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The use of magic memories (combinational reads) 
makes such design unrealistic 
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Magic Memory Model

Reads and writes are always completed in 
one cycle
 a Read can be done any time (i.e. combinational)
 If enabled, a Write is performed at the rising clock 

edge
(the write address and data must be stable at the clock edge)
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In a real DRAM the data will be available several 
cycles after the address is supplied
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Memory Hierarchy

size: RegFile <<  SRAM  <<  DRAM
latency: RegFile <<  SRAM  <<  DRAM
bandwidth: on-chip  >>  off-chip    

On a data access:
hit (data  fast memory)  low latency access
miss (data  fast memory)  long latency access (DRAM)
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RegFile

Big, Slow Memory
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holds frequently used data

why?
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Inside a Cache
CacheProcessor Main
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How many bits are needed for the tag?
Enough to uniquely identify the block

Address
Tag
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Cache Read
Search cache tags to find match for 

the processor generated address 

Found in cache 
a.k.a.  hit

Return copy of 
data from cache

Not in cache
a.k.a. miss

Read block of data from 
Main Memory – may require 
writing back a cache line

Wait … 

Return data to processor and 
update cache

Which line do 
we replace?
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Write behavior
On a write hit
 Write-through: write to both cache and the next level 

memory
 write-back: write only to cache and update the next 

level memory when line is evacuated
On a write miss 
 Allocate – because of multi-word lines we first fetch the 

line, and then update a word in it
 No allocate – word modified in memory
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Cache Line Size
A cache line usually holds more than one word
 Reduces the number of tags and the tag size needed 

to identify memory locations
 Spatial locality: Experience shows that if address x is 

referenced then addresses x+1, x+2 etc. are very 
likely to be referenced in a short time window
 consider instruction streams, array and record accesses

 Communication systems (e.g., bus) are often more 
efficient in transporting larger data sets
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Types of misses
Compulsory misses (cold start)
 First time data is referenced
 Become insignificant if billions of instructions are run
Capacity misses
 Working set is larger than cache size
 Solution: increase cache size

Conflict misses
 Usually multiple memory locations are mapped to the 

same cache location to simplify implementations
 Thus it is possible that the designated cache location is 

full while there are empty locations in the cache. 
 Solution: Set-Associative Caches
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Internal Cache Organization
Cache designs restrict where in cache a 
particular address can reside
 Direct mapped: An address can reside in exactly one 

location in the cache. The cache location is typically 
determined by the lowest order address bits

 n-way Set associative: An address can reside in any 
of the a set of n locations in the cache. The set is 
typically determine by the lowest order address bits
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Direct-Mapped Cache
The simplest implementation
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What is a bad reference pattern? Strided = size of cache

req address
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Direct Map Address Selection
higher-order vs. lower-order address bits

Tag Data BlockV
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Why higher-order bits as tag may be undesirable?
Spatially local blocks conflict
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Reduce Conflict Misses
Memory time = 

Hit time + Prob(miss) * Miss penalty

Associativity: Reduce conflict misses by 
allowing blocks to go to several sets in cache
 2-way set associative: each block can be mapped to 

one of 2 cache sets
 Fully associative: each block can be mapped to any 

cache frame
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2-Way Set-Associative Cache
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Replacement Policy
In order to bring in a new cache line, usually 
another cache line has to be thrown out. 
Which one?
 No choice in replacement if the cache is direct 

mapped
Replacement policy for set-associative caches
 One that is not dirty, i.e., has not been modified

 In I-cache all lines are clean
 In D-cache if a dirty line has to be thrown out then it must be 

written back first

 Least recently used?
 Most recently used?
 Random?

How much is performance 
affected by the choice?

Difficult to know without 
benchmarks and 
quantitative measurements

http://csg.csail.mit.edu/6.175 L17-15October 28, 2015



Blocking vs. Non-Blocking 
cache

Blocking cache:
 At most one outstanding miss
 Cache must wait for memory to respond
 Cache does not accept requests in the 

meantime
Non-blocking cache:
 Multiple outstanding misses
 Cache can continue to process requests while 

waiting for memory to respond to misses

We will first design a write-back, Write-miss allocate, 
Direct-mapped, blocking cache
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