
Constructive Computer Architecture

Realistic Memories and
Caches

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

http://csg.csail.mit.edu/6.175 L17-1October 28, 2015

Multistage Pipeline

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

d2e

re
di

re
ct

fE
po

ch

eEpoch

nap e2c

scoreboard

The use of magic memories (combinational reads)
makes such design unrealistic

http://csg.csail.mit.edu/6.175 L17-2October 28, 2015

Magic Memory Model

Reads and writes are always completed in
one cycle
 a Read can be done any time (i.e. combinational)
 If enabled, a Write is performed at the rising clock

edge
(the write address and data must be stable at the clock edge)

MAGIC
RAM

ReadData

WriteData

Address

WriteEnable
Clock

In a real DRAM the data will be available several
cycles after the address is supplied

http://csg.csail.mit.edu/6.175 L17-3October 28, 2015

Memory Hierarchy

size: RegFile << SRAM << DRAM
latency: RegFile << SRAM << DRAM
bandwidth: on-chip >> off-chip

On a data access:
hit (data fast memory) low latency access
miss (data fast memory) long latency access (DRAM)

Small,
Fast Memory

SRAM

CPU
RegFile

Big, Slow Memory
DRAM

holds frequently used data

why?

http://csg.csail.mit.edu/6.175 L17-4October 28, 2015

Inside a Cache
CacheProcessor Main

Memory

Address Address

DataData
copy of main mem
locations 100, 101, ...

Data Block

Line =
<Add tag, Data blk>

Data
Byte

Data
Byte

Data
Byte

100

304

6848

416

How many bits are needed for the tag?
Enough to uniquely identify the block

Address
Tag

http://csg.csail.mit.edu/6.175 L17-5October 28, 2015

Cache Read
Search cache tags to find match for

the processor generated address

Found in cache
a.k.a. hit

Return copy of
data from cache

Not in cache
a.k.a. miss

Read block of data from
Main Memory – may require
writing back a cache line

Wait …

Return data to processor and
update cache

Which line do
we replace?

http://csg.csail.mit.edu/6.175 L17-6October 28, 2015

Write behavior
On a write hit
 Write-through: write to both cache and the next level

memory
 write-back: write only to cache and update the next

level memory when line is evacuated
On a write miss
 Allocate – because of multi-word lines we first fetch the

line, and then update a word in it
 No allocate – word modified in memory

http://csg.csail.mit.edu/6.175 L17-7October 28, 2015

Cache Line Size
A cache line usually holds more than one word
 Reduces the number of tags and the tag size needed

to identify memory locations
 Spatial locality: Experience shows that if address x is

referenced then addresses x+1, x+2 etc. are very
likely to be referenced in a short time window
 consider instruction streams, array and record accesses

 Communication systems (e.g., bus) are often more
efficient in transporting larger data sets

http://csg.csail.mit.edu/6.175 L17-8October 28, 2015

Types of misses
Compulsory misses (cold start)
 First time data is referenced
 Become insignificant if billions of instructions are run
Capacity misses
 Working set is larger than cache size
 Solution: increase cache size

Conflict misses
 Usually multiple memory locations are mapped to the

same cache location to simplify implementations
 Thus it is possible that the designated cache location is

full while there are empty locations in the cache.
 Solution: Set-Associative Caches

http://csg.csail.mit.edu/6.175 L17-9October 28, 2015

Internal Cache Organization
Cache designs restrict where in cache a
particular address can reside
 Direct mapped: An address can reside in exactly one

location in the cache. The cache location is typically
determined by the lowest order address bits

 n-way Set associative: An address can reside in any
of the a set of n locations in the cache. The set is
typically determine by the lowest order address bits

http://csg.csail.mit.edu/6.175 L17-10October 28, 2015

Direct-Mapped Cache
The simplest implementation

Tag Data BlockV

=

OffsetTag Index

t k b

t

HIT Data Word or Byte

2k

lines

Block number Block offset

What is a bad reference pattern? Strided = size of cache

req address

http://csg.csail.mit.edu/6.175 L17-11October 28, 2015

Direct Map Address Selection
higher-order vs. lower-order address bits

Tag Data BlockV

=

OffsetIndex

tk b

t

HIT Data Word or Byte

2k

lines

Tag

Why higher-order bits as tag may be undesirable?
Spatially local blocks conflict

http://csg.csail.mit.edu/6.175 L17-12October 28, 2015

Reduce Conflict Misses
Memory time =

Hit time + Prob(miss) * Miss penalty

Associativity: Reduce conflict misses by
allowing blocks to go to several sets in cache
 2-way set associative: each block can be mapped to

one of 2 cache sets
 Fully associative: each block can be mapped to any

cache frame

http://csg.csail.mit.edu/6.175 L17-13October 28, 2015

2-Way Set-Associative Cache

Tag Data BlockV

=

Block
Offset

Tag Index

t k

b

hit

Tag Data BlockV

Data
Word
or Byte

=

t

http://csg.csail.mit.edu/6.175 L17-14October 28, 2015

Replacement Policy
In order to bring in a new cache line, usually
another cache line has to be thrown out.
Which one?
 No choice in replacement if the cache is direct

mapped
Replacement policy for set-associative caches
 One that is not dirty, i.e., has not been modified

 In I-cache all lines are clean
 In D-cache if a dirty line has to be thrown out then it must be

written back first

 Least recently used?
 Most recently used?
 Random?

How much is performance
affected by the choice?

Difficult to know without
benchmarks and
quantitative measurements

http://csg.csail.mit.edu/6.175 L17-15October 28, 2015

Blocking vs. Non-Blocking
cache

Blocking cache:
 At most one outstanding miss
 Cache must wait for memory to respond
 Cache does not accept requests in the

meantime
Non-blocking cache:
 Multiple outstanding misses
 Cache can continue to process requests while

waiting for memory to respond to misses

We will first design a write-back, Write-miss allocate,
Direct-mapped, blocking cache

http://csg.csail.mit.edu/6.175 L17-16October 28, 2015

