
Constructive Computer Architecture

Virtual Memory and
Interrupts

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

November 13, 2015 http://csg.csail.mit.edu/6.175 L21-1

Address Translation:
putting it all together

Virtual Address

TLB
Lookup

Page Table
Walk

Update TLBPage Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

the page is
 memory  memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULT
Where?

Resume the instruction
November 13, 2015 http://csg.csail.mit.edu/6.175 L21-2

Address Translation in
Pipeline Machines

Software handlers need a restartable exception on
page fault or protection violation
Handling a TLB miss needs a hardware or software
mechanism to refill TLB
Methods to overcome the additional latency of a TLB:
 slow down the clock
 pipeline the TLB and cache access
 virtual address caches
 parallel TLB/cache access

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?




November 13, 2015 http://csg.csail.mit.edu/6.175 L21-3

Physical vs Virtual Address
Caches?

One cycle in case of a hit (+)
cache needs to be flushed on a context switch unless
address space identifiers (ASIDs) included in tags (-)
aliasing problems due to the sharing of pages (-)

CPU Physical
CacheTLB Primary

Memory
VA

PA

Alternative: place the cache before the TLB

CPU

VA

(StrongARM)Virtual
Cache

PA
TLB

Primary
Memory

November 13, 2015 http://csg.csail.mit.edu/6.175 L21-4

Aliasing in Virtual-Address
Caches
VA1

VA2

Page Table

Data Pages

PA

VA1

VA2

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Two virtual pages share
one physical page

Virtual cache can have two
copies of same physical data.
Writes to one copy not visible

to reads of other!
General Solution: Disallow aliases to coexist in cache
Software (i.e., OS) solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this
ensures all VAs accessing same PA will conflict in direct-
mapped cache (early SPARCs)

November 13, 2015 http://csg.csail.mit.edu/6.175 L21-5

Concurrent Access to TLB
& Cache

Index L is available without consulting the TLB
cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed
Cases: L + b = k L + b < k

L + b > k what happens here?

VPN L b

TLB Direct-map Cache
2L blocks

2b-byte block
PPN Page Offset

=
hit?

DataPhysical Tag
Tag

VA

PA

Virtual
Index

k

Partially VA cache!
November 13, 2015 http://csg.csail.mit.edu/6.175 L21-6

Virtual-Index Physical-Tag
Caches: Associative Organization

VPN L = k-b b

TLB Direct-map
2L blocks

PPN Page Offset

=
hit?

Data

Phy.
Tag

Tag

VA

PA

Virtual
Index

k
Direct-map
2L blocks

=

After the PPN is known, W physical tags are compared

Allows cache size to be greater than 2L+b bytes

W ways

November 13, 2015 http://csg.csail.mit.edu/6.175 L21-7

Exception handling in a
pipeline machine

November 13, 2015 L21-8http://csg.csail.mit.edu/6.175

Exception Handling

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

External
Interrupts

Ex
D

PC
D

Ex
E

PC
E

Ex
M

PC
M

C
au

se
EP

C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

Commit
Point

1. An instruction may cause multiple exceptions; which
one should we process?
2. When multiple instructions are causing exceptions;
which one should we process first?

from the earliest stage

from the oldest instruction
November 13, 2015 http://csg.csail.mit.edu/6.175 L21-9

Interrupt processing
Internal interrupts can happen at any stage but
cause a redirection only at Commit
External interrupts are considered only at Commit
If an instruction causes an interrupt then the
external interrupt, if present, is given a priority
and the instruction is executed again
 Some instructions, like Store, cannot be undone once

launched. So an instruction is considered to have
completed before an external interrupt is taken

November 13, 2015 http://csg.csail.mit.edu/6.175 L21-10

Exception Handling
When instruction x in stagei raises an
exception, its cause is recorded and passed
down the pipeline
For a given instruction, exceptions from the
later stages of the pipeline do not override
cause of exception from the earlier stages
If an exception is present at commit: Cause
and EPC registers are set, and pc is redirected
to the handler PC
 Epoch mechanism takes care of redirecting the pc

November 4, 2015 http://csg.csail.mit.edu/6.175 L19-11

Killing vs Poisoning

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

f2d

Epoch

m2cd2e

Next
Addr
Pred

scoreboard

f12f2
e2m

wrong path insts
are dropped

wrong path insts
are poisoned

This affects whether an instruction is removed from sb in
case of an interrupt

ex
te

rn
al

 in
te

rr
up

ts
 c

on
si

de
re

d
at

 C
om

m
it

November 4, 2015 http://csg.csail.mit.edu/6.175 L19-12

Interrupt processing at
Execute

Incoming Interrupt

-if (mem type) issue Ld/St
-if (mispred) redirect
-pass eInst to M stage

-pass eInst to M
stage unmodified

no yes

eInst will contain
information about any
newly detected
interrupts at Execute

November 13, 2015 http://csg.csail.mit.edu/6.175 L21-13

Interrupt processing at
Memory stage

Incoming Interrupt

-pass eInst
with modified
data to Commit

-pass eInst to Commit
unmodified

no yes
Memory Interrupt?

no yes

-pass new Cause
to Commit

November 13, 2015 http://csg.csail.mit.edu/6.175 L21-14

Interrupt processing at
Commit

External Interrupt?

EPC<= pc;
causeR <= inCause;
if (inCause after Reg Fetch) sb.rm;
mode <= privilege;
Redirect

no yes

Incoming interrupt

no yes no yes

-commit
-sb.rm

Incoming interrupt

commit;
sb.rm;
EPC<= ppc;
causeR <= Ext;
mode <= privilege;
Redirect

EPC<= pc;
causeR <= Ext;
if (inCause after Reg Fetch) sb.rm;
mode <= privilege;
Redirect

November 13, 2015 http://csg.csail.mit.edu/6.175 L21-15

Final comment

There is generally a lot of machinery associated
with a plethora of exceptions in ISAs
Precise exceptions are difficult to implement
correctly in pipelined machines
Performance is usually not the issue and
therefore sometimes exceptions are
implemented using microcode

November 4, 2015 http://csg.csail.mit.edu/6.175 L19-16

The code slides follow

One-Cycle SMIPS
rule doExecute;

let inst = iMem.req(pc);
let dInst = decode(inst, csrf.getStatus);
let rVal1 = rf.rd1(fromMaybe(?, dInst.src1));
let rVal2 = rf.rd2(fromMaybe(?, dInst.src2));
let eInst = exec(dInst, rVal1, rVal2, pc, ?);
if(eInst.iType == Ld)

eInst.data <- dMem.req(MemReq{op: Ld, addr:
eInst.addr, data: ?});

else if(eInst.iType == St)
let d <- dMem.req(MemReq{op: St, addr:

eInst.addr, data: eInst.data});
if (isValid(eInst.dst))

rf.wr(fromMaybe(?, eInst.dst), eInst.data);
… setting special registers …
… next address calculation …

endrule endmodule
November 4, 2015 http://csg.csail.mit.edu/6.175 L19-17

Type: Decoded Instruction
typedef struct {
IType iType;
AluFunc aluFunc;
BrFunc brFunc;
Maybe#(RIndx) dst;
Maybe#(RIndx) src1;
Maybe#(RIndx) src2;
Maybe#(Data) imm;
Maybe#(CsrIndx) csr;

} DecodedInst deriving(Bits, Eq);

typedef enum {Unsupported, NoPermit, Alu, Ld, St, J,
Jr, Br,..., Syscall, ERet} IType deriving(Bits, Eq);

November 4, 2015 http://csg.csail.mit.edu/6.175 L19-18

Decode
function DecodedInst decode(Data inst, Status status);
DecodedInst dInst = ?; ...
opSystem: begin
case (funct3) ...
fnPRIV: begin // privilege inst
dInst.iType = (case(inst[31:20])
fn12SCALL: Syscall; // sys call
// ERET can only be executed under privilege mode
fn12ERET: isPrivMode(status) ? Eret : NoPermit;
default: Unsupported;

endcase);
dInst.dst = Invalid; dInst.src1 = Invalid;
dInst.src2 = Invalid; dInst.imm = Invalid;
dInst.aluFunc = ?; dInst.brFunc = NT;

end ... endcase
end
...
return dInst;

endfunction
November 4, 2015 http://csg.csail.mit.edu/6.175 L19-19

Set special registers
if (eInst.iType==Syscall)
begin

csrf.setStatus(statusPushKU(csrf.getStatus));
csrf.setCause(32’h08); // cause for System call
csrf.setEpc(pc);

end else
if (eInst.iType==ERet) begin

cop.setStatus(statusPopKU(cop.getStatus));
end

November 4, 2015 http://csg.csail.mit.edu/6.175 L19-20

Redirecting PC
if (eInst.iType==Syscall)

pc <= csrf.getTvec;
else if (eInst.iType==ERet)

pc <= cop.getEpc;
else

pc <= eInst.brTaken ? eInst.addr : pc + 4;

November 4, 2015 http://csg.csail.mit.edu/6.175 L19-21

