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Address Translation:
putting it all together
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Address Translation in  
Pipeline Machines

Software handlers need a restartable exception on 
page fault or protection violation
Handling a TLB miss needs a hardware or software
mechanism to refill TLB 
Methods to overcome the additional latency of a TLB:
 slow down the clock
 pipeline the TLB and cache access
 virtual address caches
 parallel TLB/cache access
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Physical vs Virtual Address 
Caches?

One cycle in case of a hit (+)
cache needs to be flushed on a context switch unless 
address space identifiers (ASIDs) included in tags (-)
aliasing problems due to the sharing of pages (-)
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Alternative: place the cache before the TLB
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Aliasing in Virtual-Address 
Caches 
VA1

VA2

Page Table

Data Pages

PA

VA1

VA2

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Two virtual pages share 
one physical page

Virtual cache can have two 
copies of same physical data. 
Writes to one copy not visible 

to reads of other!
General Solution:  Disallow aliases to coexist in cache
Software (i.e., OS) solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this 
ensures all VAs accessing same PA will conflict in direct-
mapped cache (early SPARCs)
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Concurrent Access to TLB 
& Cache

Index L is available without consulting the TLB
cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed
Cases: L + b = k L + b < k

L + b > k  what happens here?
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TLB Direct-map Cache 
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Partially VA cache!
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Virtual-Index Physical-Tag 
Caches: Associative Organization
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After the PPN is known, W physical tags are compared

Allows cache size to be greater than 2L+b bytes

W ways
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Exception handling in a 
pipeline machine
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Exception Handling
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1. An instruction may cause multiple exceptions; which 
one should we process?
2. When multiple instructions are causing exceptions; 
which one should we process first?

from the earliest stage

from the oldest instruction
November 13, 2015 http://csg.csail.mit.edu/6.175 L21-9



Interrupt processing
Internal interrupts can happen at any stage but 
cause a redirection only at Commit
External interrupts are considered only at Commit
If an instruction causes an interrupt then the 
external interrupt, if present, is given a priority 
and the instruction is executed again
 Some instructions, like Store, cannot be undone once 

launched. So an instruction is considered to have 
completed before an external interrupt is taken 
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Exception Handling
When instruction x in stagei raises an 
exception, its cause is recorded and passed 
down the pipeline 
For a given instruction, exceptions from the 
later stages of the pipeline do not override 
cause of exception from the earlier stages 
If an exception is present at commit: Cause 
and EPC registers are set, and pc is redirected 
to the handler PC
 Epoch mechanism takes care of redirecting the pc
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Killing vs Poisoning
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Interrupt processing at 
Execute 

Incoming Interrupt

-if (mem type) issue Ld/St
-if (mispred) redirect
-pass eInst to M stage

-pass eInst to M 
stage unmodified

no yes

eInst will contain 
information about any 
newly detected 
interrupts at Execute
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Interrupt processing at 
Memory stage 

Incoming Interrupt

-pass eInst 
with modified 
data to Commit

-pass eInst to Commit 
unmodified

no yes
Memory Interrupt?

no yes

-pass new Cause 
to Commit
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Interrupt processing at 
Commit 

External Interrupt?

EPC<= pc;
causeR <= inCause;
if (inCause after Reg Fetch) sb.rm;
mode <= privilege;
Redirect

no yes

Incoming interrupt

no yes no yes

-commit 
-sb.rm

Incoming interrupt

commit;
sb.rm;
EPC<= ppc;
causeR <= Ext;
mode <= privilege;
Redirect

EPC<= pc;
causeR <= Ext;
if (inCause after Reg Fetch) sb.rm;
mode <= privilege;
Redirect
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Final comment

There is generally a lot of machinery associated 
with a plethora of exceptions in ISAs
Precise exceptions are difficult to implement 
correctly in pipelined machines
Performance is usually not the issue and 
therefore sometimes exceptions are 
implemented using microcode
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One-Cycle SMIPS
rule doExecute;

let inst = iMem.req(pc);
let dInst = decode(inst, csrf.getStatus);
let rVal1 = rf.rd1(fromMaybe(?, dInst.src1));
let rVal2 = rf.rd2(fromMaybe(?, dInst.src2));
let eInst = exec(dInst, rVal1, rVal2, pc, ?);
if(eInst.iType == Ld)

eInst.data <- dMem.req(MemReq{op: Ld, addr:
eInst.addr, data: ?});

else if(eInst.iType == St)
let d <- dMem.req(MemReq{op: St, addr: 

eInst.addr, data: eInst.data});
if (isValid(eInst.dst))

rf.wr(fromMaybe(?, eInst.dst), eInst.data);
… setting special registers …
… next address calculation …

endrule endmodule
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Type: Decoded Instruction
typedef struct {
IType            iType;
AluFunc          aluFunc;
BrFunc           brFunc;
Maybe#(RIndx) dst;
Maybe#(RIndx) src1;
Maybe#(RIndx) src2;
Maybe#(Data)  imm;
Maybe#(CsrIndx)  csr;

} DecodedInst deriving(Bits, Eq);

typedef enum {Unsupported, NoPermit, Alu, Ld, St, J, 
Jr, Br,..., Syscall, ERet} IType deriving(Bits, Eq);
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Decode
function DecodedInst decode(Data inst, Status status);
DecodedInst dInst = ?; ...
opSystem: begin
case (funct3) ...
fnPRIV: begin // privilege inst
dInst.iType = (case(inst[31:20])
fn12SCALL: Syscall; // sys call
// ERET can only be executed under privilege mode
fn12ERET: isPrivMode(status) ? Eret : NoPermit;
default: Unsupported;

endcase);
dInst.dst = Invalid; dInst.src1 = Invalid;         
dInst.src2 = Invalid; dInst.imm = Invalid; 
dInst.aluFunc = ?; dInst.brFunc = NT;

end ... endcase
end
...
return dInst; 

endfunction
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Set special registers
if (eInst.iType==Syscall)
begin

csrf.setStatus(statusPushKU(csrf.getStatus)); 
csrf.setCause(32’h08); // cause for System call
csrf.setEpc(pc);

end else
if (eInst.iType==ERet) begin

cop.setStatus(statusPopKU(cop.getStatus));
end
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Redirecting PC
if (eInst.iType==Syscall)

pc <= csrf.getTvec;
else if (eInst.iType==ERet)

pc <= cop.getEpc;
else

pc <= eInst.brTaken ? eInst.addr : pc + 4;
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