Constructive Computer Architecture

Virtual Memory and
Interrupts

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

AN

November 13, 2015 http://csg.csail.mit.edu/6.175 L21-1

Address Translation:

N

Virtual Address

l

MissS

the | page is
¢ memory Ymemory

putting It all together

1] hardware

[] hardware or software

[] software

hit

denieywd

Page Fault
(OS loads page)

Protection
Fault

Where? ‘

Resume the instruction

/

SEGFAULT

November 13, 2015 http://csg.csail.mit.edu/6.175

Physical
Address
(to cache)

L21-2

Address Translation In
Pipeline Machines

p
N
Inst. B Data
cache [1°P[Decode —E| >+ MM cache [1W
TLB miss? Page Fault? TLB miss? Page Fault?
Protection violation? Protection violation?

@ Software handlers need a restartable exception on
page fault or protection violation

#® Handling a TLB miss needs a hardware or software
mechanism to refill TLB
® Methods to overcome the additional latency of a TLB:
= slow down the clock
= pipeline the TLB and cache access
v » virtual address caches
r = parallel TLB/cache access

November 13, 2015 http://csg.csail.mit.edu/6.175 L21-3

Physical vs Virtual Address
Caches?

/4R

PA
CPU VA TLR JEWAE | [Primary
Cache Memory

Alternative: place the cache before the TLB
VA

o IR Virtual
Cache
@ One cycle in case of a hit (+)

® cache needs to be flushed on a context switch unless
address space identifiers (ASIDs) included in tags (-)

@ aliasing problems due to the sharing of pages (-)

Primary
S TLB PA_, Memory

(StrongARM)

November 13, 2015 http://csg.csail.mit.edu/6.175 L21-4

Aliasing In Virtual-Address
Caches

g
\
Page Table Tag Data
VA, —*
Data Pages VA1 1St CODV Of Data at PA
PA VA, 2nd Copy of Data at PA
VA,— .
Virtual cache can have two

copies of same physical data.
Writes to one copy not visible
to reads of other!

Two virtual pages share
one physical page
General Solution: Disallow aliases to coexist in cache
Software (i.e., OS) solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this
ensures all VAs accessing same PA will conflict in direct-
mapped cache (early SPARCSs)

November 13, 2015 http://csg.csail.mit.edu/6.175 L21-5

Concurrent Access to TLB
& Cache

g / \ Virtual
VA VPN L b Index
\ / |
TLB K Direct-map Cache
2 blocks

Y 2b-byte block
PA PPN Page Offset

< 7 \
Tag VN

_ Physical Tag Data
T

Index L is available without consulting the TLB
— cache and TLB accesses can begin simultaneously
Tag comparison is made after both accesses are completed
Cases: L +b =Kk L+ b <k
L + b > k what happens here? Partially VA cache!

November 13, 2015 http://csg.csail.mit.edu/6.175 L21-6

Virtual-Index Physical-Tag

Caches: associative Organization

a |
/ Virtual
VA VPN) B Wways
l \ / o 00
Direct-may] PDirect-map
TLB + K 2L blocks 2L blocks
l | Phy.
PA PPN Page Offset Tag
\
I 0 0 ————mp
Tag
\ Data

After the PPN is known, W physical tags are compared

Allows cache size to be greater than 2-*° bytes

November 13, 2015 http://csg.csail.mit.edu/6.175 L21-7

/ Exception handling In a
pipeline machine

AN

November 13, 2015 http://csg.csail.mit.edu/6.175 L21-8

Exception Handling conme
a Point:
Inst. Decode _ﬁ Data. |
PC Mem [P E|)+ M Memn: W
<_/ | i -
PC address lllegal Overflow [Data address
- Opcode Exceptions *
Exception P g &
|Ex Ex| _EX \ : 2z
D E M \ E 8
JpC PC JPC / g
Select D E M| Ext LAl : =
Handler Kill F] Kill D] Kill E] xternal | . KiII‘
PC Stage Stage Stage Interrupts | ywriteback

1. An instruction may cause multiple exceptions; which
one should we process?

2. When multiple instructions are causing exceptions;

which one should we process first?
http://csg.csail.mit.edu/6.175

November 13, 2015

from the earliest stage

from the oldest instruction

L21-9

Interrupt processing

® Internal interrupts can happen at any stage but
cause a redirection only at Commit

@ External interrupts are considered only at Commit

@ If an instruction causes an interrupt then the
external interrupt, If present, is given a priority
and the instruction is executed again

s Some instructions, like Store, cannot be undone once
launched. So an instruction is considered to have
completed before an external interrupt is taken

N

November 13, 2015 http://csg.csail.mit.edu/6.175 L21-10

Exception Handling

® When instruction x in stage, raises an
exception, its cause Is recorded and passed
down the pipeline

® For a given instruction, exceptions from the
later stages of the pipeline do not override
cause of exception from the earlier stages

@ If an exception is present at commit: Cause
and EPC registers are set, and pc is redirected
to the handler PC

s Epoch mechanism takes care of redirecting the pc

N

November 4, 2015 http://csg.csail.mit.edu/6.175

L19-11

Killing vs Poisoning

wrong path insts _ | wrong path insts
are dropped are poisoned

This affects whether an instruction is removed from sb in

case of an interrupt
November 4, 2015 http://csg.csail.mit.edu/6.175

epoch | Register File i
i ARX]
al” 4 i J L
o | !
N HI L 1
PC > f2d > Decode »|d2e|»{Execute Ueom IMm2p
> 1=
A 12620l | VAN LAl
| |
i | + |
1
Inst | Y Data | i
Memory i scoreboard Memory i
! !
1
1
!

external interrupts considered at Commit

I_
[
©

=
N

Interrupt processing at
Execute

N

Incoming Interrupt

no Nes

-if (mem type) issue Ld/St -pass elnst to M

-if (mispred) redirect stage unmodified
-pass elnst to M stage

elnst will contain
iInformation about any
newly detected
Interrupts at Execute

November 13, 2015 http://csg.csail.mit.edu/6.175

L21-13

Interrupt processing at
Memory stage

Incoming Interrupt

no MS

/‘\

Memory Interrupt? -pass elnst to Commit
nmes unmodified
-pass elnst -pass new Cause
with modified to Commit

data to Commit

November 13, 2015 http://csg.csail.mit.edu/6.175 L21-14

Interrupt processing at
Commit

L

N

External Interrupt?

nmes

Incoming interrupt Incoming interrupt
no es no
—commit commit;
sb.rm;
-sb.rm ’
EPC<= ppc;
causeR <= EXt;
EPC<= pc; mode <= privilege;
causeR <= inCause; Redirect
if (inCause after Reg Fetch) sb.rm; L N
mode <= privilege; = PC;
Redirect causeR <= Ext;

If (inCause after Reg Fetch) sb.rm;
mode <= privilege;
Redirect

November 13, 2015 http://csg.csail.mit.edu/6.175 L21-15

Final comment

/4R

® There is generally a lot of machinery associated
with a plethora of exceptions in ISAs

® Precise exceptions are difficult to implement
correctly in pipelined machines

® Performance is usually not the issue and
therefore sometimes exceptions are
Implemented using microcode

The code slides follow

November 4, 2015 http://csg.csail.mit.edu/6.175 L19-16

One-Cycle SMIPS

p
T rule doExecute:
let inst = iMem.req(pc);

let dInst = decode(inst, csrf.getStatus);

let rvall = rf.rdl(fromMaybe(?, dlnst.srcl));
let rval2 = rf.rd2(fromMaybe(?, dlnst.src2));
let elnst = exec(dInst, rvall, rval2, pc, ?);

iIf(elnst.1Type == Ld)
elnst.data <- dMem.reg(MemReqg{op: Ld, addr:
elnst.addr, data: ?});
else 1f(elnst.1Type == St)
let d <- dMem.reg(MemReqg{op: St, addr:
elnst.addr, data: elnst.data});
iIT (isvalid(elnst.dst))
rf.wr(fromMaybe(?, elnst.dst), elnst.data);
. setting special registers ..
. hext address calculation ..

endrule endmodule
November 4, 2015 http://csg.csail.mit.edu/6.175 L19-17

Type: Decoded Instruction

\Jtypedef struct {
IType

AluFunc

BrFunc
Maybe#(RIndx)
Maybe#(RIndx)
Maybe#(RIndx)
Maybe#(Data)
Maybe#(Csrindx)

1Type;
aluFunc;
brFunc;
dst;
srcl;
sSrc2;
imm;
CSr;

} DecodedInst deriving(Bits, EQ);

typedef enum {Unsupported, NoPermit, Alu, Ld, St, J,
Jr, Br,..., Syscall, ERet} IType deriving(Bits, EQ);

November 4, 2015

http://csg.csail.mit.edu/6.175

L19-18

Decode

function DecodedlInst decode(Data inst, Status status);
DecodedInst dInst = ?;
opSystem: begin
case (funct3) ...
fnPRIV: begin // privilege inst
dinst.i1Type = (case(inst[31:20])
tn12SCALL: Syscall; // sys call
// ERET can only be executed under privilege mode
fn12ERET: 1sPrivMode(status) ? Eret : NoPermit;
default: Unsupported;
endcase);
dinst.dst = Invalid; diInst.srcl = Invalid;
dinst.src2 = Invalid; dinst.imm = Invalid;
dinst.aluFunc = ?; dlnst.brFunc = NT;
end ... endcase

N

end

return diInst;
endfunction
November 4, 2015 http://csg.csail.mit.edu/6.175 L19-19

Set special registers

“if (elnst.iType==Syscall)

begin
csrf.setStatus(statusPushKU(csrf.getStatus));
csrf.setCause(32°h08); // cause for System call
csrf.setEpc(pc);

end else

IT (elnst.i1Type==ERet) begin

cop.setStatus(statusPopKU(cop.getStatus));

N

end

November 4, 2015 http://csg.csail.mit.edu/6.175 L19-20

Redirecting PC

Tif (elnst.iType==Syscall)
pc <= csrf.getTvec;
else 1T (elnst.i1Type==ERet)
pc <= cop.getEpc;
else
pc <= elnst.brTaken ? elnst.addr : pc + 4;

November 4, 2015 http://csg.csail.mit.edu/6.175 L19-21

