
Constructive Computer Architecture

Symmetric Multiprocessors:
Synchronization and Sequential
Consistency

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

November 23, 2015 http://www.csg.csail.mit.edu/6.175 L24-1

Symmetric Multiprocessors

Symmetric?
All memory is equally far
away from all processors
Any processor can do any
I/O operation

Memory
I/O controller

Graphics
output

CPU-Memory bus

bridge

Processor

I/O controller I/O controller

I/O bus

Networks

Processor

November 23, 2015 http://www.csg.csail.mit.edu/6.175 L24-2

Synchronization
needed even in single-processor systems

The need for synchronization arises whenever
there are parallel processes in a system

producer

consumer

fork

join

P1 P2

November 23, 2015 http://www.csg.csail.mit.edu/6.175 L24-3

 Forks and Joins: A parallel process may
want to wait until several events have
occurred

 Producer-Consumer: A consumer process
must wait until the producer process has
produced data

 Mutual Exclusion: Operating system has
to ensure that a resource is used by only
one process at a given time

A Producer-Consumer
Example

The program is written assuming
instructions are executed in order.

Producer posting Item x:
Load Rtail, tail
Store (Rtail), x
Rtail=Rtail+1
Store tail, Rtail

Consumer:
Load Rhead, head

spin: Load Rtail, tail
if Rhead==Rtail goto spin
Load R, (Rhead)
Rhead=Rhead+1
Store head, Rhead
process(R)

Producer Consumer
tail head

Rtail Rtail Rhead R

Problems?
November 23, 2015 http://www.csg.csail.mit.edu/6.175 L24-4

A Producer-Consumer
Example continued

Producer posting Item x:
Load Rtail, (tail)
Store (Rtail), x
Rtail=Rtail+1
Store tail, Rtail

Consumer:
Load Rhead, head

spin: Load Rtail, tail
if Rhead==Rtail goto spin
Load R, (Rhead)
Rhead=Rhead+1
Store head, Rhead
process(R)

Can the tail pointer get updated
before the item x is stored?

Programmer assumes that if 3 happens after 2, then 4
happens after 1.

Problem sequences are:
2, 3, 4, 1
4, 1, 2, 3

1

2

3

4

November 23, 2015 http://www.csg.csail.mit.edu/6.175 L24-5

Sequential Consistency
A Memory Model

“A system is sequentially consistent if the result of
any execution is the same as if the operations of all
the processors were executed in some sequential
order, and the operations of each individual processor
appear in the order specified by the program”

Leslie Lamport

Sequential Consistency =
arbitrary order-preserving interleaving
of memory references of sequential programs

M

P P P P P P

November 23, 2015 http://www.csg.csail.mit.edu/6.175 L24-6

Sequential Consistency
Sequential concurrent tasks: T1, T2
Shared variables: X, Y (initially X = 0, Y = 0)

T1: T2:
Store X, 1 (X = 1) Load R1, Y
Store Y, 2 (Y = 2) Store Y’, R1 (Y’= Y)

Load R2, X
Store X’, R2 (X’= X)

what are the legitimate answers for X’ and Y’ ?

(X’,Y’)  {(1,2), (0,0), (1,0), (0,2)} ?

If y is 2 then x cannot be 1
November 23, 2015 http://www.csg.csail.mit.edu/6.175 L24-7

Sequential Consistency
Sequential consistency imposes more memory ordering
constraints than those imposed by uniprocessor
program dependencies ()

What are these in our example ?

T1: T2:
Store X, 1 (X = 1) Load R1, Y
Store Y, 2 (Y = 2) Store Y’, R1 (Y’= Y)

Load R2, X
Store X’, R2 (X’= X)

additional SC requirements ()

High-performance processor implementations often
violate SC

Example Store Buffer

November 23, 2015 http://www.csg.csail.mit.edu/6.175 L24-8

Store Buffers
A processor considers a Store
to have been executed as soon
as it is stored in the Store
buffer, that is, before it is put
in L1
Stores can be moved from the
store buffer to L1 in a different
order
A load can read values from the
local store buffer (forwarding)

P

Cache

Memory

P

Cache

November 23, 2015 http://www.csg.csail.mit.edu/6.175 L24-9

The net effect of store buffers is
that Loads/Stores can appear to
be ordered differently to
different processors – breaks SC

• Suppose Stores don’t leave the store buffers before
the Loads are executed:

Process 1 Process 2
Store flag1,1; Store flag2,1;
Load r1, flag2; Load r2, flag1;

Violations of SC
Example 1

Initially, all memory
locations contain zeros

Question: Is it possible that r1=0 and r2=0?
• Sequential consistency:

Total Store Order (TSO):
IBM 370, Sparc’s TSO memory model, x86

No

Yes !

November 23, 2015 http://www.csg.csail.mit.edu/6.175 L24-10

• With non-FIFO store buffers:

Process 1 Process 2
Store a, 1; Load r1, flag;
Store flag, 1; Load r2, a;

Violations of SC
Example 2: Non-FIFO Store buffers

Sparc’s PSO memory model

Question: Is it possible that r1=1 but r2=0?
• Sequential consistency: No

Yes

November 23, 2015 http://www.csg.csail.mit.edu/6.175 L24-11

• Assuming stores are ordered:

Violations of SC
Example 3: Non-Blocking Caches

Sparc’s RMO, PowerPC’s WO, Alpha

Question: Is it possible that r1=1 but r2=0?
• Sequential consistency:

Process 1 Process 2
Store a, 1; Load r1, flag;
Store flag, 1; Load r2, a;

No

Yes because Loads can be reordered

November 23, 2015 http://www.csg.csail.mit.edu/6.175 L24-12

Memory Model Issue
Architectural optimizations that are correct for
uniprocessors, often violate sequential
consistency and result in a new memory
model for multiprocessors
Memory model issues are subtle and
contentious because most ISA specifications
(X86, ARM, PowerPC, Sparc, MIPS) are
ambiguous

November 23, 2015 L24-13http://www.csg.csail.mit.edu/6.175

For the rest of the lecture we will assume the
architecture is SC and focus on
synchronization issues

Multiple Consumer
Example

Producer posting Item x:
Load Rtail, tail
Store (Rtail), x
Rtail=Rtail+1
Store tail, Rtail

Consumer:
Load Rhead, head

spin: Load Rtail, tail
if Rhead==Rtail goto spin
Load R, (Rhead)
Rhead=Rhead+1
Store head, Rhead
process(R)

What is wrong with this code?

Critical section:
Needs to be executed atomically
by one consumer  locks

tail head
Producer

Rtail

Consumer
1

R Rhead

Rtail

Consumer
2

R Rhead

Rtail

November 23, 2015 http://www.csg.csail.mit.edu/6.175 L24-14

Locks or Semaphores
E. W. Dijkstra, 1965

Suppose the lock s can have only two values:
 s=0 means that no process has the lock
 s=1 means that exactly one process has the lock and

therefore can access the critical section
 Once a process successfully acquires a lock, it

executes the critical section and then sets s to zero
by executing unlock(s)

Implementation of locks is quite difficult using
just Loads and Stores. ISAs provide special
atomic instructions to implement locks

November 23, 2015 L24-15http://www.csg.csail.mit.edu/6.175

The execution of the critical
section is protected by lock s.
Only one process can hold the
lock.

Process i
lock(s)

<critical section>
unlock(s)

atomic read-modify-write
instructions

Test&Set m, R:
R  M[m];
if R==0 then

M[m] 1;

Swap m, R:
Rt  M[m];
M[m] R;
R  Rt;

m is a memory location, R is a register

November 23, 2015 http://www.csg.csail.mit.edu/6.175 L24-16

Location m can be set to one
only if it contains a zero

Location m is first read and
then set to the new value; the
old value is returned in a
register

Multiple Consumers
Example using the Test&Set Instruction

Critical
Section

lock: Test&Set mutex, Rtemp
if (Rtemp=1) goto lock
Load Rhead, head

spin: Load Rtail, tail
if Rhead==Rtail goto spin
Load R, (Rhead)
Rhead=Rhead+1
Store head, Rhead

unlock: Store mutex, 0
process(R)

What if the process stops or is swapped out while
in the critical section?

November 23, 2015 http://www.csg.csail.mit.edu/6.175 L24-17

Nonblocking Synchronization
Load-reserve & Store-conditional
Special register(s) to hold reservation flag and address,
and the outcome of store-conditional

try: Load-reserve Rhead, head
spin: Load Rtail, tail

if Rhead==Rtail goto spin
Load R, (Rhead)
Rhead = Rhead + 1
Store-conditional head, Rhead
if (status==fail) goto try
process(R)

Load-reserve R, m:
<flag, adr>  <1, m>;
R  M[m];

Store-conditional m, R:
if <flag, adr> == <1, m>
then cancel other procs’

reservation on m;
M[m] R;
status succeed;

else status fail;

November 23, 2015 http://www.csg.csail.mit.edu/6.175 L24-18

The corresponding
instructions in RISC
V are called lr and
sc, respectively

Nonblocking Synchronization

The flag is cleared in other processors on a Store using the
CC protocol’s invalidation mechanism
Usually address m is not remembered by Load-reserve; the
flag is cleared on any invalidation
 works as long as the Load-reserve instructions are not used in

a nested manner
These instructions won’t work properly if Loads and Stores
can be dynamically reordered

November 23, 2015 L24-19http://www.csg.csail.mit.edu/6.175

Load-reserve R, (m):
<flag, adr>  <1, m>;
R  M[m];

Store-conditional (m), R:
if <flag, adr> == <1, m>
then cancel other procs’

reservation on m;
M[m] R;
status succeed;

else status fail;

Memory Fences
Instructions to sequentialize memory accesses
Processors with weak or non-sequentially-consistent memory
models need to provide memory fence instructions to force
the serialization of memory accesses

November 23, 2015 http://www.csg.csail.mit.edu/6.175 L24-20

Producer posting Item x:
Load Rtail, (tail)
Store (Rtail), x
MembarSS
Rtail=Rtail+1
Store tail, Rtail

Consumer:
Load Rhead, (head)

spin: Load Rtail, (tail)
if Rhead==Rtail goto spin
MembarLL
Load R, (Rhead)
Rhead=Rhead+1
Store head, Rhead
process(R)

ensures that tail ptr
is not updated before
x has been stored

ensures that R is
not loaded before
x has been stored

RISC-V has one instruction called “fence”

