Constructive Computer Architecture Realistic Memories and Caches

L17-1

October 28, 2015 http://csg.csail.mit.edu/6.175

Multistage Pipeline

Inside a Cache

Write behavior

On a write hit

- Write-through: write to both cache and the next level memory
- write-back: write only to cache and update the next level memory when line is evacuated

On a write miss

 Allocate – because of multi-word lines we first fetch the line, and then update a word in it

L17-7

No allocate – word modified in memory

Cache Line Size

Types of misses

- Compulsory misses (cold start)
 - First time data is referenced
 - Become insignificant if billions of instructions are run
 - Capacity misses
 - Working set is larger than cache size
 - Solution: increase cache size
- Conflict misses
 - Usually multiple memory locations are mapped to the same cache location to simplify implementations
 - Thus it is possible that the designated cache location is full while there are empty locations in the cache.
 - Solution: Set-Associative Caches

Internal Cache Organization

- Cache designs restrict where in cache a particular address can reside
 - Direct mapped: An address can reside in exactly one location in the cache. The cache location is typically determined by the lowest order address bits
 - *n-way Set associative:* An address can reside in any of the a set of n locations in the cache. The set is typically determine by the lowest order address bits

Reduce Conflict Misses

```
Memory time =
```

```
Hit time + Prob(miss) * Miss penalty
```


2-Way Set-Associative Cache

Replacement Policy

- In order to bring in a new cache line, usually another cache line has to be thrown out. Which one?
 - No choice in replacement if the cache is direct mapped
- Replacement policy for set-associative caches
 - One that is not dirty, i.e., has not been modified
 - In I-cache all lines are clean
 - In D-cache if a dirty line has to be thrown out then it must be written back first
 - Least recently used?
 - Most recently used?
 - Random?

October 28, 2015

How much is performance affected by the choice?

Difficult to know without benchmarks and quantitative measurements

http://csg.csail.mit.edu/6.175

Blocking vs. Non-Blocking cache

Blocking cache:

- At most one outstanding miss
- Cache must wait for memory to respond
- Cache does not accept requests in the meantime
- Non-blocking cache:
 - Multiple outstanding misses
 - Cache can continue to process requests while waiting for memory to respond to misses

We will first design a write-back, Write-miss allocate, Direct-mapped, blocking cache