8 18.5 27.6
libquantum 4.18E+08 13.2 39.3 6.8 40.7
omnetpp 2.55E+09 16.4 28.6 21.4 33.7
perlbench 2.91E+09 17.3 25.9 16.0 40.8
sjeng 2.11E+10 14.8 22.8 11.0 51.4
Average 9.4 31.0 13.4 46.2

Blem et al [HPCA 2013] Spec INT 2006

Every 10th or 11th instruction is a branch
October 21, 2015 http://csg.csail.mit.edu/6.175 L15-4

3

How frequent are
branches? ARM Cortex 7

Blem et al [HPCA 2013] Spec FP 2006

ARM Cortex-A9; ARMv7 ISA

Benchmark
Total

Instructions branch % load % store % other %

bwaves 3.84E+11 13.5 1.4 0.5 84.7

cactusADM 1.02E+10 0.5 51.4 17.9 30.1

leslie3D 4.92E+10 6.2 2.0 3.7 88.1

milc 1.38E+10 6.5 38.2 13.3 42.0

tonto 1.30E+10 10.0 40.5 14.1 35.4

Average 12.15 4.68 1.95 81.22

Every 8th instruction is a branch

October 21, 2015 http://csg.csail.mit.edu/6.175 L15-5

How frequent are
branches? X86

Blem et al [HPCA 2013] Spec FP 2006

core i7; x86 ISA

Benchmark
Total

Instructions branch % load % store % other %

bwaves 3.41E+10 3.2 51.4 16.8 28.7

cactusADM 1.05E+10 0.4 55.3 18.6 25.8

leslie3D 6.25E+10 4.9 35.3 12.8 46.9

milc 3.29E+10 2.2 32.2 13.8 51.8

tonto 4.88E+09 7.1 27.2 12.4 53.3
Average 3.6 39.6 14.4 42.4

Every 27th instruction is a branch

October 21, 2015 http://csg.csail.mit.edu/6.175 L15-6

4

Observations
Control transfer happens every 8th to 30th

instruction
There is a plethora of branch prediction
schemes – their importance grows with the
depth of processor pipeline
Static vs dynamic predictors: Does the
prediction depend upon the execution history?
Processors often use more than one predictor
It takes considerable effort to
 Integrate a prediction scheme in the pipeline
 Understand the interactions between various schemes
 Understand the performance implications

we will start with the basics ...
October 21, 2015 http://csg.csail.mit.edu/6.175 L15-7

Instruction Direction known after Target known after

JAL

JALR

BEQ/BNE ...

RISC V Branches & Jumps
Each instruction fetch depends on some
information from the preceding instruction:

1. Is the preceding instruction a taken branch?

2. If so, what is the target address?

After Inst. Decode

After Inst. Decode After Inst. Decode

After Inst. Decode After Reg. Fetch (?)

After Exec

A predictor can redirect the pc only after the relevant
information required by the predictor is available

October 21, 2015 http://csg.csail.mit.edu/6.175 L15-8

5

Overview of control prediction

Need
next PC

immediately

Instr type,
PC relative

targets
available

Simple
conditions,

register targets
available

Complex
conditions
available

Next Addr
Pred

tight
loop

P
C Decode Reg

Read Execute
Write
Back

Given (pc, ppc), a misprediction can be corrected (used to redirect
the pc) as soon as it is detected. In fact, pc can be redirected as
soon as we have a “better” prediction. However, for forward progress
it is important that a correct pc should never be redirected.

mispred
insts

must be
filtered

correct
mispred

correct
mispred

correct
mispred

October 21, 2015 http://csg.csail.mit.edu/6.175 L15-9

Static Branch Prediction
Since most instructions do not result in a control
transfer, pc+4 is a good predictor
Overall probability a branch is taken is ~60-70% but:

ISA can attach preferred direction semantics to
branches, e.g., Motorola MC88110
 bne0 (preferred taken) beq0 (not taken)

ISA can allow arbitrary choice of statically predicted
direction, e.g., HP PA-RISC, Intel IA-64
 reported as ~80% accurate

JZ

JZbackward
90%

forward
50%

... but our ISA is fixed!
October 21, 2015 http://csg.csail.mit.edu/6.175 L15-10

6

Dynamic Branch Prediction
learning based on past behavior

Temporal correlation
 The way a branch resolves may be a good predictor

of the way it will resolve at the next execution
Spatial correlation
 Several branches may resolve in a highly correlated

manner (a preferred path of execution)

pc

Truth/Feedback

Prediction
Predictor

update

predict

October 21, 2015 http://csg.csail.mit.edu/6.175 L15-11

Next Address Predictor:
Branch Target Buffer (BTB)

iMem

pc

October 21, 2015 http://csg.csail.mit.edu/6.175 L15-12

pci targeti

BTB permits ppc to be determined before the instruction is decoded

valid

match

k

2k-entry direct-mapped BTB

BTB remembers recent targets for a set of control instructions
 Fetch: looks for the pc and the associated target in BTB; if pc in

not found then ppc is pc+4
 Execute: checks prediction, if wrong kills the instruction and

updates BTB (only for branches and jumps)

Even small BTBs are effective

7

Next Addr Predictor interface

interface AddrPred;
method Addr nap(Addr pc);
method Action update(Redirect rd);

endinterface

Two implementations:
a) Simple PC+4 predictor
b) Predictor using BTB

October 21, 2015 http://csg.csail.mit.edu/6.175 L15-13

Simple PC+4 predictor
module mkPcPlus4(AddrPred);
method Addr nap(Addr pc);
return pc + 4;

endmethod

method Action update(Redirect rd);
endmethod

endmodule

October 21, 2015 http://csg.csail.mit.edu/6.175 L15-14

8

BTB predictor
module mkBtb(AddrPred);

RegFile#(BtbIndex, Addr) ppcArr <- mkRegFileFull;
RegFile#(BtbIndex, BtbTag) entryPcArr <- mkRegFileFull;
Vector#(BtbEntries, Reg#(Bool))

validArr <- replicateM(mkReg(False));

function BtbIndex getIndex(Addr pc)=truncate(pc>>2);
function BtbTag getTag(Addr pc) = truncateLSB(pc);

method Addr nap(Addr pc);
BtbIndex index = getIndex(pc);
BtbTag tag = getTag(pc);
if(validArr[index] && tag == entryPcArr.sub(index))
return ppcArr.sub(index);

else return (pc + 4);
endmethod

method Action update(Redirect redirect); ...

endmodule

October 21, 2015 http://csg.csail.mit.edu/6.175 L15-15

BTB predictor update method

method Action update(Redirect redirect);
if(redirect.taken)
begin
let index = getIndex(redirect.pc);
let tag = getTag(redirect.pc);
validArr[index] <= True;
entryPcArr.upd(index, tag);
ppcArr.upd(index, redirect.nextPc);
end
else if(tag == entryPcArr.sub(index))

validArr[index] <= False;
endmethod

redirect input contains a pc, the correct next pc and
whether the branch was taken or not (to avoid making
entries for not-taken branches)

October 21, 2015 http://csg.csail.mit.edu/6.175 L15-16

9

Integrating BTB in the 2-Stage
pipeline
module mkProc(Proc);
Reg#(Addr) pc <- mkRegU;
RFile rf <- mkRFile;
IMemory iMem <- mkIMemory;
DMemory dMem <- mkDMemory;
Fifo#(Decode2Execute) d2e <- mkFifo;
Reg#(Bool) fEpoch <- mkReg(False);
Reg#(Bool) eEpoch <- mkReg(False);
Fifo#(Addr) redirect <- mkFifo;
AddrPred btb <- mkBtb

Scoreboard#(1) sb <- mkScoreboard;
rule doFetch …
rule doExecute …

October 21, 2015 http://csg.csail.mit.edu/6.175 L15-17

2-Stage pipeline
doExecute rule
rule doExecute;

let x = d2e.first;
let dInst = x.dInst; let pc = x.pc;
let ppc = x.ppc; let epoch = x.epoch;
let rVal1 = x.rVal1; let rVal2 = x.rVal2;
if(epoch == eEpoch) begin

let eInst = exec(dInst, rVal1, rVal2, pc, ppc);
if(eInst.iType == Ld) eInst.data <-

dMem.req(MemReq{op:Ld, addr:eInst.addr, data:?});
else if (eInst.iType == St) let d <-

dMem.req(MemReq{op:St, addr:eInst.addr, data:eInst.data});
if (isValid(eInst.dst))

rf.wr(fromMaybe(?, eInst.dst), eInst.data);
if(eInst.mispredict) begin

redirect.enq(eInst.addr); eEpoch <= !eEpoch; end
end

d2e.deq; sb.remove;
endrule

send information about all branch
resolutions for btb training

if(eInst.iType == J || eInst.iType == Jr || eInst.iType == Br)
redirect.enq(Redirect{pc: pc, nextPc: eInst.addr,

taken: eInst.brTaken, mispredict: eInst.mispredict,
brType: eInst.iType});

if(eInst.mispredict) eEpoch <= !eEpoch;
d2e.deq; sb.remove;

endrule

October 21, 2015 http://csg.csail.mit.edu/6.175 L15-18

10

2-Stage pipeline

doFetch rule
rule doFetch;

let inst = iMem.req(pc);
if(redirect.notEmpty) begin

fEpoch <= !fEpoch; pc <= redirect.first;
redirect.deq; end

else begin
let ppc = nextAddrPredictor(pc); let dInst = decode(inst);
let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2);
if(!stall) begin

let rVal1 = rf.rd1(fromMaybe(?, dInst.src1));
let rVal2 = rf.rd2(fromMaybe(?, dInst.src2));
d2e.enq(Decode2Execute{pc: pc, nextPC: ppc,

dIinst: dInst, epoch: fEpoch,
rVal1: rVal1, rVal2: rVal2});

sb.insert(dInst.rDst); pc <= ppc; end
end

endrule

update btb but
change pc only
on a mispredict

btb.nap(pc)

btb.update(redirect.first); redirect.deq; end
if(redirect.notEmpty && redirect.first.mispredict)

begin pc <= redirect.first.ppc; fEpoch <= !fEpoch; end

October 21, 2015 http://csg.csail.mit.edu/6.175 L15-19

Multiple Predictors: BTB +
Branch Direction Predictors

Suppose we maintain a table of how a particular Br has
resolved before. At the decode stage we can consult this
table to check if the incoming (pc, ppc) pair matches
our prediction. If not redirect the pc

Need
next PC

immediately

Instr type,
PC relative

targets
available

Simple
conditions,

register targets
available

Complex
conditions
available

Next Addr
Pred

tight
loop

P
C Decode Reg

Read Execute
Write
Back

mispred
insts

must be
filtered

Br Dir
Pred

correct
mispred

correct
mispred

stay tuned

October 21, 2015 http://csg.csail.mit.edu/6.175 L15-20

