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Symmetric Multiprocessors

Symmetric? 
All memory is equally far 
away from all processors
Any processor can do any 
I/O operation

Memory
I/O controller

Graphics
output

CPU-Memory bus

bridge

Processor

I/O controller I/O controller

I/O bus

Networks

Processor

November 23, 2015 http://www.csg.csail.mit.edu/6.175 L24-2



Synchronization
needed even in single-processor systems

The need for synchronization arises whenever 
there are parallel processes in a system
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 Forks and Joins: A parallel process may 
want to wait until several events have 
occurred

 Producer-Consumer: A consumer process 
must wait until the producer process has 
produced data

 Mutual Exclusion: Operating system has 
to ensure that a resource is used by only 
one process at a given time



A Producer-Consumer 
Example

The program is written assuming 
instructions are executed in order. 

Producer posting Item x:
Load Rtail, tail
Store (Rtail), x
Rtail=Rtail+1
Store tail, Rtail

Consumer:
Load Rhead, head

spin: Load Rtail, tail
if Rhead==Rtail goto spin
Load R, (Rhead)
Rhead=Rhead+1
Store head, Rhead
process(R)

Producer Consumer
tail head

Rtail Rtail Rhead R

Problems?
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A Producer-Consumer 
Example continued

Producer posting Item x:
Load Rtail, (tail)
Store (Rtail), x
Rtail=Rtail+1
Store tail, Rtail

Consumer:
Load Rhead, head

spin: Load Rtail, tail
if Rhead==Rtail goto spin
Load R, (Rhead)
Rhead=Rhead+1
Store head, Rhead
process(R)

Can the tail pointer get updated
before the item x is stored?

Programmer assumes that if 3 happens after 2, then 4
happens after 1.

Problem sequences are:
2, 3, 4, 1
4, 1, 2, 3

1

2

3

4
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Sequential Consistency
A Memory Model

“A system is sequentially consistent if the result of
any execution is the same as if the operations of all
the processors were executed in some sequential 
order, and the operations of each individual processor
appear in the order specified by the program”

Leslie Lamport

Sequential Consistency = 
arbitrary order-preserving interleaving
of memory references of sequential programs

M

P P P P P P
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Sequential Consistency
Sequential concurrent tasks: T1, T2
Shared variables: X, Y (initially X = 0, Y = 0)

T1: T2:
Store X, 1   (X =  1) Load R1, Y 
Store Y, 2     (Y = 2) Store Y’, R1 (Y’= Y)

Load R2, X 
Store X’, R2 (X’= X)

what are the legitimate answers for X’ and Y’ ?

(X’,Y’)  {(1,2), (0,0), (1,0), (0,2)}  ?

If y is 2 then x cannot be 1
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Sequential Consistency
Sequential consistency imposes more memory ordering 
constraints than those imposed by uniprocessor 
program dependencies (     )

What are these in our example ?

T1: T2:
Store X, 1  (X =  1) Load R1, Y 
Store Y, 2      (Y = 2) Store Y’, R1 (Y’= Y)

Load R2, X 
Store X’, R2 (X’= X)

additional SC requirements (        )

High-performance processor implementations often 
violate SC

Example Store Buffer
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Store Buffers
A processor considers a Store 
to have been executed as soon 
as it is stored in the Store 
buffer, that is, before it is put 
in L1
Stores can be moved from the 
store buffer to L1 in  a different 
order
A load can read values from the  
local store buffer (forwarding)

P
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The net effect of store buffers is 
that Loads/Stores can appear to 
be ordered differently to 
different processors – breaks SC



• Suppose Stores don’t leave the store buffers before 
the Loads are executed:

Process 1 Process 2
Store flag1,1; Store flag2,1;
Load r1, flag2; Load r2, flag1;

Violations of SC
Example 1

Initially, all memory 
locations contain zeros

Question:  Is it possible that r1=0 and r2=0?
• Sequential consistency:

Total Store Order (TSO): 
IBM 370, Sparc’s TSO memory model, x86

No

Yes !
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• With non-FIFO store buffers:

Process 1 Process 2
Store a, 1; Load r1, flag; 
Store flag, 1; Load r2, a;

Violations of SC
Example 2: Non-FIFO Store buffers

Sparc’s PSO memory model

Question:  Is it possible that  r1=1 but r2=0?
• Sequential consistency: No

Yes
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• Assuming stores are ordered:

Violations of SC
Example 3: Non-Blocking Caches

Sparc’s RMO, PowerPC’s WO, Alpha

Question:  Is it possible that  r1=1 but r2=0?
• Sequential consistency:

Process 1 Process 2
Store a, 1; Load r1, flag; 
Store flag, 1; Load r2, a;

No

Yes because Loads can be reordered
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Memory Model Issue
Architectural optimizations that are correct for 
uniprocessors, often violate sequential 
consistency and result in a new memory 
model for multiprocessors
Memory model issues are subtle and 
contentious because most ISA specifications 
(X86, ARM, PowerPC, Sparc, MIPS) are 
ambiguous
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For the rest of the lecture we will assume the 
architecture is SC and focus on 
synchronization issues



Multiple Consumer 
Example

Producer posting Item x:
Load Rtail, tail
Store (Rtail), x
Rtail=Rtail+1
Store tail, Rtail

Consumer:
Load Rhead, head

spin: Load Rtail, tail
if Rhead==Rtail goto spin
Load R, (Rhead)
Rhead=Rhead+1
Store head, Rhead
process(R)

What is wrong with this code?

Critical section:
Needs to be executed atomically 
by one consumer  locks

tail head
Producer

Rtail

Consumer
1

R   Rhead

Rtail   

Consumer
2

R   Rhead

Rtail   
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Locks or Semaphores
E. W. Dijkstra, 1965

Suppose the lock s can have only two values:
 s=0 means that no process has the lock
 s=1 means that exactly one process has the lock and 

therefore can access the critical section
 Once a process successfully acquires a lock, it 

executes the critical section and then sets s to zero 
by executing unlock(s)

Implementation of locks is quite difficult using 
just Loads and Stores. ISAs provide special 
atomic instructions to implement locks
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The execution of the critical 
section is protected by lock s. 
Only one process can hold the 
lock.

Process i
lock(s)

<critical section>
unlock(s)



atomic read-modify-write 
instructions

Test&Set m, R: 
R  M[m];
if R==0 then

M[m] 1;

Swap m, R:
Rt  M[m];
M[m] R;
R  Rt;

m is a memory location, R is a register
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Location m can be set to one 
only if it contains a zero

Location m is first read and 
then set to the new value; the 
old value is returned in a 
register



Multiple Consumers 
Example using the Test&Set Instruction

Critical
Section

lock:  Test&Set mutex, Rtemp
if (Rtemp=1) goto lock
Load Rhead, head

spin: Load Rtail, tail
if Rhead==Rtail goto spin
Load R, (Rhead)
Rhead=Rhead+1
Store head, Rhead

unlock: Store mutex, 0
process(R)

What if the process stops or is swapped out while 
in the critical section?
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Nonblocking Synchronization
Load-reserve & Store-conditional
Special register(s) to hold reservation flag and address, 
and the outcome of store-conditional

try:  Load-reserve Rhead, head
spin: Load Rtail, tail

if Rhead==Rtail goto spin
Load R, (Rhead)
Rhead = Rhead + 1
Store-conditional head, Rhead
if (status==fail) goto try
process(R)

Load-reserve R, m:
<flag, adr>  <1, m>; 
R  M[m];

Store-conditional m, R:
if <flag, adr> == <1, m> 
then  cancel other procs’ 

reservation on m;
M[m] R;  
status succeed;

else status fail;
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The corresponding 
instructions in RISC 
V are called lr and 
sc, respectively



Nonblocking Synchronization

The flag is cleared in other processors on a Store using the 
CC protocol’s invalidation mechanism
Usually address m is not remembered by Load-reserve; the 
flag is cleared on any invalidation
 works as long as the Load-reserve instructions are not used in 

a nested manner
These instructions won’t work properly if Loads and Stores 
can be dynamically reordered
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Load-reserve R, (m):
<flag, adr>  <1, m>; 
R  M[m];

Store-conditional (m), R:
if <flag, adr> == <1, m> 
then  cancel other procs’ 

reservation on m;
M[m] R;  
status succeed;

else status fail;



Memory Fences
Instructions to sequentialize memory accesses
Processors with weak or non-sequentially-consistent memory 
models need to provide memory fence instructions to force 
the serialization of memory accesses
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Producer posting Item x:
Load Rtail, (tail)
Store (Rtail), x
MembarSS
Rtail=Rtail+1
Store tail, Rtail

Consumer:
Load Rhead, (head)

spin: Load Rtail, (tail)
if Rhead==Rtail goto spin
MembarLL
Load R, (Rhead)
Rhead=Rhead+1
Store head, Rhead
process(R)

ensures that tail ptr
is not updated before 
x has been stored

ensures that R is
not loaded before 
x has been stored

RISC-V has one instruction called “fence”


