
Computer Architecture: A Constructive Approach

Using Executable and Synthesizable Specifications

Arvind 1, Rishiyur S. Nikhil 2,

Joel S. Emer 3, and Murali Vijayaraghavan 1

1 MIT 2 Bluespec, Inc. 3 Intel and MIT

with contributions from

Prof. Li-Shiuan Peh, Abhinav Agarwal, Elliott Fleming,
Sang Woo Jun, Asif Khan, Myron King (MIT);

Prof. Derek Chiou (University of Texas, Austin);
and Prof. Jihong Kim (Seoul National University)

c© 2012-2015 Arvind, R.S.Nikhil, J.Emer and M.Vijayaraghavan

Revision: August 25, 2015

Acknowledgements

We would like to thank the staff and students of various recent offerings of this course at
MIT, Seoul National University and Technion for their feedback and support.

ii CONTENTS

Contents

1 Introduction 1-1

2 Combinational circuits 2-1

2.1 A simple “ripple-carry” adder . 2-1

2.1.1 A 2-bit Ripple-Carry Adder . 2-3

2.2 Static Elaboration and Static Values . 2-7

2.3 Integer types, conversion, extension and truncation 2-8

2.4 Arithmetic-Logic Units (ALUs) . 2-9

2.4.1 Shift operations . 2-10

2.4.2 Enumerated types for expressing ALU opcodes 2-13

2.4.3 Combinational ALUs . 2-14

2.4.4 Multiplication . 2-15

2.5 Summary, and a word about efficient ALUs . 2-16

3 Sequential (Stateful) Circuits and Modules 3-1

3.1 Registers . 3-1

3.1.1 Space and time . 3-1

3.1.2 D flip-flops . 3-2

3.1.3 Registers . 3-3

3.2 Sequential loops with registers . 3-5

3.3 Sequential version of the multiply operator . 3-6

3.4 Modules and Interfaces . 3-8

3.4.1 Polymorphic multiply module . 3-11

3.5 Register files . 3-13

3.6 Memories and BRAMs . 3-14

iii

iv CONTENTS

4 Pipelining Complex Combinational Circuits 4-1

4.1 Introduction . 4-1

4.2 Pipeline registers and Inelastic Pipelines . 4-2

4.2.1 Inelastic Pipelines . 4-3

4.2.2 Stalling and Bubbles . 4-4

4.2.3 Expressing data validity using the Maybe type 4-5

4.3 Elastic Pipelines with FIFOs between stages . 4-8

4.4 Final comments on Inelastic and Elastic Pipelines . 4-10

4.5 Variations on architecture for IFFT . 4-10

4.5.1 Combinational IFFT . 4-10

4.5.2 Pipelined IFFT . 4-11

4.5.3 Folded IFFT . 4-11

4.5.4 Super-folded IFFT . 4-12

4.5.5 Comparing all the architectural variants of IFFT 4-14

5 Introduction to SMIPS: a basic implementation without pipelining 5-1

5.1 Introduction to SMIPS . 5-1

5.1.1 Instruction Set Architectures, Architecturally Visible State, and Implementa-
tion State . 5-2

5.1.2 SMIPS processor architectural state . 5-3

5.1.3 SMIPS processor instruction formats . 5-3

5.2 Uniform interface for our processor implementations 5-5

5.3 A simple single-cycle implementation of SMIPS v1 5-6

5.4 Expressing our single-cycle CPU with BSV, versus prior methodologies 5-14

5.5 Separating the Fetch and Execute actions . 5-15

5.5.1 Analysis . 5-18

6 SMIPS: Pipelined 6-1

6.1 Hazards . 6-1

6.1.1 Modern processors are distributed systems 6-2

6.2 Two-stage pipelined SMIPS (inelastic) . 6-2

6.3 Two-stage pipelined SMIPS (elastic) . 6-4

6.3.1 Epochs and epoch registers . 6-5

6.3.2 Elastic pipeline: two-rules, fully-decoupled, distributed 6-6

6.4 Conclusion . 6-8

v

7 BSV Rule Semantics 7-1

7.1 Introduction . 7-1

7.2 Actions and ActionValues . 7-2

7.2.1 Combining Actions . 7-4

7.3 Parallelism: semantics of a rule in isolation . 7-5

7.3.1 Per-rule method well-formedness constraints 7-8

7.4 Logical semantics vs. implementation: sequential rule execution 7-10

7.5 Concurrent rule execution, and scheduling rules into clocks 7-11

7.5.1 Schedules, and compilation of schedules . 7-12

7.5.2 Examples . 7-13

7.5.3 Nuances due to conditionals . 7-14

7.5.4 Hardware schedule managers . 7-15

7.6 Conclusion . 7-15

8 Concurrent Components 8-1

8.1 Introduction . 8-1

8.2 A motivating example: an up-down counter . 8-1

8.2.1 Intra-clock concurrency and semantics . 8-2

8.2.2 Concurrent Registers (CRegs) . 8-3

8.2.3 Implementing the counter with CRegs . 8-4

8.3 Concurrent FIFOs . 8-5

8.3.1 Multi-element concurrent FIFOs . 8-5

8.3.2 Semantics of single element concurrent FIFOs 8-8

8.3.3 Implementing single element concurrent FIFOs using CRegs 8-10

9 Data Hazards (Read-after-Write Hazards) 9-1

9.1 Read-after-write (RAW) Hazards and Scoreboards 9-1

9.2 Concurrency issues in the pipeline with register file and scoreboard 9-6

9.3 Write-after-Write Hazards . 9-7

9.4 Deeper pipelines . 9-7

9.5 Conclusion . 9-9

10 Branch Prediction 10-1

10.1 Introduction . 10-1

10.2 Static Branch Prediction . 10-2

10.3 Dynamic Branch Prediction . 10-3

10.4 A first attempt at a better Next-Address Predictor (NAP) 10-5

10.5 An improved BTB-based Next-Address Predictor . 10-6

vi CONTENTS

10.5.1 Implementing the Next-Address Predictor . 10-6

10.6 Incorporating the BTB-based predictor in the 2-stage pipeline 10-8

10.7 Direction predictors . 10-9

10.8 Incorporating multiple predictors into the pipeline 10-10

10.8.1 Extending our BSV pipeline code with multiple predictors 10-12

10.9 Conclusion . 10-15

11 Exceptions 11-1

11.1 Introduction . 11-1

11.2 Asynchronous Interrupts . 11-2

11.2.1 Interrupt Handlers . 11-2

11.3 Synchronous Interrupts . 11-3

11.3.1 Using synchronous exceptions to handle complex and infrequent instructions 11-3

11.3.2 Incorporating exception handling into our single-cycle processor 11-3

11.4 Incorporating exception handling into our pipelined processor 11-5

11.4.1 BSV code for pipeline with exception handling 11-8

12 Caches 12-1

12.1 Introduction . 12-1

12.2 Cache organizations . 12-4

12.2.1 Replacement policies . 12-6

12.2.2 Blocking and Non-blocking caches . 12-6

12.3 A Blocking Cache Design . 12-7

12.4 Integrating caches into the processor pipeline . 12-10

12.5 A Non-blocking cache for the Instruction Memory (Read-Only) 12-11

12.5.1 Completion Buffers . 12-13

12.6 Conclusion . 12-15

13 Virtual Memory 13-1

13.1 Introduction . 13-1

13.2 Different kinds of addresses . 13-2

13.3 Paged Memory Systems . 13-2

13.4 Page Tables . 13-4

13.5 Address translation and protection using TLBs . 13-5

13.6 Variable-sized pages . 13-7

13.7 Handling TLB misses . 13-9

13.8 Handling Page Faults . 13-10

13.9 Recursive Page Faults . 13-11

13.10Integating Virtual Memory mechanisms ino the processor pipeline 13-12

13.11Conclusion . 13-14

vii

14 Future Topics 14-1

14.1 Asynchronous Exceptions and Interrupts . 14-1

14.2 Out-of-order pipelines . 14-1

14.3 Protection and System Issues . 14-1

14.4 I and D Cache Coherence . 14-1

14.5 Multicore and Multicore cache coherence . 14-1

14.6 Simultaneous Multithreading . 14-2

14.7 Energy efficiency . 14-2

14.8 Hardware accelerators . 14-2

A SMIPS Reference SMIPS-1

A.1 Basic Architecture . SMIPS-2

A.2 System Control Coprocessor (CP0) . SMIPS-3

A.2.1 Test Communication Registers . SMIPS-3

A.2.2 Counter/Timer Registers . SMIPS-3

A.2.3 Exception Processing Registers . SMIPS-4

A.3 Addressing and Memory Protection . SMIPS-6

A.4 Reset, Interrupt, and Exception Processing . SMIPS-7

A.4.1 Reset . SMIPS-7

A.4.2 Interrupts . SMIPS-7

A.4.3 Synchronous Exceptions . SMIPS-8

A.5 Instruction Semantics and Encodings . SMIPS-9

A.5.1 Instruction Formats . SMIPS-9

A.5.2 Instruction Categories . SMIPS-10

A.5.3 SMIPS Variants . SMIPS-15

A.5.4 Unimplemented Instructions . SMIPS-15

A.6 Instruction listing for SMIPS . SMIPS-16

Bibliography BIB-1

viii CONTENTS

Chapter 1

Introduction

This book is intended as an introductory course in Computer Architecture (or Computer
Organization, or Computer Engineering) for undergraduate students who have had a basic
introduction to circuits and digital electronics. This book employs a constructive approach,
i.e., all concepts are explained with machine descriptions that transparently describe archi-
tecture and that can be synthesized to real hardware (for example, they can actually be run
on FPGAs). Further, these descriptions will be very modular, enabling experimentation
with alternatives.

Computer Architecture has traditionally been taught with schematic diagrams and ex-
planatory text. Diagrams describe general structures, such as ALUs, pipelines, caches,
virtual memory mechanisms, and interconnects, or specific examples of historic machines,
such as the CDC 6600, Cray-1 (recent machines are usually proprietary, meaning the de-
tails of their structure may not be publicly available). These diagrams are accompanied by
lectures and texts explaining principles of operation. Small quantitative exercises can be
done by hand, such as measuring cache hit rates for various cache organizations on small
synthetic instruction streams.

In 1991, with the publication of the classic Computer Architecture: A Quantitative
Approach by Hennessy and Patterson [6] (the Fith Edition was published in 2011), the ped-
agogy changed from such almost anecdotal descriptions to serious scientific, quantitative
evaluation. They firmly established the idea that architectural proposals cannot be eval-
uated in the abstract, or on toy examples; they must be measured running real programs
(applications, operating systems, databases, web servers, etc.) in order properly to evaluate
the engineering trade-offs (cost, performance, power, and so on). Since it has typically not
been feasible (due to lack of time, funds and skills) for students and researchers actually
to build the hardware to test an architectural proposal, this evaluation has typically taken
the route of simulation, i.e., writing a program (say in in C or C++) that simulates the
architecture in question. Most of the papers in leading computer architecture conferences
are supported by data gathered this way.

Unfortunately, there are several problems with simulators written in traditional pro-
gramming languages like C and C++. First, it is very hard to write an accurate model
of complex hardware. Computer system hardware is massively parallel (at the level of
registers, pipeline stages, etc.); the paralleism is very fine-grain (at the level of individual
bits and clock cycles); and the parallelism is quite heterogeneous (thousands of dissimilar

1-1

1-2 Ch 1: Introduction (DRAFT)

activities). These features are not easy to express in traditional programming languages,
and simulators that try to model these features end up as very complex programs. Further,
in a simulator it is too easy, without realizing it, to code actions that are unrealistic or
infeasible in real hardware, such as instantaneous, simultaneous access to a global piece
of state from distributed parts of the architecture. Finally, these simulators are very far
removed from representing any kind of formal specification of an architecture, which would
be useful for both manual and automated reasoning about correctness, performance, power,
equivalence, and so on. A formal semantics of the interfaces and behavior of architectural
components would also benefit constructive experimentation, where one could more easily
subtract, replace and add architectural components in a model in order to measure their
effectiveness.

Of course, to give confidence in hardware feasibility, one could write a simulator in the
synthesizable subset of a Hardware Description Language (HDL) such as Verilog, VHDL,
or the RTL level of SystemC. Unfortunately, these are very low level languages compared
to modern programming languages, requiring orders of magnitude more effort to develop,
evolve and maintain simulators; they are certainly not good vehicles for experimentation.
And, these languages also lack any useful notion of formal semantics.

In this book we pursue a recently available alternative. The BSV language is a high-
level, fully synthesizable hardware description language with a strong formal semantic ba-
sis [1, 2, 9]. It is very suitable for describing architectures precisely and succinctly, and
has all the conveniences of modern advanced programming languages such as expressive
user-defined types, strong type checking, polymorphism, object orientation and even higher
order functions during static elaboration.

BSV’s behavioral model is based on Guarded Atomic Actions (or atomic transactional
“rules”). Computer architectures are full of very subtle issues of concurrency and ordering,
such as dealing correctly with data hazards or multiple branch predictors in a processor
pipeline, or distributed cache coherence in scalable multiprocessors. BSV’s formal behav-
ioral model is one of the best vehicles with which to study and understand such topics (it
seems also to be the computational model of choice in several other languages and tools for
formal specification and analysis of complex hardware systems).

Modern hardware systems-on-a-chip (SoCs) have so much hardware on a single chip that
it is useful to conceptualize them and analyze them as distributed systems rather than as
globally synchronous systems (the traditional view), i.e., where architectural components
are loosely coupled and communicate with messages, instead of attempting instantaneous
access to global state. Again, BSV’s formal semantics are well suited to this flavor of models.

The ability to describe hardware module interfaces formally in BSV facilitates creating
reusable architectural components that enables quick experimentation with alternatives
structures, reinforcing the “constructive approach” mentioned in this book’s title.

Architectural models written in BSV are fully executable. They can be simulated in
the BluesimTM simulator; they can be synthesized to Verilog and simulated on a Verilog
simulator; and they can be further synthesized to run on FPGAs, as illustrated in Fig. 1.1.
This last capability is not only excellent for validating hardware feasibility of the models, but
it also enables running much bigger programs on the models, since FPGA-based execution
can be 3 to 4 orders of magnitude faster than simulation. Students are also very excited to
see their designs actually running on real FPGA hardware.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 1-3

Figure 1.1: Tool flow for executing the models in this book

This book uses the SMIPS Instruction Set Architecture for all its examples, but none
of the architectural concepts discussed here are specific to SMIPS. The choice of SMIPS is
one of expedience—it is a simple, open ISA, for which a C compiler is available (without
a compiler, it would be quite laborious to construct any serious programs to run on our
implementations). And, in any case, no matter what ISA you are implementing, most of
the architectural concepts are identical; only the front-end instruction-stream parsing and
decode stages are likely to be different. We welcome others to adapt the examples provided
here to other ISAs (preferably in open source form, available to the community).

In this book, intended as a first course in Computer Architecture for undergraduates, we
will go through a series of traditional topics: combinational circuits, pipelines, unpipelined
processors, processor pipelines of increasing depth, control speculation (branch prediction),
data hazards, exceptions, caches, virtual memory, and so on. We will be writing BSV code
for every topic explored. At every stage the student is encouraged to run the models at least
in simulation, but preferably also on FPGAs. By the end of the course students will design
six or more different computers of increasing complexity and performance, and they will
quantitatively evaluate the performance of their C programs compiled and running on these
machines. Codes will be written in a modular way so students can experiment by easily
removing, replacing or adding components or features. Along the way, we will delve deeply
into complex issues of concurrency and ordering so that the student has a more rigorous
framework in which to think about these questions and create new solutions.

1-4 Ch 1: Introduction (DRAFT)

Chapter 2

Combinational circuits

Combinational circuits are just acyclic interconnections of gates such as AND, OR, NOT,
XOR, NAND, and NOR. In this chapter, we will describe the design of some Arithmetic-
Logic Units (ALUs) built out of pure combinational circuits. These are the core“processing”
circuits in a processor. Along the way, we will also introduce some BSV notation, types and
type checking.

2.1 A simple “ripple-carry” adder

Our first goal is to build an adder that takes two w-bit input integers and produces a w-bit
output integer plus a “carry” bit (typically, w = 32 or 64 in modern processors). First we
need a building block called a “full adder” whose inputs are three bits—the jth bits of the
two inputs and the “carry” bit from the addition of the lower-order bits (up to the j − 1th

bit). The full adder has two output bits—the jth bit of the result and the carry bit up to
this point. Its functionality is specified by a classical “truth table”:

Inputs Outputs

a b c in c out s

0 0 0 0 0
0 1 0 0 1
1 0 0 0 1
1 1 0 1 0
0 0 1 0 1
0 1 1 1 0
1 0 1 1 0
1 1 1 1 1

We can implement this in a circuit, expressed in BSV (almost correct syntax) as follows:
Full Adder (not quite proper BSV code)

1 function fa (a, b, c_in);

2 s = (a ^ b) ^ c_in;

3 c_out = (a & b) | (c_in & (a ^ b));

4 return {c_out, s};

5 endfunction

2-1

2-2 Ch 2: Combinational circuits (DRAFT)

Figure 2.1: Full adder circuit

In BSV, as in C, the &, | and ^, symbols stand for the AND, OR, and XOR (exclusive
OR) functions on bits. The circuit it describes is shown in Fig. 2.1, which is in some sense
just a pictorial depiction of the code.

A note about common sub-expressions: the code has two instances of the ex-
pression (a ^ b) (on lines 2 and 3), but the circuit shows just one such gate (top-left of
the circuit), whose output is fed to two places. Conversely, the circuit could have been
drawn with two instances of the gate, or the expression-sharing could have been suggested
explicitly in the BSV code:

Common sub-expressions
1 ...

2 tmp = (a ^ b);

3 s = tmp ^ c_in;

4 c_out = (a & b) | (c_in & tmp);

5 ...

From a functional point of view, these differences are irrelevant, since they all implement
the same truth table. From an implementation point of view it is quite relevant, since a
shared gate occupies less silicon but drives a heavier load. However, we do not worry
about this issue at all when writing BSV code because the Bluespec compiler bsc performs
extensive and powerful identification and unification of common-sub-expressions, no matter
how you write it. Such sharing is almost always good for implementation. Very occasionally,
considerations of high fan-out and long wire-lengths may dictate otherwise; BSV has ways
of specifying this, if necessary. (end of note)

The code above is not quite proper BSV, because we have not yet declared the types
of the arguments, results and intermediate variables. Here is a proper BSV version of the
code:

Full Adder (with types)
1 function Bit#(2) fa (Bit#(1) a, Bit#(1) b, Bit#(1) c_in);

2 Bit#(1) s = (a ^ b) ^ c_in;

3 Bit#(1) c_out = (a & b) | (c_in & (a ^ b));

4 return {c_out,s};

5 endfunction

BSV is a strongly typed language, following modern practice for robust, scalable pro-
gramming. All expressions (including variables, functions, modules and interfaces) have

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 2-3

unique types, and the compiler does extensive type checking to ensure that all operations
have meaningful types. In the above code, we’ve declared the types of all arguments and the
two intermediate variables as Bit#(1), i.e., a 1-bit value. The result type of the function
has been declared Bit#(2), a 2-bit value. The expression {c_out,s} represents a concate-
nation of bits. The type checker ensures that all operations are meaningful, i.e., that the
operand and result types are proper for the operator (for example, it would be meaningless
to apply the square root function to an Ethernet header packet!).

BSV also has extensive type deduction or type inference, by which it can fill in types
omitted by the user. Thus, the above code could also have been written as follows:

Full Adder (with some omitted types)
1 function Bit#(2) fa (Bit#(1) a, Bit#(1) b, Bit#(1) c_in);

2 let s = (a ^ b) ^ c_in;

3 let c_out = (a & b) | (c_in & (a ^ b));

4 return {c_out,s};

5 endfunction

The keyword let indicates that we would like the compiler to work out the types for
us. For example, knowing the types of a, b and c_in, and knowing that the ^ operator
takes two w-bit arguments to return a w-bit result, the compiler can deduce that s has type
Bit#(1). Similarly, the compiler can also deduce that c_out has type Bit#(1).

Type-checking in BSV is much stronger than in languages like C and C++. For example,
one can write an assignment statement in C or C++ that adds a char, a short, a long and
a long long and assign the result to a short variable. During the additions, the values are
silently “promoted” to longer values and, during the assignment, the longer value is silently
truncated to fit in the shorter container. The promotion may be done using zero-extension
or sign-extension, depending on the types of the operands. This kind of silent type “casting”
(with no visible type checking error) is the source of many subtle bugs; even C/C++ experts
are often surprised by it. In hardware design, these errors are magnified by the fact that,
unlike C/C++, we are not just working with a few fixed sizes of values (1, 2, 4 and 8 bytes)
but with arbitrary bit widths in all kinds of combinations. Further, to minimize hardware
these bit sizes are often chosen to be just large enough for the job, and so the chances of
silent overlow and truncation are greater. In BSV, type casting is never silent, it must be
explicitly stated by the user.

2.1.1 A 2-bit Ripple-Carry Adder

Figure 2.2: 2-bit Ripple Carry Adder circuit

2-4 Ch 2: Combinational circuits (DRAFT)

We now use our Full Adder as a black box for our next stepping stone towards a w-bit
ripple-carry adder: a 2-bit ripple-carry adder. The circuit is shown in Fig. 2.2, and it is
described by the following BSV code.

2-bit Ripple Carry Adder
1 function Bit#(3) add(Bit#(2) x, Bit#(2) y, Bit#(1) c0);

2 Bit#(2) s;

3 Bit#(3) c = {?,c0};

4

5 let cs0 = fa(x[0], y[0], c[0]);

6 c[1] = cs0[1]; s[0] = cs0[0];

7

8 let cs1 = fa(x[1], y[1], c[1]);

9 c[2] = cs1[1]; s[1] = cs1[0];

10

11 return {c[2],s};

12 endfunction

Here, x and y represent the two 2-bit inputs, and c0 the input carry bit. The notation
x[j] represents a selection of the jth bit of x, with the common convention that j = 0 is the
least significant bit. Fig. 2.3 shows the circuit for bit-selection where the selection index is

Figure 2.3: Bit-select circuit, static index

a static (compile-time) constant. The “circuit” is trivial: we just connect the specified wire.
Fig. 2.3 shows the circuit for bit-selection where the selection index is a dynamic value.

Figure 2.4: Bit-select circuit, dynamic index

Here, we need a “multiplexer”, which we will discuss in Sec. 2.4.1. In the ripple-carry adders
we discuss here, we only use bit-selection with static indices.

Returning to our 2-bit adder, we declare a 2-bit value s and a 3-bit value c to hold some
intermediate values. The latter is initialized to the value of the expression {?,c0}. This
is a bit-concatenation of two values, one that is left unspecified, and c0. The compiler can
deduce that the unspecified value must be of type Bit#(2), since the whole expression must
have type Bit#(3) and c0 has type Bit#(1).

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 2-5

In BSV, the expression ? represents an unspecified or “don’t care” value, leaving it up to
the compiler to choose. Here we leave it unspecified since we’re going to set the values in the
subsequent code. Similarly, the initial value of s is also unspecified by not even providing
an initializer.

A full adder instance is applied to the two lower bits of x and y and the input carry bit
producing 2 bits, cs0. We assign its bits into c[1] and s[0]. A second full adder instance
is applied to the two upper bits of x and y and the carry bit of cs0 to produce 2 bits, cs1.
Again, we capture those bits in c[2] and s[1]. Finally, we construct the 3-bit result from
c[2] and s. The type checker will be happy with this bit-concatenation since the widths
add up correctly.

The types Bit#(1), Bit#(2), Bit#(3) etc. are instances of a more general type Bit#(n),
where n is a“type variable”. Such types are variously called parameterized types, polymorphic
types, or generic types, because they represent a class of types, corresponding to each possible
concrete instantiation of the type variable.

Figure 2.5: w-bit Ripple Carry Adder circuit

We are now ready to generalize our 2-bit ripple-carry adder to a w-bit ripple-carry adder.
The circuit is shown in Fig. 2.5, and the BSV code is shown below.

w-bit Ripple Carry Adder (almost correct)
1 function Bit#(w+1) addN (Bit#(w) x, Bit#(w) y, Bit#(1) c0);

2 Bit#(w) s;

3 Bit#(w+1) c = {?, c0};

4 for(Integer i=0; i<w; i=i+1) begin

5 let cs = fa (x[i],y[i],c[i]);

6 c[i+1] = cs[1]; s[i] = cs[0];

7 end

8 return {c[w],s};

9 endfunction

The previous 2-bit adder can be seen as an explicit unrolling of this loop with w = 2.
Now this generic w-bit adder can be instantiated as adders of specific sizes. For example:

w-bit Ripple Carry Adder ()
1 function Bit#(33) add32 (Bit#(32) x, Bit#(32) y, Bit#(1) c0)

2 = addN (x,y,c0);

3

4 function Bit#(4) add3 (Bit#(3) x, Bit#(3) y, Bit#(1) c0)

5 = addN (x,y,c0);

2-6 Ch 2: Combinational circuits (DRAFT)

This defines add32 and add3 on 32-bit and 3-bit values, respectively. In each case the
specific function just calls addN, but type deduction will fix the value of w for that instance,
and type checking will verify that the output width is 1 more than the input width.

We will now correct a small notational issue with the addN function given above, having
to do with numeric type notations. The BSV compiler, like most compilers, is composed
of several distinct phases such as parsing, type checking, static elaboration, analysis and
optimization, and code generation. Type checking must analyze, verify and deduce numer-
ical relationships, such as the bit widths in the example above. However, we cannot have
arbitrary arithmetic in this activity since we want type-checking to be feasible and efficient
(arbitrary arithmetic would make it undecidable). Thus, the numeric calculations performed
by the type checker are in a separate, limited universe, and should not be confused with
ordinary arithmetic on values.

In the type expressions Bit#(1), Bit#(3), Bit#(33), the literals 1, 3, 33, are in the type
universe, not the ordinary value universe, even though we use the same syntax as ordinary
numeric values. The context will always make this distinction clear—numeric literal types
only occur in type expressions, and numeric literal values only occur in ordinary value
expressions. Similarly, it should be clear that a type variable like w in a type expression
Bit#(w) can only stand for a numeric type, and never a numeric value.

Since type checking (including type deduction) occurs before anything else, type values
are known to the compiler before it analyses any piece of code. Thus, it is possible to take
numeric type values from the types universe into the ordinary value universe, and use them
there (but not vice versa). The bridge is a built-in pseudo-function called valueOf(n).
Here, n is a numeric type expression, and the value of the function is an ordinary Integer

value equivalent to the number represented by that type.

Numeric type expressions can also be manipulated by numeric type operators like
TAdd#(t1,t2) and TMul#(t1,t2), corresponding to addition and subtraction, respectively
(other available operators include min, max, exponentiation, base-2 log, and so on).

With this in mind, we can fix up our w-bit ripple carry adder code:

w-bit Ripple Carry Adder (corrected)
1 function Bit#(TAdd#(w,1)) addN (Bit#(w) x, Bit#(w) y, Bit#(1) c0);

2 Bit#(w) s;

3 Bit#(TAdd#(w,1)) c = {?, c0};

4 for(Integer i=0; i< valueOf(w); i=i+1) begin

5 let cs = fa (x[i],y[i],c[i]);

6 c[i+1] = cs[1]; s[i] = cs[0];

7 end

8 return {c[w],s};

9 endfunction

The only differences from the earlier, almost correct version is that we have used
TAdd#(w,1) instead of w+1 in lines 1 and 3 and we have inserted valueOf() in line 4.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 2-7

2.2 Static Elaboration and Static Values

The w-bit ripple carry adder in the previous section illustrated how we can use syntactic
for-loops to represent repetitive circuit structures. Conceptually, the compiler “unfolds”
such loops into an acyclic graph representing a (possibly large) combinational circuit. This
process in the compiler is called static elaboration. In fact, in BSV you can even write
recursive functions that will be statically unfolded to represent, for example, a tree-shaped
circuit.

Of course, this unfolding needs to terminate statically (during compilation), i.e., the
conditions that control the unfolding cannot depend on a dynamic, or run-time value (a
value that is only known when the circuit itself runs in hardware, or is simulated in a
simulator). For example, if we wrote a for-loop whose termination index was such a run-
time value, or a recursive function whose base case test depended on such a run-time value,
such a loop/function could not be unfolded statically. Thus, static elaboration of loops and
recursion must only depend on static values (values known during compilation).

This distinction of static elaboration vs. dynamic execution is not something that soft-
ware programmers typically think about, but it is an important topic in hardware design.
In software, a recursive function is typically implemented by “unfolding” it into a stack of
frames, and this stack grows and shrinks dynamically; in addition, data is communicated
between frames, and computation is done on this data. In a corresponding hardware imple-
mentation, on the other hand, the function may be statically unfolded by the compiler into
a tree of modules (corresponding to pre-elaborating the software stack of frames), and only
the data communication and computation happens dynamically. Similarly, the for-loop in
the w-bit adder, if written in C, would typically actually execute as a sequential loop, dy-
namically, whereas what we have seen is that our loop is statically expanded into repetitive
hardware structures, and only the bits flow through it dynamically.

Of course, it is equally possible in hardware as well to implement recursive structures
and loops dynamically (the former by pushing and popping frames or contexts in memory,
the latter with FSMs), mimicing exactly what software does. In fact, later we shall see
the BSV “FSM” sub-language where we can express dynamic sequential loops with dynamic
bounds. But this discussion is intended to highlight the fact that hardware designers usually
think much more carefully about what structures should/will be statically elaborated vs.
what remains to execute dynamically.

To emphasize this point a little further, let us take a slight variation of our w-bit adder,
in which we do not declare c as a Bit#(TAdd#(w,1)) bit vector:

w-bit Ripple Carry Adder (variation)
1 function Bit#(w+1) addN (Bit#(w) x, Bit#(w) y, Bit#(1) c);

2 Bit#(w) s;

3 for(Integer i=0; i<w; i=i+1) begin

4 let cs = fa (x[i],y[i],c);

5 c = cs[1]; s[i] = cs[0];

6 end

7 return {c,s};

8 endfunction

2-8 Ch 2: Combinational circuits (DRAFT)

Note that c is declared as an input parameter; it is “repeatedly updated” in the loop,
and it is returned in the final result. The traditional software view of this is that c refers
to a location in memory which is repeatedly updated as the loop is traversed sequentially,
and whatever value finally remains in that location is returned in the result.

In BSV, c is just a name for value (there is no memory involved here, let alone any
concept of c being a name for a location in memory that can be updated). The loop is
statically elaborated, and the “update” of c is just a notational device to say that this is
what c now means for the rest of the elaboration. In fact this code, and the previous
version where c was declared as Bit#(TAdd#(w,1)) are both statically elaborated into
identical hardware.

Over time, it becomes second nature to the BSV programmer to think of variables in
this way, i.e., not the traditional software view as an assignable location, but the purer view
of being simply a name for a value during static elaboration (ultimately, a name for a set
of wires).1

2.3 Integer types, conversion, extension and truncation

One particular value type in BSV, Integer, is only available as a static type for static
variables. Semantically, these are true mathematical unbounded integers, not limited to
any arbitrary bit width like 32, 64, or 64K (of course, they’re ultimately limited by the
memory of the system your compiler runs on). However, for dynamic integer values in
hardware we typically limit them to a certain bit width, such as:

Various BSV fixed-width signed and unsigned integer types
1 int, Int #(32) \\ 32-bit signed integers

2 Int #(23) \\ 23-bit signed integers

3 Int #(w) \\ signed integer of polymorphic width w

4 UInt #(48) \\ 48-bit unsigned integers

5 ...

One frequently sees Integer used in statically elaborated loops; the use of this type is
a further reminder that this is a statically elaborated loop.

In keeping with BSV’s philosophy of strong type checking, the compiler never performs
automatic (silent) conversion between these various integer types; the user must express a
desired conversion explicitly. To convert from Integer to a fixed-width integer type, one
applies the fromInteger function. Examples:

fromInteger
1 for(Integer j=0; i< 100; j=j+1) begin

2 Int #(32) x = fromInteger (j/4);

3 UInt #(17) y = fromInteger (valueOf (w) + j);

4 ...

5 end

1For compiler afficionados: this is a pure functional view, or Static Single Assignement (SSA) view of
variables.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 2-9

For truncation of one fixed-size integer type to a shorter one, use the truncate function.
For extension to a longer type, use zeroExtend, signExtend and extend. The latter
function will zero-extend for unsigned types and sign-extend for signed types. Examples:

extend and truncate
1 Int #(32) x = ...;

2 Int #(64) y = signExtend (x);

3 x = truncate (y);

4 y = extend (x+2); // will sign extend

Finally, wherever you really need to, you can always convert one type to another. For
example you might declare a memory address to be of type UInt#(32), but in some cache
you may want to treat bits [8:6] as a signed integer bank address. You’d use notation like
the following:

pack and unpack
1 typedef UInt #(32) Addr;

2 typedef Int #(3) BankAddr;

3

4 Addr a = ...

5 BankAddr ba = unpack (pack (a)[8:6]);

The first two lines define some type synonyms, i.e., Addr and BankAddr can now be
regarded as more readable synonyms for UInt#(32) and Int#(3). The pack function con-
verts the Int #(32) value a into a Bit#(32) value; we then select bits [8:6] of this, yielding
a Bit#(3) value; the unpack function then converts this into an Int#(3) value.

This last discussion is not a compromise on strong static type checking. Type conversions
will always be necessary because one always plays application-specific representational tricks
(how abtract values and structures are coded in bits) that the compiler cannot possible know
about, particularly in hardware designs. However, by making type conversions explicit in
the source code, we eliminate most of the accidental and obscure errors that creep in either
due to weak type checking or due to silent implicit conversions.

2.4 Arithmetic-Logic Units (ALUs)

At the heart of any processor is an ALU (perhaps more than one) that performs all the
additions, subtractions, multiplications, ANDs, ORs, comparisons, shifts, and so on, the
basic operations on which all computations are built. In the previous sections we had a
glimpse of building one such operation—an adder. In this section we look at a few more
operations, which we then combine into an ALU.

Fig. 2.6 shows the symbol commonly used to represent ALUs in circuit schematics. It
has data inputs A and B, and an Op input by which we select the function performed by the
ALU. It has a Result data output, and perhaps other outputs like Comp? for the outputs
of comparisons, for carry and overflow flags, and so on.

2-10 Ch 2: Combinational circuits (DRAFT)

Figure 2.6: ALU schematic symbol

2.4.1 Shift operations

We will build up in stages to a general circuit for shifting a w-bit value right by n places.

Logical Shift Right by a Fixed Amount

Figure 2.7: Logical shift right by 2

Fig. 2.7 shows a circuit for shifting a 4-bit value right by 2 (i.e., towards the least-
significant bit), filling in zeroes in the just-vacated most-significant bits (in general the
input and output could be w bits). As you can see, there’s really no logic to it (:-)), it’s
just a wiring diagram. BSV has a built-in operator for this, inherited from Verilog and
SystemVerilog:

Shift operators
1 abcd >> 2 // right shift by 2

2 abcd << 2 // left shift by 2

Even if it were not built-in, it is very easy to write a BSV function for this:

Shift function
1 function Bit #(w) logical_shift_right (Integer n, Bit #(w) arg);

2 Bit #(w) result = 0;

3 for (Integer j=0; j<(valueOf(w)-n); j=j+1)

4 result [j] = arg [j+n];

5 return result;

6 endfunction

This is statically elaborated to produce exactly the same circuit.

Other kinds of shifts—arithmetic shifts, rotations, etc.—are similar.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 2-11

Figure 2.8: 2-way multiplexer

Multiplexers

A 2-way multiplexer (“mux”) is a circuit that takes two inputs of type t and forwards one
of them into the output of type t. The choice is made with a boolean control input. The
left side of Fig. 2.8 shows an abstract symbol for a mux: one of the two inputs A or B is
forwarded to the output depending on the value of the control input S. The right side of
the figure shows an implementation in terms of AND and OR gates, for a 1-bit wide, 2-way
mux (a w-bit wide mux would just replicate this w times, and tie all the control inputs
together).

Figure 2.9: 4-way multiplexer

Larger muxes that select 1 out of n inputs (n > 2) can in principle be created merely
by cascading 2-way muxes. For example, Fig. 2.9 shows a 4-way mux created using 2-way
muxes. Of course, the previous boolean control line now generalizes to Bit#(ln) where
ln is the base-2 logarithm of n (rounded up to the next integer), i.e., we need a Bit#(ln)

control input to identify one of the n inputs to forward.

In BSV code we don’t directly talk about muxes, but use classical programming language
conditional expressions, if-then-else statements, or case statements:

Multiplexers
1 result = (s ? a : b);

2

3 if (s)

4 result = a;

5 else

6 result = b;

7

8 case (s2)

9 0: result = a;

10 1: result = b;

2-12 Ch 2: Combinational circuits (DRAFT)

11 2: result = c;

12 3: result = d;

13 endcase

Of course, unlike conditional expressions, if-then-else and case statements can be more
complex because you can have multiple statements in each of the arms. The differences
in style are mostly a matter of readability and personal preference, since the compiler will
produce the same hardware circuits anyway. Both bsc and downstream tools perform a lot
of optimization on muxes, so there is generally no hardware advantage to writing it one way
or another.

Notice that we said that the inputs and output of the mux are of some type t; we did not
say Bit#(w). Indeed, Bit#(w) is just a special case. In general, it is good style to preserve
abstract types (Address, EthernetPacket, CRC, IPAddress, ...) rather than descending into
bits all the time, in order to preserve readability, and the robustness that comes with strong
type checking.

Be careful about unnecessary conditionals in your code (resulting in muxes). Multi-way
muxes on wide datapaths can be very expensive in gates and cicuit latency, especially when
implemented on FPGAs.

Logical Shift Right by n, a Dynamic Amount

Figure 2.10: Shift by s = 0,1,2,3

We can now see how to implement a circuit that shifts a w-bit input value by s, where s
is a dynamic value. The general scheme is illustrated in Fig. 2.10. Suppose the shift-amount
is s, of type Bit#(n). Then, we cascade n stages as follows:

• Stage 0: if s[0] is 0, pass through, else shift by 1 (20)
• Stage 1: if s[1] is 0, pass through, else shift by 2 (21)
• Stage 2: if s[2] is 0, pass through, else shift by 4 (22)
• ...
• Stage j: if s[j] is 0, pass through, else shift by 2j

• ...

You can see that the total amount shifted is exactly what is specified by the value of s!
Each stage is a simple application of constant shifting and multiplexing controlled by one
bit of s. And the sequence of stages can be written as a for-loop.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 2-13

You will be writing this BSV program as an exercise in the laboratory.

2.4.2 Enumerated types for expressing ALU opcodes

An ALU is a multi-purpose box. It typically has two input ports and an output port, and an
additional control input port, the opcode, which specifies what function we want the ALU
to perform on the inputs: addition, subtraction, multiplication, shifting, testing for zero,
... and so on. Of course the control input is represented in hardware as some number of
bits, but following our preference to use modern programming language practice for better
readability and robustness due to type checking, we define these as enumerated types with
symbolic names.

Let’s start with a simple, non-ALU example of enumerated types. Suppose we had a
variable to identify colors on a screen—it takes one of three values: Red, Blue and Green.
Of course, in hardware these will need some encoding, perhaps 00, 01 and 10, respectively.
But in BSV we typically just say:

Enumerated types
1 typedef enum {Red, Blue, Green} Color

2 deriving (Bits, Eq, FShow);

Line 1 is an enumerated type just like in C or C++, defining a new type called Color

which has three constants called Red, Blue and Green. Line 2 is a BSV incantation that
tells the compiler to define certain functions automatically on the type Color. The Bits

part tells the compiler to define canonical bit representations for these constants. In fact,
in this case bsc will actually choose the representations 00, 01 an 10, respectively for these
constants, but (a) that is an internal detail that need not concern us, and (b) BSV has
mechanisms to choose alternate encodings if we so wish. The Eq part of line 2 tells the
compiler define the == and the != operators for this type, so we can compare to expressions
of type Color for equality and inequality. The FShow part tells the compiler to define a
canonical way to print these values in $display statements in symbolic form as the strings
"Red", "Blue" and "Green", respectively.

The real payoff comes in strong type checking. Suppose, elsewhere, we have another
type representing traffic light colors:

Enumerated types
1 typedef enum {Green, Yellow, Red} TrafficLightColor

2 deriving (Bits, Eq, FShow);

These, too, will be represented using 00, 01 and 10, respectively, but strong typechecking
will ensure that we never accidentally mix up the Color values with TrafficLightColor

values, even though both are represented using 2 bits. Any attempt to compare values
across these types, or to pass an argument of one of these type when the other is expected,
will be caught as a static type checking error by bsc.

Processors execute instructions, which nowadays are often encoded in 32-bits. A few
fields in a 32-bit instruction usually refer to ALU opcodes of a few classes. We define them
using enumerated types like this:

2-14 Ch 2: Combinational circuits (DRAFT)

Enumerated types for ALU opcodes
1 typedef enum {Eq, Neq, Le, Lt, Ge, Gt, AT, NT} BrFunc

2 deriving (Bits, Eq);

3

4 typedef enum {Add, Sub, And, Or, Xor, Nor,

5 Slt, Sltu, LShift, RShift, Sra} AluFunc

6 deriving (Bits, Eq);

The first definition is for comparison operators, and the second one is for arithmetic, logic
and shift operators.

2.4.3 Combinational ALUs

Figure 2.11: A combinational ALU

A combinational ALU can be regarded just as a composition of the various types and
expressions we have seen thus far. The circuit is shown pictorially in Fig 2.11. In BSV
code parts of this circuit are expressed using functions like the following, which can then be
combined into the full ALU:

ALU partial function for Arith, Logic, Shift ops
1 function Data alu (Data a, Data b, AluFunc func);

2 Data res = case(func)

3 Add : (a + b);

4 Sub : (a - b);

5 And : (a & b);

6 Or : (a | b);

7 Xor : (a ^ b);

8 Nor : ~(a | b);

9 Slt : zeroExtend(pack(signedLT(a, b)));

10 Sltu : zeroExtend(pack(a < b));

11 LShift: (a << b[4:0]);

12 RShift: (a >> b[4:0]);

13 Sra : signedShiftRight(a, b[4:0]);

14 endcase;

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 2-15

15 return res;

16 endfunction

ALU partial function for Comparison
1 function Bool aluBr (Data a, Data b, BrFunc brFunc);

2 Bool brTaken = case(brFunc)

3 Eq : (a == b);

4 Neq : (a != b);

5 Le : signedLE(a, 0);

6 Lt : signedLT(a, 0);

7 Ge : signedGE(a, 0);

8 Gt : signedGT(a, 0);

9 AT : True;

10 NT : False;

11 endcase;

12 return brTaken;

13 endfunction

2.4.4 Multiplication

We close this section with another small exercise, one of the arithmetic functions we may
want in the ALU: multiplying an m-bit number and an n-bit number to produce an m+n-
bit result. Note that some processors do not have a multiplier! They just implement
a multiplication-by-repeated-addition algorithm in software. However, in most situations,
where multiplication performance is important, one would want a hardware implementation.

Suppose we are multiplying two 4-bit values. Our high-school multiplication algorithm
(translated from decimal to binary) looks like this:

Multiplication by repeated addition
1 1 1 0 1 // Multiplicand, b

2 1 0 1 1 // Multiplier, a

3 -------

4 1 1 0 1 // b x a[0] (== b), shifted by 0

5 1 1 0 1 // b x a[1] (== b), shifted by 1

6 0 0 0 0 // b x a[2] (== 0), shifted by 2

7 1 1 0 1 // b x a[3] (== b), shifted by 3

8 ---------------

9 1 0 0 0 1 1 1 1

Thus, the jth partial sum is (a[j]==0 ? 0 : b) << j, and the overall sum is just a
for-loop to add these sums. Fig. 2.12 illustrates the circuit, and here is the BSV code to
express this:

BSV code for combinational multiplication
1 function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);

2 Bit#(32) prod = 0;

3 Bit#(32) tp = 0;

2-16 Ch 2: Combinational circuits (DRAFT)

4 for (Integer i=0; i<32; i=i+1) begin

5 Bit#(32) m = (a[i]==0)? 0 : b;

6 Bit#(33) sum = add32(m,tp,0);

7 prod[i] = sum[0];

8 tp = truncateLSB(sum);

9 end

10 return {tp,prod};

11 endfunction

Figure 2.12: A combinational multiplier

2.5 Summary, and a word about efficient ALUs

Figure 2.13: Various combinational circuits

Fig. 2.13 shows symbols for various combinational circuits. We have already discussed
multiplexers and ALUs. A demultiplexer (“demux”) transmits its input value to one of n
output ports identified by the Sel input (the other output ports are typically forced to 0).
A decoder takes an input A of log n bits carrying some value 0 ≤ j ≤ 2n − 1. It has n
outputs such that the jth output is 1 and all the other outputs are 0. We also say that the
outputs represent a “one-hot” bit vector, because exactly one of the outputs is 1. Thus, a

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 2-17

decoder is equivalent to a demux where the demux’s Sel input is the decoder’s A, and the
demux’s A input is the constant 1-bit value 1.

The simple examples in this chapter of a ripple-carry adder and a simple multiplier
are not meant to stand as examples of efficient design. They are merely tutorial examples
to demystify ALUs for the new student of computer architecture. Both our combinational
ripple-carry adder and our combinational repeated-addition multiplier have very long chains
of gates, and wider inputs and outputs make this worse. Long combinational paths, in
turn, restrict the speed of the clocks of the circuits in which we embed these ALUs, and this
ultimately affects processor speeds. We may have to work, instead, with pipelined multipliers
that take multiple clock cycles to compute a result; we will discuss clocks, pipelines and so
on in subsequent chapters.

In addition, modern processors also have hardware implementations for floating point
operations, fixed point operations, transcendental functions, and more. A further concern
for the modern processor designer is power consumption. Circuit design choices for the
ALU can affect the power consumed per operation, and other controls may be able to
switch off power to portions of the ALU that are not currently active. In fact, the topic of
efficient computer arithmetic and ALUs has a deep and long history; people have devoted
their careers to it, whole journals and conferences are devoted to it; here, we have barely
scratched the surface.

2-18 Ch 2: Combinational circuits (DRAFT)

Chapter 3

Sequential (Stateful) Circuits and
Modules

3.1 Registers

3.1.1 Space and time

Recall the combinational “multiply” function from Sec. 2.4.4:

BSV code for combinational multiplication
1 function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);

2 Bit#(32) prod = 0;

3 Bit#(32) tp = 0;

4 for (Integer i=0; i<32; i=i+1) begin

5 Bit#(32) m = (a[i]==0)? 0 : b;

6 Bit#(33) sum = add32(m,tp,0);

7 prod[i] = sum[0];

8 tp = truncateLSB(sum);

9 end

10 return {tp,prod};

11 endfunction

Static elaboration will unfold the loop into a combinational circuit that contains 32
instances of the add32 circuit. The circuit is elaborated in space, i.e., it is eventually laid
out in silicon on your ASIC or FPGA.

An alternative is to elaborate it in time: have only a single instance of the add32 circuit
which is used repeatedly 32 times in a temporal sequence of steps. To do this, we need a
device called a “register” that will hold the partial results from one step so that they can
be used as inputs to add32 in the next step. We also use the words “state element” and
“sequential element” for a register, because it is in different states over time.

3-1

3-2 Ch 3: Sequential circuits (DRAFT)

Figure 3.1: An edge-triggered D flip-flop and an example input-output waveform

3.1.2 D flip-flops

The left side of Fig. 3.1 shows the symbol for the most commonly used state element, an
edge-triggered D flip-flop (DFF). Although the term “register” is more general, we typically
use the word to refer to such a DFF. It has two inputs, D (data) and C (clock), and an
output Q. The clock input C is typically a regular, square-wave oscillation. On each rising
edge of C, the register samples the current value of D, and this value appears on the Q
output “shortly” (needs to propagate from D to Q through internal circuits which typically
have a small delay compared to the time period of C).

In the waveforms on the right side of Fig. 3.1, at the first rising edge of C, D has the
value 1; the value of Q shortly becomes 1. At the next rising edge, D has value 0, and Q
shortly becomes 0. The third rising edge illustrates a bad situation, where D is still changing
at the rising edge. Here, it is possible for the DFF to enter the so-called “meta-stable” state
where, like Hamlet, it vacillates over declaring the sampled value to be 0 or not 0 (i.e., 1).
During this time, the Q output may not even be a valid digital value—its voltage may be
in the “forbidden” range between the thresholds that we define as “0” and “1”. As you can
imagine, a downstream circuit does not get a clear, unambiguous 0 or 1, and so the problem
can propagate through several levels of circuits. Worse, meta-stability may persist for an
arbitrarily long time before it finally settles into the 0 or 1 state. For this reason, digital
circuits are usually carefully designed to avoid this situation—clock periods are set long
enough so that D inputs are always stable at 0 or 1 at the rising clock edge.

Figure 3.2: A D flip-flop with Write-Enable

D flip-flops often have an additional “Write Enable” input, illustrated in Fig. 3.2. Again,
C is a continuous square-wave oscillation. However, the D input is sampled only when the
EN input is true. Look at the example waveform on the right of the figure. Assume that
Q is initially 0 (from some previous sampling of D). At the first rising clock edge, D is 1.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 3-3

However, since EN is 0, it is not sampled, and Q retains its previous value of 0. At the
second clock edge, EN is 1, and so the value of D (1) is sampled, and arrives at Q. At the
third clock edge, EN is 0, so D (0) is not sampled, and Q remains at 1.

Figure 3.3: Implementing a D flip-flop with Write-Enable

Fig. 3.3 shows two attempts at implementing the Write-Enable feature using an ordinary
D flip-flop. The attempt on the left may at first seem reasonable: just disable the clock
when EN is 0, using an AND gate. But this is very dangerous, because the EN signal
itself may be generated by some upstream circuit using the same clock C, and so it may
change at roughly the same time as the clock edge. This reopens the door not only to
metastability, but also to so-called “glitches”, where a slight mismatch in the timing of the
edges of EN and C can cause a momentary pulse to appear at the output of the AND gate,
which may cause the DFF to sample the current D value. In general, in digital circuits,
it is very dangerous to mess around with clocks as if they were ordinary logic signals. In
large, complex, high-speed digital circuits, the clock signals are very carefully engineered
by experienced specialists, and are kept entirely separate from the data paths of the circuit.
The right side of Fig. 3.3 shows a safer way to implement the EN feature, where we do not
tinker with the clock.

In BSV, clocks have a distinct data type Clock, and strong type checking ensures that
we can never accidentally use clocks in ordinary computation expressions.

D flip-flops may also have a “Reset” signal which re-initializes the flip-flop to a fixed
value, say 0. Reset signals may be synchronous (they take effect on the next rising clock
edge) or asynchronous (they take effect immediately, irrespective of clock edges).

3.1.3 Registers

Figure 3.4: An n-bit register built with D flip-flops

3-4 Ch 3: Sequential circuits (DRAFT)

Fig. 3.4 shows an n-bit “register” built with D flip-flops. All the clocks are tied together,
as are all the EN signals, and we can think of the register as sampling an n-bit input value
on the rising clock edge. In BSV, one declares and instantiates a register like this:

Declaring and Instantiating Registers
1 Reg #(Bit #(32)) s <- mkRegU;

2 Reg #(UInt #(32)) i <- mkReg (17);

The first line declares s to be a register that contains 32-bit values, with unspecified
initial value (“U” for Uninitialized). The second line declares i to be a register containing
a 32-bit unsigned integer with initial value 17 (when the circuit is reset, the register will
contain 17). Registers are assigned inside rules and methods (we’ll describe these shortly)
using a special assignment syntax:1

Register assigment statements
1 s <= s & 32’h000F000F;

2 i <= i + 10;

In the first line, at a clock edge, the old value of register s (before the clock edge) is
bitwise ANDed with a 32-bit hexadecimal constant value, and stored back into the register
s (visible at the next clock edge). In the second line, i is incremented by 10.

In BSV, all registers are strongly typed. Thus, even though s and i both contain 32-bit
values, the following assignment will result in a type checking error, because Bit#(32) and
UInt#(32) are different types.

Type checking error on strongly typed registers
1 s <= i;

BSV registers can hold any type, including data structures. Example:

Registers for non-numeric types
1 Reg #(EthernetHeader) ehdr <- mkRegU;

2 FIFOF #(EthernetPacket) input_queue <- mkFIFOF;

3 ...

4 rule rl_foo;

5 ehdr <= input_queue.first.header;

6 endrule

The first line declares and instantiates a register holding an Ethernet packet header. The
second line declares and instantiates a FIFO containing Ethernet packets (we will discuss
FIFOs in more detail later).

1This is the same as Verilog’s “delayed assignment” syntax

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 3-5

3.2 Sequential loops with registers

Consider the following C code that repeatedly applies some function f to an initial value
s0, 32 times:

A small iteration example (C code)
1 int s = s0;

2 for (int i=0; i<32; i++)

3 s = f (s);

Figure 3.5: Circuit implementation of C iteration example

Fig. 3.5 shows a circuit that performs this function. It contains two registers holding
i and s. When start, an external input signal pulse, is received, the muxes select the
initial values 0 and s0, respectively; the EN signals are asserted, and the initial values are
loaded into the registers. At this point, the notDone signal is true since i is indeed < 32.
On subsequent clocks, the i register is incremented, and the s register is updated by f(s).
When i reaches 32, the notDone signal becomes false, and so the EN signals are no longer
true, and there is no further activity in the circuit (until the next start pulse arrives). The
following BSV code describes this circuit:

A small iteration example (BSV code)
1 Reg#(Bit#(32)) s <- mkRegU();

2 Reg#(Bit#(6)) i <- mkReg(32);

3

4 rule step if (i<32);

5 s <= f(s);

6 i <= i+1;

7 endrule

The rule on lines 4-7 has a name step, a rule condition or “guard” (i<32) and a rule
body which is an “Action”. The action itself consist of two sub-actions, s <= f(s) and
i <= i+1.

It is best to think of a rule as an instantaneous action (zero time). A rule only executes
if its condition is true. When it executes, all its actions happen simultaneously and instan-
taneously. Any value that is read from a register (such as s and i on the right-hand sides

3-6 Ch 3: Sequential circuits (DRAFT)

of the register assignments) will be the value prior to that instant. After the instant, the
registers contain the values they were assigned. Since all the actions in a rule are simul-
taneous, the textual ordering between the above two actions is irrelevant; we could just as
well have written:

Actions happen simultaneously (no textual order)
1 i <= i+1;

2 s <= f(s);

Thus, this rule acts as a sequential loop, repeatedly updating registers i and s until
(i>=32). When synthesized by bsc, we get the circuit of Fig.3.5.

A small BSV nuance regarding types

Why did we declare i to have the type Bit#(6) instead of Bit#(5)? It’s because in the
expression (i<32), the literal value 32 needs 6 bits, and the comparision operator < expects
both its operands to have the same type. If we had declared i to have type Bit#(5) we
would have got a type checking error in the expression (i<32).

What happens if we try changing the condition to (i<=31), since the literal 31 only
needs 5 bits?

Types subtlety
1 ...

2 Reg#(Bit#(5)) i <- ...

3

4 rule step if (i<=31);

5 ...

6 i <= i+1;

7 endrule

This program will type check and run, but it will never terminate! The reason is that
when i has the value 31 and we increment it to i+1, it will simply wrap around to the value
0. Thus, the condition i<=31 is always true, and so the rule will fire forever. Note, the same
issue could occur in a C program as well, but since we usually use 32-bit arithmetic in C
programs, we rarely encounter it. We need to be much more sensitive to this in hardware
designs, because we usually try to use the minimum number of bits adequate for the job.

3.3 Sequential version of the multiply operator

Looking at the combinational multiply operator code at the beginning of this chapter, we
see that the values that change during the loop are i, prod and tp; we will need to hold
these in registers when writing a sequential version of the loop:

BSV code for sequential multiplication
1 Reg #(Bit#(32)) a <- mkRegU;

2 Reg #(Bit#(32)) b <- mkRegU;

3 Reg #(Bit#(32)) prod <- mkRegU;

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 3-7

4 Reg #(Bit#(32)) tp <- mkRegU;

5 Reg #(Bit#(6)) i <- mkReg (32);

6

7 rule mulStep (i<32);

8 Bit#(32) m = ((a[i]==0)? 0 : b);

9 Bit#(33) sum = add32(m,tp,0);

10 prod[i] <= sum[0]; // (not quite kosher BSV)

11 tp <= truncateLSB(sum);

12 i <= i + 1;

13 endrule

The register i is initialized to 32, which is the quiescent state of the circuit (no activity).
To start the computation, something has to load a and b with the values to be multiplied
and load prod, tp and i with their initial value of 0 (we will see this initialization later).
Then, the rule fires repeatedly as long as (i<32). The first four lines of the body of the
rule are identical to the body of the for-loop in the combinational function at the start of
this chapter, except that the assignments to prod[i] and tp have been changed to register
assignments.

Although functionally ok, we can improve it to a more efficient circuit by eliminating
dynamic indexing. Consider the expression a[i]. This is a 32-way mux: 32 1-bit input
wires connected to the bits of a, with i as the mux selector. However, since i is a simple
incrementing series, we could instead repeatedly shift a right by 1, and always look at
the least significant bit (LSB), effectively looking at a[0], a[1], a[2], ... Shifting by 1
requires no gates (it’s just wires!), and so we eliminate a mux. Similarly, when we assign to
prod[i], we need a decoder to route the value into the ith bit of prod. Instead, we could
repeatedly shift prod right by 1, and insert the new bit at the most significant bit (MSB).
This eliminates the decoder. Here is the fixed-up code:

BSV code for sequential multiplication
1 Reg #(Bit#(32)) a <- mkRegU;

2 Reg #(Bit#(32)) b <- mkRegU;

3 Reg #(Bit#(32)) prod <- mkRegU;

4 Reg #(Bit#(32)) tp <- mkRegU;

5 Reg #(Bit#(6)) i <- mkReg (32);

6

7 rule mulStep if (i<32);

8 Bit#(32) m = ((a[0]==0)? 0 : b); // only look at LSB of a

9 a <= a >> 1; // shift a by 1

10 Bit#(33) sum = add32(m,tp,0);

11 prod <= { sum[0], prod [31:1] }; // shift prod by 1, insert at MSB

12 tp <= truncateLSB(sum);

13 i <= i + 1;

14 endrule

Fig. 3.6 shows the circuit described by the BSV code. Compared to the combinational
version,

3-8 Ch 3: Sequential circuits (DRAFT)

Figure 3.6: Sequential multiplication circuit

• The number of instances of the add32 operator circuit has reduced from 32 to 1, but we
have added some registers and muxes.

• The longest combinational path has been reduced from 32 cascaded add32s to one add32
plus a few muxes (and so it can run at a higher clock speed).

• To complete each multiplication, the combinational version has a combinational delay
corresponding to its longest path. The sequential version takes 32 clock cycles.

3.4 Modules and Interfaces

Just as, in object-oriented programming (OOP), we organize programs into classes/objects
that interact via method calls, similarly in BSV we organize our designs into modules that
interact using methods. And in BSV, just like OOP, we separate the concept of the interface
of a module—“What methods does it implement and what are the argument and result
types?”—from the module itself— “How does it implement the methods?”.

For example, if we want to package our multiplier into a module that can be instantiated
(reused) multiple times, we first think about the interface it should present to the external
world. Here is a proposed interface:

Multiplier module interface
1 interface Multiply32;

2 method Action start (Bit#(32) a, Bit#(32) b);

3 method Bit#(64) result;

4 endinterface

A module with this interface offers two methods that can be invoked from outside. The
start method takes two arguments a and b, and has Action type, namely it just performs
some action (this method does not return any result). In this case, it just kicks off the
internal computation to multiply a and b, which may take many steps. The result method
has no arguments, and returns a value of type Bit#(64).

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 3-9

So far, this looks just like a conventional object-oriented language (with perhaps different
syntax details). However, in BSV, a method is always invoked from a rule, either directly
or indirectly from another method which in turn is invoked by a rule, and so on. In other
words, all method invocations orginate in a rule. Just like a rule has a rule condition, a
method may also have a method condition which limits when it may be invoked. This
rule-based semantics is the key difference from traditional object-oriented languages. These
rule-based semantics also have a direct hardware interpretation.

Figure 3.7: Hardware interpretation of interface methods

Fig. 3.7 illustrates how BSV methods are mapped into hardware. Every method is a
bundle of input and output signals. Every method has one output signal called the “ready”
signal (RDY) corresponding to the method condition. A rule in the external environment
is allowed to invoke the method only when RDY is true. Method arguments become input
signals (like a and b), and method results become output signals. Finally, Action methods
like start have an input “enable” signal (EN) which, when asserted by the external rule,
causes the method’s action inside the module to happen.

We can now see how our multiplier is packaged into a module.

Multiplier module
1 module mkMultiply32 (Multiply32);

2 Reg #(Bit#(32)) a <- mkRegU;

3 Reg #(Bit#(32)) b <- mkRegU;

4 Reg #(Bit#(32)) prod <- mkRegU;

5 Reg #(Bit#(32)) tp <- mkRegU;

6 Reg #(Bit#(6)) i <- mkReg (32);

7

8 rule mulStep if (i<32);

9 Bit#(32) m = ((a[0]==0)? 0 : b);

10 a <= a >> 1;

11 Bit#(33) sum = add32(m,tp,0);

12 prod <= { sum[0], prod [31:1] };

13 tp <= truncateLSB(sum);

14 i <= i + 1;

15 endrule

16

17 method Action start(Bit#(32) aIn, Bit#(32) bIn) if (i==32);

18 a <= aIn;

3-10 Ch 3: Sequential circuits (DRAFT)

19 b <= bIn;

20 i <= 0;

21 tp <= 0;

22 prod <= 0;

23 endmethod

24

25 method Bit#(64) result if (i == 32);

26 return {tp,prod};

27 endmethod

28 endmodule

In line 1, we declare the module mkMultiply32 offering the Multiply32 interface. Lines
2-15 are identical to what we developed in the last section. Lines 17-23 implement the
start method. The method condition, or guard, is (i==32). When invoked, it initializes
all the registers. Lines 25-27 implement the result method. Its method condition or guard
is also (i==32). When invoked it returns {tp,prod} as its result.

BSV modules typically follow this organization: internal state (here, lines 2-6), followed
by internal behavior (here, lines 8-15) followed by interface definitions (here, lines 17-27).
As a programming convention, we typically write module names as mk..., and pronounce
the first syllable as “make”, reflecting the fact that a module can be instantiated multiple
times.

Figure 3.8: Multiplier module circuit

Fig. 3.8 shows the overall circuit of the module described by the BSV code. It pulls
together all the individual pieces we have discussed so far.

To emphasize the distinction between an interface and a module that offers that interface,
here is another module that implements exactly the same interface but uses our earlier
combinational function.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 3-11

Multiplier module, alternative
1 module mkMultiply32 (Multiply32);

2 Reg #(Bit#(64)) rg_result <- mkRegU;

3 Reg #(Bool) done <- mkReg (False);

4

5 function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);

6 Bit#(32) prod = 0;

7 Bit#(32) tp = 0;

8 for (Integer i=0; i<32; i=i+1) begin

9 Bit#(32) m = ((a[i]==0)? 0 : b);

10 Bit#(33) sum = add32(m,tp,0);

11 prod[i] = sum[0];

12 tp = truncateLSB(sum);

13 end

14 return {tp,prod};

15 endfunction

16

17 method Action start(Bit#(32) aIn, Bit#(32) bIn) if (! done);

18 rg_result <= mult32 (aIn, bIn);

19 done <= True;

20 endmethod

21

22 method Bit#(64) result if (done);

23 return rg_result;

24 endmethod

25 endmodule

Lines 4-14 are the same combinational function we saw earlier. The start method
simply invokes the combinational function on its arguments and stores the output in the
rg_result register. The result register simply returns the value in the register, when the
computation is done.

Similarly, one can have many other implementations of the same multiplier interface,
with different internal algorithms that offer various efficiency tradeoffs (area, power, latency,
throughput):

Multiplier module, more alternatives
1 module mkBlockMultiply (Multiply);

2 module mkBoothMultiply (Multiply);

(”Block”multiplication and ”Booth”multiplication are two well-known algorithms, or circuit
structures, but we do not explore them here.)

3.4.1 Polymorphic multiply module

Let us now generalize our multiplier circuit so that it doesn’t just work with 32-bit argu-
ments, producing a 64-bit result, but works with n-bit arguments and produces a 2n-bit
result. Thus, we could use the same module in other environments which may require, say,
a 13-bit multiplier or a 24-bit multiplier. The interface declaration changes to the following:

3-12 Ch 3: Sequential circuits (DRAFT)

Polymorphic multiplier module interface
1 interface Multiply #(numeric type tn);

2 method Action start (Bit#(tn) a, Bit#(tn) b);

3 method Bit#(TAdd#(tn,tn)) result;

4 endinterface

And the module definition changes to the following:

Polymorphic multiplier module
1 module mkMultiply (Multiply #(tn));

2 Integer n = valueOf (tn);

3

4 Reg #(Bit#(tn)) a <- mkRegU;

5 Reg #(Bit#(tn)) b <- mkRegU;

6 Reg #(Bit#(tn)) prod <- mkRegU;

7 Reg #(Bit#(tn)) tp <- mkRegU;

8 Reg #(Bit#(TAdd#(1,TLog#(tn)))) i <- mkReg (fromInteger(n));

9

10 rule mulStep if (i<32);

11 Bit#(tn) m = (a[0]==0)? 0 : b;

12 a <= a >> 1;

13 Bit#(TAdd#(tn,1)) sum = addN(m,tp,0);

14 prod <= { sum[0], prod [n-1:1] };

15 tp <= truncateLSB(sum);

16 i <= i + 1;

17 endrule

18

19 method Action start(Bit#(tn) aIn, Bit#(tn) bIn) if (i==fromInteger(n));

20 a <= aIn;

21 b <= bIn;

22 i <= 0;

23 tp <= 0;

24 prod <= 0;

25 endmethod

26

27 method Bit#(64) result if (i==fromInteger(n));

28 return {tp,prod};

29 endmethod

30 endmodule

Note the use of the pseudo-function valueOf to convert from an integer in the type
domain to an integer in the value domain; the use of the function fromInteger to convert
from type Integer to type Bit#(...), and the use of type-domain operators like TAdd,
TLog and so on to derive related numeric types.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 3-13

Figure 3.9: A Register File with four 8-bit registers

3.5 Register files

Registers files are arrays of registers, with a way to selectively read and write an individual
register indentified by an index. Fig. 3.9 illustrates such a circuit component. The ReadSel
signal is an index that identifies one of the n registers in the register file. The data in that
register is presented on the ReadData output. This is usually a combinational function,
just like reading a single register. The WriteSel signal identifies one of the registers, and if
the WE enable signal is true, then WriteData is stored into that selected register.

Figure 3.10: Register File implementation

Fig. 3.10 illustrates how a register file can be implemented. The read and write circuits
are entirely separate. The read circuit is just a mux choosing the Q outputs of one of the
registers. In the write circuit, Write Data is fed to the D inputs of all the registers. The
Write Enable signal is fed to only one selected register, which captures the Write Data.

Figure 3.11: Multi-port Register File

The read and write interfaces of the register file are called “ports”. Many register files

3-14 Ch 3: Sequential circuits (DRAFT)

have more than one read and/or write port. Fig. 3.11 illustrates a register file with two read
ports and one write port. It is easy to see how to extend the implementation of Fig. 3.10
for this—simply replicate the mux that implements the read circuit. When implementing
multiple write ports, one has to define what it means if both Write Selects are the same,
i.e., both ports want to write to the same register, possibly with different values. We may
declare this illegal, or a no-op, or fix a priority so that one of them is ignored. All these
schemes are easy to implement.

Why are multi-port register files interesting? In a CPU, the architectural register set
may be implemented directly as a register file. Many instructions (such as ADD) read two
registers, perform an op, and write the result to a register. If we wish to execute one such
instruction on every clock cycle, then clearly we need a 2-read port, 1-write port register
file. If we wish to execute two such instructions in every clock (as happens is modern
“superscalar” designs), we’ll need a 4-read port, 2-write port register file.

Register files are declared and instantiated in BSV like this:

Declaring and Instantiating Register Files
1 import RegFile :: *;

2 ...

3 module ...

4 ...

5 RegFile #(Bit#(5), Bit#(32)) rf1 <- mkRegFileFull;

6 RegFile #(Bit#(5), Bit#(32)) rf2 <- mkRegFile (1,31);

7 ...

8 endmodule

The first line is typically found at the top of a source file, and imports the BSV library
package for register files. The RegFile declaration lines (found inside a module in the
file) declares rf1 to be a register file that is indexed by a 5-bit value (and so can contain
25 = 32 registers), and whose registers contain 32-bit values. The mkRegFileFull module
creates a full complement of registers for the 5-bit index, i.e., 32 registers. The next line
is similar, except that we only allocate 31 registers, indexed from 1 to 31 (for example, in
many architectures, register 0 is defined as a “constant 0” register, and so we may choose
not to have a physical register for it).

Register files are accessed using the sel and upd method. The following example shows
reading from register 2 and 5, adding them, and storing the result back in register 13.

Using a register file
1 rule rl_add_instruction;

2 let arg1 = rf2.sel (2);

3 let arg2 = rf2.sel (5);

4 rf2.upd (13, arg1 + arg2)

5 endrule

3.6 Memories and BRAMs

A register file is essentially a small “memory”. The Read Select or Write Select input is an
address identifying one location in the memory, and that location is read and/or written.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 3-15

However, building large memories out of register files is expensive in silicon area and power
consumption. It is rare to see register files with more than a few dozen locations.

Typically, larger memories are built with special primitives that have been carefully
engineered to be very dense (low area) and requiring much less power. The next step up in
size from register files are on-chip SRAMs (Static RAMs), typically holding kilobytes to a
few megabytes. They typically do not have more than one or two ports. The BSV library
contains a number of SRAM modules which you get when you import the BRAM package:

The BRAM package
1 import BRAM :: *;

When you synthesize your BSV code for FPGAs, these will typically be “inferred” by
downstream FPGA synthesis tools as “Block RAMs” which are built-in high-density SRAM
structures on FPGAs. Whey you synthesize for ASICs, these will typically be “inferred” as
SRAMs by downstream ASIC synthesis tools.

For even larger memories, you typically have to go to off-chip SRAMs (multi-megabytes)
and DRAMs (Dynamic RAMs) in the megabyte to gigabyte range. On chip, you will
typically have a “memory interface” circuit that communicates with the off-chip memories.

Unlike register files, SRAMs and DRAMs usually do not have combinational reads, i.e.,
data is only available 1 or more clock cycles after the address has been presented. And they
typically do not have multiple ports for reading or writing.

3-16 Ch 3: Sequential circuits (DRAFT)

Chapter 4

Pipelining Complex Combinational
Circuits

4.1 Introduction

In the last chapter we introduced sequential elements (registers), motivated by “folding” a
computation from an elaboration in space (combinational circuit) to an elaboration in time,
which reduced area. Let us now consider the throughput or repetition rate of such circuits.
Suppose the circuit computes some function f() (e.g., multiply), and we wish repeatedly to
compute f() on a series of input datasets as fast as possible. The throughput of a circuit
is measured by how often we can feed successive sets of inputs (which, in steady state, will
be the same as how often we can extract successive sets of outputs). Throughput is often
expressed in units such as as samples/second, megabits/second, etc., or by its inverse, the
repetition rate, such as nanoseconds/sample.

In the pure combinational version (elaborated in space), we can feed the next set of
inputs to the circuit only after the current set has made it safely through the circuit, i.e.,
after the longest combinational delay through the circuit. In practice what this means is
that the combinational circuit is likely to have registers at either end, and we will only
clock these registers at a rate that ensures that signals have propagated safely through the
combinational circuit.

In the folded version (elaborated in time), after supplying one set of inputs we must
clock the circuit n times where n is the degree of folding, producing the final answer, before
we supply the next set of inputs. The folded version can likely be clocked at much higher
speeds than the pure combinational version, since the largest combinational delay is likely
to be much smaller. However, the maximum throughput is likely to be somewhat less than
the pure combinational version because, in both versions, each sample must flow through
the same total amount of combinational logic before the next sample is accepted, and in
the folded version there is likely to some extra timing margin for safe registering in each
circulation of data.

Note that in both the above versions, at any given time, the entire circuit is only involved
in computation for one set of inputs, i.e., the output must be delivered before we can accept
the next set of inputs.

4-1

4-2 Ch 4: Pipelining (DRAFT)

In this chapter, we look at using registers purely for improving throughput via pipelining.
We will insert registers in the combinational version, and hence area will increase; however
throughput will also increase because earlier stages of the circuit can safely start on the
next set of inputs while later stages are still working on previous sets of inputs.

4.2 Pipeline registers and Inelastic Pipelines

Figure 4.1: Combinational Inverse Fast Fourier Transform (IFFT)

Fig. 4.1 is a sketch of a combinational circuit for the Inverse Fast Fourier Transform
function which is widely used in signal processing circuits, including the ubiquitous WiFi
wireless networks. For the purposes of the current discussion the internal details of the
blocks shown are not important but, briefly, the input is a set of 64 complex numbers;
each “butterfly 4” block (Bfly4) performs some complex arithmetic function on 4 complex
numbers, producing 4 output complex numbers; and each “Permute” block permutes its
64 input complex numbers into its output 64 complex numbers. Note that the longest
combinational path will go through 3 Bfly4 blocks and 3 Permute blocks.

Figure 4.2: Pipelined Inverse Fast Fourier Transform (IFFT)

Fig. 4.2 shows the same circuit after the insertion of “pipeline registers” after the first
two Permute blocks. We say that the circuit has been pipelined into three “stages”. On
the first clock edge we present the first set of inputs, which propagates through the Bfly4s
and Permute block during the subsequent clock cycle. On the second clock edge, the first

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 4-3

register safely captures this intermediate result, and we can immediately present the second
set of inputs. During the subsequent clock cycle, the first stage works on the second set of
inputs while the second stage works on the first set of inputs. In steady state, as shown by
the labels at the top of the diagram, the three stages are working on input sets i+ 1, i and
i − 1, respectively. In particular, whereas a combinational or folded circuit works on one
input set at a time, this pipelined circuit works in parallel on three sets of inputs.

4.2.1 Inelastic Pipelines

Figure 4.3: Inelastic pipeline for IFFT

Fig. 4.3 shows an abstraction of the IFFT circuit where each fj represents a stage
computation (column of Bfly4 boxes and a Permute box). InQ and OutQ represent input
and output queues or FIFOs (we will discuss FIFOs in more detail in Sec. 4.3). The following
code expresses the behavior of the pipeline:

Pipeline behavior
1 rule sync_pipeline;

2 sReg1 <= f0 (inQ.first()); inQ.deq();

3 sReg2 <= f1 (sReg1);

4 outQ.enq (f2 (sReg2));

5 endrule

In line 2, we apply f0 to the head of the input queue and capture it in register sReg1;
and we also remove the element from the queue. In line 3, we apply f1 to the previous value
sitting in sReg1 and capture its result in sReg2. In line 4, we apply f2 to the previous value
sitting in sReg2 and enqueue its result on the output queue.

When can this rule fire, and actually perform these actions? Our FIFOs will typically
have conditions on their methods such that first and deq cannot be invoked on empty
FIFOs, and enq cannot be invoked on full FIFOs. Thus, the rule will only fire, and move
data forward through the pipe when inQ is not empty and outQ is not full. The rule could
have been written with the conditions made explicit (redundantly) as follows:

Pipeline behavior with conditions made explicit
1 rule sync_pipeline (!inQ.empty() & !outQ.full);

2 sReg1 <= f0 (inQ.first()); inQ.deq();

3 sReg2 <= f1 (sReg1);

4 outQ.enq (f2 (sReg2));

5 endrule

4-4 Ch 4: Pipelining (DRAFT)

Recall that, semantically, all the actions in a rule occur simultaneously and instanta-
neously. We also say that a rule is an atomic action or transaction. The code within a
rule should never be read as a sequential program. For example, there is no chance that,
after dequeueing a dataset from inQ, we somehow then find that we are unable to enqueue
into outQ. Either the rule fires and everything in the rule happens, or it stalls and nothing
happens. As will become evident through the rest of the book, this is a key and pow-
erful property for reasoning about the correctness of circuits. It is what fundamentally
distinguishes BSV from other hardware design languages.

4.2.2 Stalling and Bubbles

Suppose outQ is not full, but inQ is empty. The rule cannot fire, as just discussed, and we
say that the pipeline is stalled. Unfortunately, also, any data sitting in sReg1 and sReg2

will be stuck there until fresh input data arrive allowing the pipeline to move. We’ll now
modify the rule to permit such data to continue moving. Once we do this, of course, we
have to distinguish the situation when a pipeline register actually contains data vs. it is
“empty”. We do this by adding a flag bit to each pipeline register to indicate whether it
contains valid data or not, as illustrated in Fig. 4.4.

Figure 4.4: Valid bits on pipeline registers

When a pipeline register is empty, we also call this a bubble in the pipeline. The modified
code is shown below.

Adding Valid bits
1 rule sync_pipeline;

2 if (inQ.notEmpty) begin

3 sReg1 <= f0 (inQ.first); inQ.deq;

4 sReg1f <= Valid

5 end

6 else

7 sReg1f <= Invalid;

8

9 sReg2 <= f1 (sReg1);

10 sReg2f <= sReg1f;

11

12 if (sReg2f == Valid)

13 outQ.enq (f2 (sReg2));

14 endrule

Lines 2-7 are the first stage: if inQ has data, we move the data as usual into sReg1,
and also set sReg1f to the constant Valid. If inQ has no data, we set sReg1f to Invalid.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 4-5

Lines 9-10 are the second stage: we move the data through f1, and copy the Valid state
from sReg1f to sReg2f. Note that if sReg1f was Invalid, then line 9 is reading invalid data
from sReg1 and therefore storing invalid data in sReg2, but it doesn’t matter, since the
Invalid tag accompanies it anyway. Finally, lines 12-13 are the third stage; we perform f3
and enqueue an output only if sReg2f is Valid.

Under what conditions will this rule fire? Recall that inQ.first and inQ.deq are en-
abled only if inQ has data. However, bsc will recognize that this only matters if inQ.notEmpty
is true. Thus, the empty/full state of inQ does not prevent the rule from firing: if empty,
we don’t attempt .first or .deq and only execute the else clause of the condition; if full,
we do .first and .deq etc.

Similarly, recall that outQ.enq is enabled only if outQ is not full. However, we only
attempt this if sReg2f is Valid. Thus, the rule will only stall if we actually have data in
sReg2 and outQ is full. The following table shows all the possible combinations of the two
valid bits, inQ being empty or not, and outQ being full or not.

inQ sReg1f sReg2f outQ Rule fires?

notEmpty Valid Valid notFull fire
notEmpty Valid Valid full stall
notEmpty Valid Invalid notFull fire
notEmpty Valid Invalid full fire
notEmpty Invalid Valid notFull fire
notEmpty Invalid Valid full stall
notEmpty Invalid Invalid notFull fire
notEmpty Invalid Invalid full fire

empty Valid Valid notFull fire
empty Valid Valid full stall
empty Valid Invalid notFull fire
empty Valid Invalid full fire
empty Invalid Valid notFull fire
empty Invalid Valid full stall
empty Invalid Invalid notFull fire
empty Invalid Invalid full fire

4.2.3 Expressing data validity using the Maybe type

In this section we take a small excursion into modern language technology. There are no
new hardware structures here; we just show how BSV exploits modern strong type checking
for safe expression of hardware structures.

In the last code fragment, recall that the action sReg2<=f1(sReg1) may be computing
with invalid data. Fortunately in this case it does not matter, since we are also carrying
across the accompanying bit sReg2f; if sReg1 was invalid, then the invalid data in sReg2

is also marked invalid. There are many situations were we might not be so lucky, for
example if the f1 computation itself involved changing some state or raising an exception,
such as a divide-by-zero. To avoid such problems, we should always guard computations on
potentially invalid data with a test for validity.

4-6 Ch 4: Pipelining (DRAFT)

In BSV we can rely on strong static type checking to enforce this discipline. The standard
idiom is the Maybe type which is declared as follows:

The Maybe type
1 typedef union tagged {

2 void Invalid;

3 data_t Valid;

4 } Maybe #(type data_t)

5 deriving (Bits, Eq);

A BSV tagged union type, similar to a union type in in C/C++, is an “either-or”:
either it is Invalid, in which case there is no data associated with it (void), or it is Valid,
in which case it has some data of type data_t associated with it. As in the examples in
Sec. 2.4.2, the last line is a standard BSV incantation to tell bsc to choose a canonical
representation in bits, and to define the == and != operators for this type.

Figure 4.5: Representation in bits of values of Maybe type

Fig. 4.5 shows how, if a value of type t is represented in n bits, then a value of Maybe#(t)
can be represented in n+1 bits. The extra bit represents the Valid/Invalid tag, and is placed
at the MSB end (most significant bit). The representation always takes n+ 1 bits, whether
Valid or Invalid; in the latter case, the lower n bits are unpredictable (effectively garbage).
Note that we show this representation here only to build intuition; in practice we never
think in terms of representations, just in terms of abstract Maybe types. This insulates us
from having to re-examine and change a lot of distributed source code if, for example, we
decide on a change in representation.

We construct a Maybe-type value using expressions like this:

Maybe value construction
1 tagged Invalid // To construct an Invalid value

2 tagged Valid x // To construct a Valid value with data x

We can examine Maybe-type values using the following functions:

BSV code
1 isValid (mv) // To test if a Maybe value is Valid or not

2 fromMaybe (d, mv) // To extract a data value from a Maybe value

The isValid() function is applied to a Maybe value and returns boolean True if it is
Valid and False if Invalid. The fromMaybe() function is applied to a default value d of type
t and a Maybe#(t) value mv. If mv is Valid, the associated data is returned; if Invalid, then
d is returned. Notice that in no circumstances do we ever access the garbage data in an
Invalid Maybe value. This is precisely what makes tagged unions in BSV (and in languages
like Haskell, ML and so on) fundamentally different from ordinary unions in C/C++ which
are not type safe.

Let us now rewrite our sync_pipeline rule using Maybe types:

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 4-7

Using Maybe types
1 module ...

2 ...

3 Reg #(Maybe #(t)) sReg1 <- mkRegU;

4 Reg #(Maybe #(t)) sReg2 <- mkRegU;

5

6 rule sync_pipeline;

7 if (inQ.notEmpty)

8 sReg1 <= tagged Valid (f0 (inQ.first)); inQ.deq;

9 else

10 sReg1 <= tagged Invalid;

11

12 sReg2 <= (isValid (sReg1) ? tagged Valid f1 (fromMaybe (?, sReg1))

13 : tagged Invalid);

14

15 if (isValid (sReg2))

16 outQ.enq (f2 (fromMaybe (?, sReg2)));

17 endrule

18 ...

19 endmodule

In lines 3-4 we declare sReg1 and sReg2 now to contain Maybe values. In lines 8 and 10
we construct Valid and Invalid values, respectively. In lines 12-13 we test sReg1 for validity,
and we construct Valid and Invalid values for sReg2, respectively. We supply a “don’t care”
argument (?) to fromMaybe because we have guarded this with a test for validity. Finally,
in lines 15-16 we test sReg2 for validity, and use fromMaybe again to extract its value.

Instead of using the functions isValid and fromMaybe, tagged unions are more often
examined using the much more readable “pattern matching” notation:

Using Maybe types
1 rule sync_pipeline;

2 if (inQ.notEmpty)

3 sReg1 <= tagged Valid (f0 (inQ.first)); inQ.deq;

4 else

5 sReg1 <= tagged Invalid;

6

7 case (sReg1) matches

8 tagged Invalid : sReg2 <= tagged Invalid;

9 tagged Valid .x: sReg2 <= tagged Valid f1 (x);

10 endcase

11

12 case (sReg2) matches

13 tagged Valid .x: outQ.enq (f2 (x));

14 endcase

15 endrule

Notice the keyword matches in the case statements. In each clause of the case state-
ments, the left-hand side (before the “:”) is a pattern to match against the Maybe value. In

4-8 Ch 4: Pipelining (DRAFT)

line 9, the pattern tagged Valid .x not only checks if sReg1 is a valid value, but it also
binds the new variable x to the contained data; this is used in the right-hand side as an
argument to f1. Note the dot “.” in front of the x in the pattern: this signals that x is a new
pattern variable that is effectively declared at this point, and must be bound to whatever is
in the value in that position (its type is obvious, and inferred, based on its position in the
pattern). The scope of x is the right-hand side of that case clause.

4.3 Elastic Pipelines with FIFOs between stages

In inelastic pipelines (previous section) each stage is separated by an ordinary register,
and the overall behavior is expressed in a rule that combines the behavior of each stage
into a single atomic (and therefore synchronous) transaction. In elastic pipelines, each
stage is separated by a FIFO, and each stage’s behavior is expressed as rule that may fire
independently (asynchronously) with respect to the other stages.

Figure 4.6: An elastic pipeline

Fig. 4.6 shows a sketch of an elastic pipeline. The BSV code structure is shown below:

Elastic pipeline
1 import FIFOF :: *;

2

3 module ...

4 ...

5 FIFOF #(t) inQ <- mkFIFOF;

6 FIFOF #(t) fifo1 <- mkFIFOF;

7 FIFOF #(t) fifo2 <- mkFIFOF;

8 FIFOF #(t) outQ <- mkFIFOF;

9

10 rule stage1;

11 fifo1.enq (f1 (inQ.first); inQ.deq;

12 endrule

13

14 rule stage2;

15 fifo2.enq (f2 (fifo1.first); fifo1.deq();

16 endrule

17

18 rule stage3;

19 outQ.enq (f3 (fifo2.first); fifo2.deq;

20 endrule

21 ...

22 endmodule

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 4-9

Line 1 shows how we import the BSV FIFOF package to make FIFOs available. Lines
5-8 show typical instantiations of FIFO modules. This is followed by three rules, each of
which dequeues a value from an upstream FIFO, performs a compuation on the value and
enqueues the result into a downstream FIFO. Each rule can fire whenever its upstream
FIFO is not empty and its downstream FIFO is not full. The following table shows some of
the possible situations, where NE and NF stand for “not empty” and “not full”, respectively.
Note that any FIFO that has capacity > 1 can be simultaneously not empty and not full.

inQ fifo1 fifo2 outQ stage1 stage2 stage3

NE NE,NF NE,NF NF Yes Yes Yes
NE NE,NF NE,NF F Yes Yes No
NE NE,NF NE,F NF Yes No Yes
NE NE,NF NE,F F Yes No No
...

Let us revisit the question of bubbles and stalls in this context. Suppose, initially all
FIFOs are empty. Then, none of the rules can fire, and the circuit lies quiescent. Now
suppose a value arrives in inQ. Now, stage1 can fire, advancing the value into fifo1; then,
stage2 can fire, advancing it to fifo2; finally, stage3 can fire, advancing it to outQ. Thus,
the independent firing of rules allows values to flow through the pipeline whenever the FIFO
ahead is not full; values never get stuck in the pipeline. Each stage can stall individually.
Also note that we only ever compute and move data when an actual value is available, so
there is no need for Maybe types and values here. Another way of looking at this is that
the Valid bits have effectively become full/empty bits inside the FIFOs.

What happens if, initially, inQ contains value x followed by value y? As before, stage1
can fire, advancing f1(x) into fifo1, and then stage2 can then advance f2(f1(x)) into
fifo2. But, during this second step, is it possible for stage1 concurrently to advance f1(y)
from inQ into stage1? For this to happen, fifo1 must permit its enq method to be invoked
concurrently with its first and deq methods. If not, stage1 and stage2 could not fire
concurrently; and stage2 and stage3 could not fire concurrently. Adjacent stages could at
best fire in alternate steps and we would hardly get what we think of as pipelined behavior!
Note that it would still produce functionally correct results (f3(f2(f1(x)))) for each input
x; but it would not meet our performance goals (throughput).

The topic of concurrent method invocation is a deep one because one needs to define
the semantics carefully. If method m1 is invoked before method m2 for a module M, it is
easy to define what this means: m1 peforms a transformation of M’s state, and that final
state is the initial state for m2, and so on. But when m1 and m2 are invoked “concurrently”,
there are often choices about what this means. For example, if enq and deq are invoked
concurrently on a FIFO with 1 element, are we enqueuing into a FIFO with 1 element or
into an empty FIFO (because of the deq)? Neither choice is inherently right or wrong; it is
a genuine option in semantic definition. BSV semantics provide a very precise vocabulary
in which to specify our choices, and BSV is expressive enough to permit implementing any
such choice. We shall study this topic in detail in the next chapter.

4-10 Ch 4: Pipelining (DRAFT)

4.4 Final comments on Inelastic and Elastic Pipelines

Inelastic pipeline stages are typically separated by ordinary registers, and behavior (data
movement) is expressed as a single rule that specifies the actions of all the stages. All the
actions happen as a single, atomic transaction. We saw that, in order to handle pipeline
bubbles and keep data moving, we had to introduce a lot of “flow control” control logic:
valid bits to accompany data, and many conditionals in the rule to manage data movement.
It was not trivial to reason about correctness, i.e., that our circuit did not accidentally drop
a valid sample or overwrite one with another. The problem with writing pipelines in this
style (which is the natural style in Verilog and VHDL) is that it does not evolve or scale
easily; it gets more and more complex with each change, and as we go to larger pipelines.
For scalability one would like a compositional way to define pipelines, where we define stages
individually and then compose them into pipelines.

Elastic pipeline stages are typically separated by FIFOs, and each stage’s behavior is
expressed as an individual, local rule. Flow control is naturally encapsulated into method
conditions preventing us from enqueuing into a full FIFO and from dequeuing from an
empty FIFO. Correctness is more obvious in such pipelines, and they are easier to write in
a compositional (modular) way. However, when we compose elastic descriptions into larger
systems, we must ensure that rules can fire concurrently when they have to, so that we
achieve our desired throughput.

4.5 Variations on architecture for IFFT

In this chapter, so far, we have seen how the combinational IFFT can be pipelined by the
addition of pipeline registers after various stages in the combinational circuit. This adds
area (because of the pipeline registers) but improves throughput because successive data
samples can now be streamed through at a higher frequency.

In the last chapter, we saw how a repeated computation can folded in space by circulating
data repeatedly through a single instance of the computation. This reduces area (we only
have a single instance) but does not improve throughput. This principle can be applied to
IFFT, since the stage_f computation is repeated three times. In fact, this principle can
be applied further: in each stage, there are sixteen Bfly4 computations for which we can
use a single circuit instance through which we sequentially pass the sixteen inputs to those
computations. We call this a “super-folded” architecture.

In this final section of this chapter, we sketch the code for all these variations. This
should reinforce the idea that, for the same mathematical function (IFFT) we can implement
a range of architectures that may vary widely in latency, throughput, area and power
consumption. Which one is “best” depends on external requirements; different applications
may place different priorities on those measures.

4.5.1 Combinational IFFT

The fully combinational version of IFFT can be expressed in the following BSV code:

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 4-11

Combinational IFFT
1 function Vector#(64, Complex#(n)) ifft

2 (Vector#(64, Complex#(n)) in_data);

3 Vector#(4,Vector#(64, Complex#(n))) stage_data;

4

5 stage_data[0] = in_data;

6

7 for (Bit#(2) stage = 0; stage < 3; stage = stage + 1)

8 stage_data[stage+1] = stage_f (stage, stage_data[stage]);

9

10 return(stage_data[3]);

11 endfunction

The for-loop in lines 7-8 will be statically unfolded to create a composition of three instances
of the stage_f function, where each stage is a column of sixteen Bfly4s followed by a
Permute (we omit the internal details of stage_f here).

4.5.2 Pipelined IFFT

The elastic pipelined version of IFFT is just an application of the principles of 4.3:

Elastic pipelined IFFT
1 import FIFOF :: *;

2

3 module ...

4 ...

5 Vector #(4, FIFOF #(Vector#(64, Complex#(n)))) fifos

6 <- replicateM (mkFIFOF);

7

8 for (Bit #(2) stage = 0; stage < 3; stage = stage + 1)

9 rule stage;

10 fifo[j+1].enq (stage_f (stage, fifo[j].first); fifo[j].deq;

11 endrule

12 ...

13 endmodule

In line 5 we declare a vector of four FIFO interfaces, and in line 6 we populate it by
instantiating four FIFOs. The replicateM function takes a module (in this case mkFIFOF

and instantiates it repeatedly to return a vector of interfaces. The number of instances is
specified by the size of the required vector type, in this case, 4. The for-loop in lines 8-11
will be statically elaborated to create 3 rules corresponding to the 3 elastic pipeline stages.

4.5.3 Folded IFFT

The folded version of IFFT can be written as follows:

4-12 Ch 4: Pipelining (DRAFT)

Elastic pipelined IFFT
1 module ...

2 ...

3 Reg #(Bit #(2)) stage <- mkRegU;

4 Reg #(Vector#(64, Complex#(n))) sReg <- mkRegU;

5

6 rule foldedEntry (stage==0);

7 sReg <= stage_f (stage, inQ.first()); stage <= stage+1;

8 inQ.deq();

9 endrule

10

11 rule foldedCirculate ((stage!=0) && (stage != (n-1)));

12 sReg <= stage_f (stage, sReg); stage <= stage+1;

13 endrule

14

15 rule foldedExit (stage==n-1);

16 outQ.enq (stage_f (stage, sReg)); stage <= 0;

17 endrule

18 ...

19 endmodule

The rule foldedEntry takes data from FIFO inQ (when available) and performs the first
stage of the computation. The rule foldedCirculate performs the second stage of the com-
putation, and the rule foldedExit performs the final stage of the computation. Note that
the three rules have mutually exclusive rule conditions, resulting in sequential execution.
In general, for computations that have n > 3 stages, rule foldedCirculate will execute
repeatedly for all except the first and last stages.

Figure 4.7: Folded IFFT

The resulting folded circuit is illustrated in Fig. 4.7.

4.5.4 Super-folded IFFT

Inside the stage_f function in each of the above architectures, there is a column of 16 Bfly4
circuits, as illustrated on the left side of Fig. 4.8.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 4-13

Figure 4.8: Bfly4s in super-folded IFFT

Recall that the input is a vector of 64 complex numbers and that each Bfly4 takes 4
of these and produces an output of 4 complex numbers. The circuit on the right side of
Fig. 4.8 shows how we can implement the same function with just one instance of the Bfly4
circuit. The j register counts up from 0 to 15. For each j, a multiplexer selects a group
of 4 complex numbers from the input vector which gets sent into the Bfly4 circuit. The
output of the Bfly4 circuit is fed to 16 groups of registers, each of which can hold 4 complex
numbers, but it only gets loaded into the jth register because the demultiplexer only enables
that register.

The super-folded version decreases area in Bfly4 circuits (one instead of 16 instances),
but increases area due to the control logic (multiplexer, demultiplexer, j register, incre-
menter); whether this is a net savings or an increase depends on the relative sizes of these
components. The throughput of the super-folded version is at most 1/16 of the original
version, since we are serializing the Bfly4s where we were doing them in parallel.

The following BSV code is a sketch of the super-folded version:

Super-folding the Bfly4s in IFFT
1 module ...

2 ...

3 Reg #(Vector #(64, Complex#(n))) rg_in <- mkRegU;

4 Vector #(16, Reg #(Vector #(4, Complex #(n)))) rg_outs

5 <- replicateM (mkRegU);

6 Reg #(Bit#(5)) j <- mkRegU;

7

8 rule step_Bfly4 (j != 16);

9 let x0 = rg_in[j*4]; let x1 = rg_in[j*4+1];

10 let x2 = rg_in[j*4+2]; let x3 = rg_in[j*4+3];

11 Vector #(4, Complex#(n)) y = bfly4 (x0,x1,x2,x3);

12 rg_outs[j] <= y;

13 j <= j + 1;

4-14 Ch 4: Pipelining (DRAFT)

14 endrule

15 ...

16 endmodule

Line 4 declares rg_outs as a vector of 16 registers, each of which holds a vector of 4
complex numbers. Note that the Vector type constructor is used in one case on values
(Complex#(n)) and in the other case on interfaces (Reg#(...)). Line 5 instantiates the 16
registers. When j is initialized to 0 (by some other rule), the rule step_Bfly4 will then
execute 16 times sequentially, performing each of the 16 steps described above.

4.5.5 Comparing all the architectural variants of IFFT

People familiar with software compilers will recognize that architectural unfolding is anal-
ogous to the standard compiler techniques of “inlining” and “loop unrolling”. In fact, they
have the same attendant risks and benefits. Unfolding can increase the footprint (area), but
it can also enable certain optimizations such as constant propagation (an variable parameter
to a folded circuit may become a constant (perhaps a different constant) in each unfolded
instance, which may lead to a decrease in area. In Sec. 4.5.4 we discussed how folding can
decrease area (fewer instances of the repeated computation circuit), but also increases area
due to the control logic to manage sequential execution. For these reasons, it may be hard
to predict which point in the space of possible architectures is “best” for a given application.

By applying pipelining and folding to IFFT circuit as described above, there are 24
different architectural variants, all implementing exactly the same IFFT function (exactly
the same arithmetic transformation of inputs to outputs). In [4], the authors show actual
silicon area measurements for several variants. The following is an excerpt (the exact area
units are unimportant, just the relative sizes). The two columns represent silicon area used
in combinational circuits and sequential circuits, respectively.

Comb. area Seq. area

Combinational 16,536 7,279

Folded 29,330 11,603

Pipelined 20,610 18,558

Surprisingly, the combinational version (which is fully unfolded) is smaller than the folded
version. The authors say that it is due to the phenomenon discussed earlier, where unfolding
enables opportunities for aggressive constant-folding optimizations, reducing the size of each
Bfly4 by 60

The techniques we have discussed in this chapter—elastic or inelastic pipelining, and
folding—are standard “design patterns” in hardware design and are used in all kinds of
circuits. You will see more examples of this in the chapters to come.

Of course, a design may contain both pipelined and folded components. Pipelining
will be favored for parts that are frequently executed and need high throughput, whereas
folding will be favored for parts that may be infrequently executed and/or where unfolded
area would be prohibitively expensive.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 4-15

Advanced topic: pipeline “design patterns”

In modern programming languages with sufficient expressive power, design patterns can
be captured as so-called “higher-order functions” or “parameterized functions”. Thus, we
don’t reimplement a design pattern every time we need one. Instead, we just use a library
function, passing it parameters that specialize it for our particular use-case.

For example, the “pipeline design pattern” is just a function parameterized by the list of
combinational functions to be plugged in to each stage of the pipeline. The “folded for-loop
design pattern” is just a function parameterized by the loop-count and the pipeline that
should be plugged in as the body of the loop. The “folded while-loop design pattern” is
similar, except that, instead of the loop-count, the parameter is a boolean function to test
whether the loop computation has completed.

This idea can be expressed in BSV, and exist in a library called PAClib (for Pipelined
Architecture Constructor Library). We do not discuss this further here, but PAClib is
described in a whitepaper from Bluespec, Inc. [3], in which they also show a single, 100-line
BSV program for IFFT with 4 static parameters. By suitably choosing these parameters,
the program elaborates into one of the 24 possible architectural variants available using the
techniques described in this chapter.

4-16 Ch 4: Pipelining (DRAFT)

Chapter 5

Introduction to SMIPS: a basic
implementation without pipelining

5.1 Introduction to SMIPS

We now have enough foundational material to turn to the central focus of this book, namely,
processor architectures. An immediate choice is: which instruction set? We can invent a
new one, or reuse an existing instruction set. The advantages of the latter include validation
and credibility (it has been tested in the the field and in commercial products). More impor-
tantly, we can reuse existing tool chains (compilers, linkers, debuggers) and system software
(operating systems, device drivers) in order quickly to produce realistic programs to run on
our system. Real system software and applications are essential for taking meaningful and
credible measurements regarding efficiency and performance of hardware implementations.

In this book, we will be implementing an instruction set architecture (ISA) called SMIPS
(“Simple MIPS”), which is a subset of the full MIPS32 ISA. MIPS was one of the first
commercial RISC (Reduced Instruction Set Computer) processors and continues to be used
in a wide range of commercial products such as Casio PDAs, Sony Playstation and Cisco
internet routers (see Appendix A for some more history). MIPS implementations probably
span the widest range for any commercial ISA, from simple single-issue in-order pipelines
to quad-issue out-of-order superscalar processors.

Our subset, SMIPS, does not include floating point instructions, trap instructions, mis-
aligned load/stores, branch and link instructions, or branch likely instructions. There are
three SMIPS variants which are discussed in more detail in Appendix A. SMIPSv1 has only
five instructions and it is mainly used as a toy ISA for instructional purposes. SMIPSv2
includes the basic integer, memory, and control instructions. It excludes multiply instruc-
tions, divide instructions, byte/halfword loads/stores, and instructions which cause arith-
metic overflows. Neither SMIPSv1 noor SMIPSv2 support exceptions, interrupts, or most
of the system coprocessor. SMIPSv3 is the full SMIPS ISA and includes all the instructions
in our MIPS subset.

Appendix A has a detailed technical reference for SMIPS. We now sketch a high-level
overview.

5-1

5-2 Ch 5: Basic SMIPS (DRAFT)

5.1.1 Instruction Set Architectures, Architecturally Visible State, and
Implementation State

In computer architecture it is very important to keep a clear distinction between an Instruc-
tion Set Architecture (ISA) and its many possible implementations.

An ISA is just a definition or specification of an instruction set: What is the repertoire of
instructions? What state elements are manipulated by instructions (“architecturallly visibie
state”)? How are instructions encoded into bits in memory? What is the meaning of the
execution of each instruction (i.e., how does it manipulate the architectural state)? What
is the meaning of sequential execution of instructions?

Note that an ISA typically says nothing about clocks or pipelining, nor about super-
scalarity (issueing and executing multiple instructions per clock), nor out-of-order execu-
tion (execution in a different order from the semantic ISA specification), branch prediction,
load-value prediction, nor any of a thousand other techniques an implementation may use
to maximize performance, or efficiency, or both. Each of these implementation techniques
will typically introduce more state elements into the processor (pipeline registers, replicated
and shadow copies of registers for faster access, and more), but none of these are visible
in the ISA, i.e., these state elements are purely internal implementation artefacts. We
thus make a distinction between “architecturally visible” state—state that can be named
and manipulated in the ISA—versus “implementation state” or “micro-architectural state”
which includes all the implementation-motivated state in the processor.

An ISA typically plays the role of a stable “contract” between software developers and
processor implementers. Software developers—whether they directly write machine code
or assembly code, or whether they write compilers that produce machine code, or whether
they write application codes using compilers developed by others—use the ISA as an un-
ambiguous specification of what their machine code programs will do. They do not have to
react and revise their codes every time there is a new implementation of the given ISA.

Processor implementers, on the other hand, are free to explore new micro-architectural
ideas to improve the performance or efficiency of their next implementation of the ISA.

Another way to think of this is that the archtecturally visible state is what you see
when you use a debugger such as gdb. These are precisely the registers described in the
assembly language programmer’s manual, and memory. You typically cannot see pipeline
registers, FIFOs for memory requests and responses, branch prediction state, and so on.
Further, when you “single-step” in a debugger such as gdb, the smallest unit is a single,
complete, assembly lnaguage instruction; you typically cannot pause after an instruction
fetch, or when the instruction is halfway through the processor pipeline.

This is not to say that ISAs never change. ISAs do get extended in response to new
market needs. Typical examples are the new opcodes that have found their way into most
modern instruction sets for graphics, high-performance computation (SIMD), encryption,
and so on. But this change in ISAs is usually a relatively slow, deliberative, evolutionary
process (measured in years and decades), so that implementers still have a stable target to
implement within typical implementation timeframes.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 5-3

Figure 5.1: Basic SMIPS processor architectural state

5.1.2 SMIPS processor architectural state

Fig. 5.1 shows the basic architecturally visible state in an SMIPS processor. There are 32
general-purpose, 32-bit registers (GPRs), called r0 through r31. When read, r0 always
returns a zero, and so is useful for instructions needing the constant zero. The Program
Counter, or PC, is a separate 32-bit register. And, there are a few other special-purpose
registers, not illustrated here.

The “native” data types manipulated in the ISA are 8-bit bytes, 16-bit half-words and
32-bit words. All instructions are encoded as 32-bit values. The ISA is a so-called “Load-
Store” ISA which is typical of RISC ISAs, namely that the opcodes are paritioned into one
set of instructions that only move data between memory and registers (Load/Store), and
another set of instructions that only perform ALU or control operations on data in registers.
The Load/Store instructions have immediate and indexed addressing modes. For branch
instructions, branch targets can be relative to the PC or indirect via an address in a register.

5.1.3 SMIPS processor instruction formats

Figure 5.2: SMIPS processor instruction formats

There are are only 3 kinds of instruction encodings in SMIPS, shown in Fig. 5.2. How-
ever, the fields are used differently by different types of instructions.

Fig. 5.3 shows computational and load/store instructions. The first form of computa-
tional instruction is a classical “3-operand” instruction, with two source registers and one
destination register, and the opcode specified in the func field. The second form is a 2-
operand instruction where the 3rd operand is an immediate value (taken from bits in the
instruction itself). In the load/store instructions, the load/store address is computed by
adding rs and the displacement. For loads, rt is the destination register receiving the loaded
value. For stores, rt is the source register containing the value to be stored.

5-4 Ch 5: Basic SMIPS (DRAFT)

Figure 5.3: SMIPS processor Computational and Load/Store instruction formats

Figure 5.4: SMIPS processor control (branch) instruction formats

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 5-5

Fig. 5.4 shows control (branch) instructions. The first form tests register rs and condi-
tionally branches to a target that is an offset from the current PC. The second form is an
unconditional jump based on a target address in register rs. One of its uses is for returning
from a function call, where rs represents the return address. The third form is an uncondi-
tional jump based on an absolute target address. The JAL (Jump And Link) opcode also
saves PC+4 into r31 (also known as the Link register); this can be used for function calls,
where PC+4 represents the return address.

5.2 Uniform interface for our processor implementations

Over the next few chapters we will be describing a series of increasingly sophisticated com-
puter systems, each containing a processor implementation and instruction and data mem-
ories. All of them will have a uniform interface with the test environment, i.e., a uniform
way by which:

• a “memory image” (including the machine code for a program) is initially loaded into
the computer’s memory;
• the testbench “starts” the processor, allowing it to execute the program, and
• the testbench waits for the processor to complete execution of the program (or aborts

the program after some time limit)

Figure 5.5: Uniform interface for running our implementations

Fig. 5.5 illustrates the uniform test setup. The“top level”of each system we describe will
be a BSV module called mkProc. In early versions of the code, for simplicity, we will instan-
tiate models of instruction and data memory inside mkProc using the module constructors
mkIMemory and mkDMemory. When simulation begins, these modules automatically load a
file called memory.vmh which is a text file describing the contents of “virtual memory” as a
series of 32-bit numbers expressed in hexadecimal format. The I- and D-memories both load
a copy of the same file. The lab exercises provide these files for a number of initial memory
loads. These initial-load files are typically created by cross-compilers,1 i.e., we compile a

1The compiler is termed a “cross-compiler” because, although it runs on a workstation that is likely not
an SMIPS machine, the binary file that it produces contains SMIPS instructions.

5-6 Ch 5: Basic SMIPS (DRAFT)

C application program into SMIPS binary which is placed in such a file which gets loaded
into instruction memory.

The mkProc module presents the following interface to the testbench for starting and
stopping the processor, and querying its status:

Processor Interface (in ProcTypes.bsv)
1 interface Proc;

2 method Action hostToCpu (Addr startpc);

3 method ActionValue #(Tuple2#(RIndx, Data)) cpuToHost;

4 endinterface

The hostToCpu method allows the testbench to start the processor’s execution, providing
it a starting PC address. The cpuToHost method returns the final status of the processor
after it has halted.

5.3 A simple single-cycle implementation of SMIPS v1

We begin our series of increasingly sophisticated processor implementations with the sim-
plest one—where all the functionality is expressed within a single BSV rule. It is useful as
a warm-up exercise, of course, but it is also useful as a “reference implementation” against
which to compare future, more complex implementations. In other words, it provides a
reference specification for what the final architecturally visible state of the processor ought
to be after executing a particular program starting with a particular initial state. This
one-rule implementation is a BSV counterpart to a traditional “Instruction Set Simulator”
(ISS), often written in C/C++, that serves as a simples reference implementation of the
ISA semantics (with no complications due to hardware implementation considerations).

Figure 5.6: SMIPS processor 1-rule implementation

Fig. 5.6 illustrates the structure of our first implementation. It instantiates a PC register,
a register file rf, and instruction and data memories iMem and dMem respectively, i.e.,
nothing more than the ISA-specified architecturally-visible state.

To execute a program, the processor must repeatedly do the following steps:

• Instruction Fetch: read the 32-bit word in Instruction Memory at address PC).

• Instruction Decode: separate it into its constituent fields.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 5-7

• Register Read: read the source registers mentioned in the instruction, from the register
file. Since many instructions have more than one source register, this requires the
register file to have more than one port, for simultaneous access.

• Execute: perform any ALU op required by the instruction. This may be specified by
an ALU opcode, a comparision opcode, or an address calculation for a load/store, etc.

• Memory operation: if it is a load/store instruction, perform the memory operation.

• Write back: for instructions that have destination registers, write the output value to
the specified register in the register file.

• Update the PC: increment the PC (normally) or replace it with a new target value
(branch instructions).

Why do we separate instruction and data memories into two separate memories? Al-
though in principle all modern processors have the functionality of Turing Machines in that
conceptually there is just a single memory and they can read and write any location in
memory, in modern practice we rarely do this. Specifically, if we were to write into the part
of memory holding instructions (“self-modifying code”), it would greatly complicate imple-
mentation because it would add a potential interaction between the “Instruction Fetch” and
“Memory Operation” stages in the list above (the next instruction could not be fetched until
the memory operation stage makes its modification). Modern practice avoids self-modifying
code completely, and the part of memory that holds instructions is often protected (using
virtual memory protection mechanisms) to prevent writes. In this view, therefore, instruc-
tion and data accesses can be performed independently, and hence we model them as sep-
arate memories. For reasons going back to influential early research computers developed
at Harvard and Princeton Universities in the 1940s, separated-memory and unified-memory
architectures are called Harvard and Princeton architectures, respectively. In this book we
shall following modern practice and only discus Harvard architectures.

Figure 5.7: SMIPS processor 1-rule implementation datapaths

Fig. 5.7 illustrates the datapaths that will emerge for our 1-rule implementation. Of
course, these datapaths are automatically created by the bsc compiler when compiling our
BSV code. Here is the BSV code for our 1-rule implementation:

1 cycle implementation (in 1cyc.bsv)
1 module mkProc(Proc);

2 Reg#(Addr) pc <- mkRegU;

5-8 Ch 5: Basic SMIPS (DRAFT)

3 RFile rf <- mkRFile;

4 IMemory iMem <- mkIMemory;

5 DMemory dMem <- mkDMemory;

6 Cop cop <- mkCop;

7

8 rule doProc(cop.started);

9 let inst = iMem.req(pc);

10

11 // decode

12 let dInst = decode(inst);

13

14 // trace - print the instruction

15 $display("pc: %h inst: (%h) expanded: ", pc, inst, showInst(inst));

16

17 // read register values

18 let rVal1 = rf.rd1(validRegValue(dInst.src1));

19 let rVal2 = rf.rd2(validRegValue(dInst.src2));

20

21 // Co-processor read for debugging

22 let copVal = cop.rd(validRegValue(dInst.src1));

23

24 // execute

25 // The fifth argument is the predicted pc, to detect if it was

26 // mispredicted (future). Since there is no branch prediction yet,

27 // this field is sent with an unspecified value.

28 let eInst = exec(dInst, rVal1, rVal2, pc, ?, copVal);

29

30 // Executing unsupported instruction. Exiting

31 if(eInst.iType == Unsupported)

32 begin

33 $fwrite(stderr, "Unsupported instruction at pc: %x. Exiting\n", pc);

34 $finish;

35 end

36

37 // memory

38 if(eInst.iType == Ld) begin

39 eInst.data <- dMem.req(MemReq{op: Ld, addr: eInst.addr, data: ?});

40 end

41 else if(eInst.iType == St) begin

42 let d <- dMem.req(MemReq{op: St, addr: eInst.addr, data: eInst.data});

43 end

44

45 // write back

46 if(isValid(eInst.dst) && validValue(eInst.dst).regType == Normal)

47 rf.wr(validRegValue(eInst.dst), eInst.data);

48

49 // update the pc depending on whether the branch is taken or not

50 pc <= eInst.brTaken ? eInst.addr : pc + 4;

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 5-9

51

52 // Co-processor write for debugging and stats

53 cop.wr(eInst.dst, eInst.data);

54 endrule

55

56 method ActionValue#(Tuple2#(RIndx, Data)) cpuToHost;

57 let ret <- cop.cpuToHost;

58 $display("sending %d %d", tpl_1(ret), tpl_2(ret));

59 return ret;

60 endmethod

61

62 method Action hostToCpu(Bit#(32) startpc) if (!cop.started);

63 cop.start;

64 pc <= startpc;

65 endmethod

66 endmodule

Line 1 declares the mkProc module with the previously described Proc interface. Lines
2-6 instantiate the sub-modules: the PC register, a register file, the instruction and data
memories, and cop, a standard co-processor. The co-processor is the administrative con-
troller of the processor, allowing it to start and stop, and keeps a record of time (cycle
count), number of instructions executed, and so on.

Lines 8-54 specify a single rule that does everything, and it is only enabled when
cop.started is true. It more-or-less follows the itemized list described earlier: Line 9
is the Instruction Fetch; line 12 is Instruction Decode. Lines 18-19 perform the two source
register reads (the validRegValue functions are needed because not all instructions have
two source registers). Ignore line 22 for now; it’s using the co-processor for debugging. Line
28 is Execute. Lines 30-35 detect bad instructions (not supported in this ISA). Lines 37-43
do the memory operation, if any. Line 46-47 do the Write Back, if any, and line 50 updates
the PC. Lines 56-65 implement the Proc interface methods.

Note that all the functions and methods used in this rule including iMem.req(), decode(),
rf.rd1(), rf.rd2(), exec(), dMem.req(), and rf.wr() are instantaneous (purely combi-
national). In fact they must be, since they are in a single rule.

Let us dig a little deeper into the BSV code. We start with some type definitions:

Some type definitions (in ProcTypes.bsv)
1 typedef Bit#(5) RIndx;

2

3 typedef enum {Unsupported, Alu, Ld, St, J, Jr, Br, Mfc0, Mtc0} IType

4 deriving(Bits, Eq);

5 typedef enum {Eq, Neq, Le, Lt, Ge, Gt, AT, NT} BrFunc

6 deriving(Bits, Eq);

7 typedef enum {Add, Sub, And, Or, Xor, Nor,

8 Slt, Sltu, LShift, RShift, Sra} AluFunc

9 deriving(Bits, Eq);

5-10 Ch 5: Basic SMIPS (DRAFT)

Line 1 defines a register index to be a 5-bit value (since we have 32 registers in SMIPS).
The next few lines describe symbolic names for various opcode functions. The following
code describes a decoded instruction:

Decoded instructions (in ProcTypes.bsv)
1 typedef struct {

2 IType iType;

3 AluFunc aluFunc;

4 BrFunc brFunc;

5 Maybe#(FullIndx) dst;

6 Maybe#(FullIndx) src1;

7 Maybe#(FullIndx) src2;

8 Maybe#(Data) imm;

9 } DecodedInst deriving(Bits, Eq);

The decode() function is in the file Decode.bsv and has the following outline:

Decode function outline (in Decode.bsv)
1 function DecodedInst decode(Data inst);

2 DecodedInst dInst = ?;

3 let opcode = inst[31 : 26];

4 let rs = inst[25 : 21];

5 let rt = inst[20 : 16];

6 let rd = inst[15 : 11];

7 let shamt = inst[10 : 6];

8 let funct = inst[5 : 0];

9 let imm = inst[15 : 0];

10 let target = inst[25 : 0];

11

12 case (opcode)

13 ... fill out the dInst structure accordingly ...

14 endcase

15 return dInst;

16 endfunction

We show below one of the case arms, corresponding to I-Type ALU instructions:

Decode function; I-type section (in Decode.bsv)
1 ...

2 case (opcode)

3 opADDIU, opSLTI, opSLTIU, opANDI, opORI, opXORI, opLUI:

4 begin

5 dInst.iType = Alu;

6 dInst.aluFunc = case (opcode)

7 opADDIU, opLUI: Add;

8 opSLTI: Slt;

9 opSLTIU: Sltu;

10 opANDI: And;

11 opORI: Or;

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 5-11

12 opXORI: Xor;

13 endcase;

14 dInst.dst = validReg(rt);

15 dInst.src1 = validReg(rs);

16 dInst.src2 = Invalid;

17 dInst.imm = Valid(case (opcode)

18 opADDIU, opSLTI, opSLTIU: signExtend(imm);

19 opLUI: {imm, 16’b0};

20 default: zeroExtend(imm);

21 endcase);

22 dInst.brFunc = NT;

23 end

24 ... other case arms ...

25 endcase

Please refer to the file Decode.bsv to see the full function. At the bottom of the function
is a case-arm “catch all” that handles bad instructions, i.e., 32-bit encodings that do not
conform to any of the specified instructions:

Decoding unsupported instructions (in Decode.bsv)
1 ...

2 case

3 ... other case arms

4

5 default:

6 begin

7 dInst.iType = Unsupported;

8 dInst.dst = Invalid;

9 dInst.src1 = Invalid;

10 dInst.src2 = Invalid;

11 dInst.imm = Invalid;

12 dInst.brFunc = NT;

13 end

14 endcase

15

16 if (dInst.dst matches tagged Valid .dst

17 &&& dst.regType == Normal

18 &&& dst.idx == 0)

19 dInst.dst = tagged Invalid;

20

21 return dInst;

22 endmodule

In lines 16-19 we handle the case where the destination register has been specified as r0

in the instruction; we convert this into an “invalid” destination (which will cause the write
back to ignore this).

Fig. 5.8 illustrates the exec() function (purely combinational). The output of the
function is a structure like this:

5-12 Ch 5: Basic SMIPS (DRAFT)

Figure 5.8: SMIPS processor Execute function

Executed Instructions (in ProcTypes.bsv)
1 typedef struct {

2 IType iType;

3 Maybe#(FullIndx) dst;

4 Data data;

5 Addr addr;

6 Bool mispredict;

7 Bool brTaken;

8 } ExecInst deriving(Bits, Eq);

The code below shows the top-level of the exec function:

Execute Function (in Exec.bsv)
1 function ExecInst exec(DecodedInst dInst, Data rVal1, Data rVal2, Addr pc,

2 Addr ppc, Data copVal);

3 ExecInst eInst = ?;

4 Data aluVal2 = isValid(dInst.imm) ? validValue(dInst.imm) : rVal2;

5

6 let aluRes = alu(rVal1, aluVal2, dInst.aluFunc);

7

8 eInst.iType = dInst.iType;

9

10 eInst.data = dInst.iType == Mfc0?

11 copVal :

12 dInst.iType == Mtc0?

13 rVal1 :

14 dInst.iType==St?

15 rVal2 :

16 (dInst.iType==J || dInst.iType==Jr) ?

17 (pc+4) :

18 aluRes;

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 5-13

19

20 let brTaken = aluBr(rVal1, rVal2, dInst.brFunc);

21 let brAddr = brAddrCalc(pc, rVal1, dInst.iType,

22 validValue(dInst.imm), brTaken);

23 eInst.mispredict = brAddr != ppc;

24

25 eInst.brTaken = brTaken;

26 eInst.addr = (dInst.iType == Ld || dInst.iType == St) ? aluRes : brAddr;

27

28 eInst.dst = dInst.dst;

29

30 return eInst;

31 endfunction

In lines 4-6 we use the alu() function to compute an ALU result, assuming it is an
ALU-type instruction. In lines 10-18, we set the output eInst.data field, which could be
from the co-processor, rVal1 or rVal2, a branch target (PC+4) for J and Jr instructions,
or the ALU output aluRes. In lines 20-25, we compute the branch operation, assuming it’s
a branch instruction. Finally we set eInst.addr in line 26, which is the aluRes for Ld and
St instruction, else the branch address.

For readers with a purely software background, the above code may appear a little
strange in that we seem to be performing both the ALU and the branch computations,
whatever the opcode. But remember that this is how hardware is typically structured: both
computations always exists (they are both statically elaborated and laid out in hardware)
and they both do their work, and the final result is just selected with a multiplexer.

The alu() and branch functions used above are shown next:

ALU and Branch parts of Execute Function (in Exec.bsv)
1 function Data alu(Data a, Data b, AluFunc func);

2 Data res = case(func)

3 Add : (a + b);

4 Sub : (a - b);

5 And : (a & b);

6 Or : (a | b);

7 Xor : (a ^ b);

8 Nor : ~(a | b);

9 Slt : zeroExtend(pack(signedLT(a, b)));

10 Sltu : zeroExtend(pack(a < b));

11 LShift: (a << b[4:0]);

12 RShift: (a >> b[4:0]);

13 Sra : signedShiftRight(a, b[4:0]);

14 endcase;

15 return res;

16 endfunction

17

18 function Bool aluBr(Data a, Data b, BrFunc brFunc);

19 Bool brTaken = case(brFunc)

5-14 Ch 5: Basic SMIPS (DRAFT)

20 Eq : (a == b);

21 Neq : (a != b);

22 Le : signedLE(a, 0);

23 Lt : signedLT(a, 0);

24 Ge : signedGE(a, 0);

25 Gt : signedGT(a, 0);

26 AT : True;

27 NT : False;

28 endcase;

29 return brTaken;

30 endfunction

31

32 function Addr brAddrCalc(Addr pc, Data val, IType iType, Data imm, Bool taken);

33 Addr pcPlus4 = pc + 4;

34 Addr targetAddr = case (iType)

35 J : {pcPlus4[31:28], imm[27:0]};

36 Jr : val;

37 Br : (taken? pcPlus4 + imm : pcPlus4);

38 Alu, Ld, St, Mfc0, Mtc0, Unsupported: pcPlus4;

39 endcase;

40 return targetAddr;

41 endfunction

5.4 Expressing our single-cycle CPU with BSV, versus prior
methodologies

Figure 5.9: Datapath schematic for 1-cycle implementation

In the old days of CPU design, a designer may have begun the process by first drawing

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 5-15

a schematic of the datapath of the single-cycle CPU, as illustrated in Fig. 5.9. The red
vertical arrows represent control signals—by asserting/deasserting them appropriately, one
can steer data from source state elements into chosen functions and into chosen destination
state elements.

Figure 5.10: Control table for Datapath Schematic for 1-cycle implementation

Next, the designer may create a “control table” as shown in Fig. 5.10, showing what
values to set the control signals under each possible set of inputs coming from the circuit
(signals like OpCode, zero?, etc.). This control table can be implemented, for example, in
a ROM, with the inputs representing the address and the outputs representing the control
signals (or, the ROM could be further optimized into custom logic).

You can imagine the sheer labor involved in creating such a datapath schematic and
control table. And you can imagine the labor involved in accommodating change: to fix a
bug in the logic, or to add new functionality.

In the 1990s people started changing this methodology to describe these circuits in
RTL languages instead (Verilog and VHDL). Although this greatly reduced the labor of
creating and maintaining schematics and control tables, RTL is not much of a behavioral
abstraction above schematics in that it has the same clock-based, globally synchronous view
of the world. Similar timing errors and race conditions can occur almost as easily with RTL
as with schematics.

The description of these circuits in BSV is a radical shift in how we think about and
specify circuits. In addition to powerful types, object-oriented module structure and static
elaboration, BSV’s rules are a dramatically different way of thinking of circuit behavior in
terms of instantaneous atomic transactions. Datapaths and control logic are automatically
synthesized from such specifications by bsc.

5.5 Separating the Fetch and Execute actions

Let us turn our attention back to our BSV description, and think about the performance
of our 1-rule design. Essentially the steps itemized in the list in Sec. 5.3 (Instruction Fetch,

5-16 Ch 5: Basic SMIPS (DRAFT)

Decode, Register Read, Execute, Mem, Write Back) form a long sequential chain of logic,
since each step depends on the previous one. Thus, the total combinational delay represents
a limit on how fast we can clock the state elements; we must wait for the full combinational
delay to allow signals to propagate all the way through:

tclock > tfetch + tdec + tregread + texec + tmem + twb

Figure 5.11: Splitting our implementation into 2 rules

Suppose we split our rule into two parts, as illustrated in Fig. 5.11, i.e., separate the
Fetch part into its own rule. Then our timing equation changes to:

tclock > max(tfetch, tdec + tregread + texec + tmem + twb)

i.e., it would allow us potentially to run the overall circuit at a higher clock speed.

Figure 5.12: Extra state for splitting our implementation into 2 rules

In order to accomplish this, we introduce a register f2d to hold the output of the Fetch
stage (the 32-bit value from iMem), as shown in Fig. 5.12. We also introduce another
register state to keep track of whether we are executing the Fetch stage or one of the
later stages. These two, f2d and state, are our first examples of non-architectural state,
i.e., state that is not mentioned in the ISA but is introduced for implementation purposes.
Below we show the new version of mkProc, which is minimally changed from the original
1-rule version:

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 5-17

2-rule processor (in 2cyc_harvard.bsv)
1 typedef enum {Fetch, Execute} State deriving (Bits, Eq);

2

3 module mkProc(Proc);

4 ... same sub-modules as before ...

5

6 Reg#(State) state <- mkReg(Fetch); // NEW

7 Reg#(Data) f2d <- mkRegU; // NEW

8

9 rule doFetch(cop.started && state == Fetch);

10 let inst = iMem.req(pc);

11

12 $display("pc: %h inst: (%h) expanded: ", pc, inst, showInst(inst));

13

14 // store the instruction in a register

15 f2d <= inst;

16

17 // switch to execute state

18 state <= Execute;

19 endrule

20

21 rule doExecute(cop.started && state == Execute);

22 let inst = f2d;

23

24 let dInst = decode(inst);

25 ... rest of this rule is same as original doProc rule in 1-cycle version ...

26 ...

27

28 // switch back to fetch

29 state <= Fetch;

30 endrule

31

32 ...

33 endmodule

Line 1 declares a type for the state of the 2-rule system: it is either in the Fetch rule, or
it is in the Execute rule. Inside the module, lines 6-7 instantiate the two new registers state
and f2d. The original doProc rule is now split into two rules, doFetch and doExecute; we
add state==Fetch and state==Execute to the rule conditions. At the end of doFetch, we
store the retrieved instruction in the f2d register and change state to Execute. At the
start of the doExecute rule we retrieve the just-stored instruction from f2d, and proceed
as before. At the end of the rule we set state to Fetch to re-enable the doFetch rule.

Thus, the doFetch and doExecute rules will alternate, performing the fetch and execute
functions.

5-18 Ch 5: Basic SMIPS (DRAFT)

5.5.1 Analysis

Have we really gained anything by splitting into two rules and potentially running them
at a faster clock speed? In fact we have not: since the two rules alternate, the total time
to execute an instruction becomes two clock cycles, and unless we were able to more than
double the clock speed (unlikely!) we will be running no faster than before. And, we’re now
using more state (and therefore likely more hardware area and power).

However, this exercise has demonstrated one key BSV principle: refinement. In BSV, one
often refines a design by splitting rules into smaller rules (typically with a goal of increasing
clock speed). The strength of rule semantics is that this can often be done independently
in different parts of a design, i.e., refining a rule typically does not break other parts of
the design because we typically do not have tight timing assumptions (as is common in
RTL languages). This allows us incrementally to refine a design towards meeting particular
performance goals.

This exercise has also set the stage for the real payoff which we shall start exploring
in the next chapter, when we start pipelining the two (and more) rules, so that, while
the Execute rule is doing its thing, the Fetch rule is busy fetching the next instruction
concurrently within the same clock.

Chapter 6

SMIPS: Pipelined

We ended the last chapter with a 2-rule version of the basic MIPS processor, illustrated
in Fig. 5.12. Other than demonstrating how to refine a BSV program by breaking larger
rules into smaller rules, it did not buy us anything either in terms of overall performance
or area. Performance was not improved since the two rules alternate, based on the state

register: the total time per instruction is the same, it just happens in two rules one after
the other, instead of in one rule. And area likely increased due to the introduction of the
non-architectural state registers state and f2d.

In this chapter we will explore how to execute the two rules concurrently (in the same
clock), so that they operate as a pipeline. This should substantially improve the performance
(throughput) compared to the original 1-rule version, since the smaller rules should allow us
to increase clock speed, and we should be able to complete one instruction on every clock.

6.1 Hazards

When creating a processor pipeline, we typically encounter three kinds of hazards:

• Control Hazards: We do not really know the next instruction to fetch until we have
at least decoded the current instruction. If the decoded instruction is not a branch
instruction, the next instruction is likely to be at PC+4. If it is a branch instruction,
we may not know the new PC until the end of the Execute stage. Even if it is not a
branch instruction, it may raise an trap/exception later in the pipeline (such as divide-
by-zero, or page fault), requiring the next instruction to be from a trap/exception
handler.

• Structural Hazard : Two instructions in the pipeline may require the same resource
at the same time. For example, in Princeton architectures, both the Fetch and the
Execute stages need to access the same memory.

• Data Hazard : For example, if one instruction writes into register 13, a later instruction
that reads register 13 must wait until the data has been computed and is available.
In general, when different stages of the pipeline read and write common state (the
register file being just one example), we must be careful about the order of reads and
writes.

6-1

6-2 Ch 6: SMIPS: Control Hazards (DRAFT)

These are general issues encountered in many kinds of pipelines, not just processors.
Simple, pure “feed-forward” pipelines such as the IFFT pipeline of Chapter 4, or an arith-
metic multiplier pipeline, typically do not encounter any of these hazards, because there
is no dependence between successive samples flowing through the pipeline. However it is
in the very nature of instructions in an ISA that they depend on each other, and so we
encounter all these kinds of hazards in their full glory. This leads to significantly more
complex mechanisms in order to maintain pipeline flow. In fact, dealing with these issues
is the essence of creative computer architecture design.

We will focus on control hazards in this chapter, and address the other types of hazards
in later chapters.

6.1.1 Modern processors are distributed systems

Historically, the Computer Science topic of Distributed Systems grew in the context of Local
Area Networks and Wide Area Networks based on the recognition that, in such systems,
communication is not free. In particular,

1. There is no instantly visible or updatable global state. Entities only have local state,
and they can only send and receive messages to other entities to query or update remote
state.

2. Messages cannot be delivered instantaneously; there is a discernable latency, and this
latency may be variable and unpredictable.

3. Even between the same two entities, messages may get reordered, i.e., they may arrive
in an order different from the order in which they were sent.

4. Messages may get dropped, spuriously generated, duplicated, or corrupted along the
way.

At first glance it may seem startling to refer to a single chip that occupies a few square
millimeters of silicon (a modern processor or System-on-a-chip) as a “distributed system”,
but remember that space and time are relative. Modern processors run at multi-gigahertz
speeds, and communicating across a chip has a discernable delay, and is best addressed
by message-passing between relatively independent entities instead of via shared, glob-
ally visible state. Modern chip designers also talk about “GALS” methodology (Globally
Asynchronous, Locally Synchronous), and this is just another manifestation of the same
observation. Modern system-level communication protocols, such as PCI Express and In-
tel’s Quick Path Interconnect (QPI) even deal with the complexities of unreliable message
delivery (bullet items 3 and 4 above).

In summary, it is fruitful to apply the insights and solutions developed in the field of
Distributed Systems to the design of modern processor architectures. This insight pervades
our approach. In this chapter, the evolution from a globally updated PC to an “epoch”
based solution follows this trajectory.

6.2 Two-stage pipelined SMIPS (inelastic)

Fig. 6.1 illustrates a two-stage pipelined version of our SMIPS processor. Let us compare
this with Fig. 5.12. First, we have replaced the “PC+4” function in the Fetch stage with

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 6-3

Figure 6.1: Two-stage pipelined SMIPS

a “pred” (for “prediction”) function. The Fetch stage is speculating or predicting what the
next PC will be, and PC+4 is a good guess, since the majority of instructions are not likely
to be branch instructions affecting the control flow. Later, we will make more sophisticated
predictors that use the current PC to predict the next PC, learning from past instruction
executions. For example, a particular branch instruction (at a particular PC) may be
executed multiple times (due to loops or repeated calls to the same function), and past
behavior may be a good predictor of the next behavior.

But what if we predict wrong, e.g., we predict (in the Fetch stage) that a conditional
branch is taken, but we later discover (in the Execute stage) that it is not taken. Then
we would have fetched one or more “wrong path” instructions and injected them into the
pipeline. We need machinery to kill these instructions (in particular, they should have
no effect on any architecturally visible state), and to redirect the Fetch stage to start
fetching from the correct PC. In Fig. 6.1 this is depicted as a “kill” function that clears the
intermediate f2d register, which is the only thing in this design that can hold wrong-path
instructions.

Here is some BSV code to implement these ideas; all actions are in a single rule.

1-rule pipelined implementation
1 rule doPipeline;

2 // ---- Fetch

3 let inst = iMem.req(pc);

4 let new_pc = nextAddr(pc); // predicted PC

5 let new_f2d= tagged Valid (Fetch2Decode{pc:pc,ppc:new_pc,inst:inst});

6

7 // ---- Execute

8 if (f2d matches tagged Valid .x) begin

9 let dInst = decode(x.inst);

10 ... register fetch ...;

11 let eInst = exec(dInst, rVal1, rVal2, x.pc, x.ppc);

12 ...memory operation ...

13 ...register file update ...

14 if (eInst.mispredict) begin

15 new_f2d = tagged Invalid;

16 new_pc = eInst.addr;

6-4 Ch 6: SMIPS: Control Hazards (DRAFT)

17 end

18 end

19 pc <= new_pc; f2d <= new_f2d;

20 endrule

Prediction is encapsulated into the nextAddr(pc) function (line 4), which can be as
simple as pc+4. Redirection happens because we initially bind new_pc to the predicted
value (line 4), but if we encounter a misprediction, i.e., (eInst.mispredict is True (line
14), we rebind new_pc to the corrected PC eInst.addr (line 16), and we update pc to
final binding of new_pc (line 19). Killing a wrong-path instruction happens because we
initially bind new_f2d to the decoded (predicted) instruction (line 5), and if we encounter
a misprediction we rebind new_f2d to tagged Invalid (line 15), and this final binding is
stored in the f2d register (line 19). Pipelining happens because Fetch and Execute can both
execute in each rule execution.

This solution works, but is quite complex in lumping all the logic into one big rule. The
design methodology does not scale—it will be very difficult to extend this to handle multi-
ple pipeline stages, multi-cycle memory accesses and multi-cycle functional units, variable
latencies due to cache misses and data-dependencies in functional units, multiple branch
predictors and resolvers, etc. The single rule becomes a larger and larger hairy ball of wax,
and every change involves reasoning again about the whole design (note that this “globally
synchronous” view is indeed the natural view when designing in RTL languages like Verilog
and VHDL). It would be simpler and more modular to be able to design the Fetch and
Execute stages independently and then to connect them together; we pursue that approach
in the next section and the rest of this book.

6.3 Two-stage pipelined SMIPS (elastic)

Recalling our earlier recommendation that modern silicon architectures should be designed
as distributed systems, we should really view our two pipeline stages as concurrent, decou-
pled structures, as shown in Fig. 6.2. The Fetch and Execute stages are independent entities

Figure 6.2: Decoupled structure

that communicate using messages. The Fetch unit sends messages to the Execute unit con-
taining (at least) instructions to be executed and information about its PC predictions. The
Execute unit, in turn, sends messages back to the Fetch unit containing information about
mispredictions and their corrections. The FIFOs connecting the units represent communi-
cation channels and, in particular, we make no assumptions about how long they take to
deliver the messages.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 6-5

This last point (unknown message latency) raises a synchronization problem. By the
time the backward channel delivers PC-correction information to the Fetch unit, this unit
may have already fetched and sent a number of mispredicted instructions into the forward
channel and, in fact, some of them may already have been processed in the Execute unit.
None of those instructions should have any effect on the architectural state, i.e., they should
all effectively be discarded.

There is a subtlety about concurrency that we will gloss over for now. For truly pipelined
behavior, the Fetch unit should be able to enqueue a new message into the forward FIFO
“concurrently” with the Execute unit dequeueing an older message from the same FIFO.
Concurrency of enqueueing and dequeuing on the backward FIFO would also be good, but
is perhaps less important because it happens less often (only on mispredictions). For this
chapter, we will just assume that these FIFOs are so called “conflict-free” FIFOs, which
permit this concurrency. We will discuss concurrency issues in more detail in Chapter 7.

6.3.1 Epochs and epoch registers

There is a standard, simple solution to this problem which is to tag instructions with some
information so that the Execute unit knows whether they are mispredicted (and therefore
to be discarded) or not. The solution is illustrated in Fig. 6.3. We add an “epoch” register

Figure 6.3: Adding epoch registers to distributed units

to each of the distributed units. Think of the “epoch” as counting mispredictions—every
time we mispredict a branch, we increment the epoch. Initially, both registers are set to 0.

The Fetch unit tags each instruction sent in the forward channel with the correspond-
ing value of fEpoch when the instruction was fetched. When the Execute unit detects a
misprediction, it increments eEpoch immediately, and sends this new epoch value in the
backward channel along with the corrected PC. Note that instructions that are already in
the forward channel now have an epoch number that is 1 less than eEpoch. The Execute
unit discards all such instructions (incoming epoch < eEpoch).

When a backward message eventually arrives at the Fetch unit, it updates PC and
fEpoch, starts fetching from the new PC, and sends messages tagged with this new epoch
number (which now matches eEpoch). When the Execute unit sees these messages (incoming
epoch = eEpoch), it stops discarding instructions and resumes normal execution. Thus,
mispredicted instructions are correctly discarded, and execution resumes correctly on the
correct-path instructions.

Fig.6.4 shows how the values in the two epoch registers evolve as we fetch instructions
and send them forward.

The eEpoch value is shown in red, and the fEpoch value is shown in green. Note that
the latter always lags behind the former, ie fEpoch ≤ eEpoch. This is what guarantees safe

6-6 Ch 6: SMIPS: Control Hazards (DRAFT)

Figure 6.4: Evolution of epoch register values

behavior. In later chapters, as we refine to more pipeline stages and have more sophisticated
speculation, each stage will have its own epoch register, and this “≤” property will continue
to hold, i.e., each stage’s local epoch register will approximate (≤) the value in downstream
epoch registers. The last epoch register (here, eEpoch) is the “truth”, and all upstream
epoch registers are safe approximations.

We have described the epoch as a continuously incrementing number. So, how large
should we size the epoch register (how many bits)? Remember that processors may execute
trillions of instructions between reboots. Fortunately, a little thought should persuade us
that, for the above 2-stage pipeline, just 1 bit is enough. Across the whole system, at any
given time, we are only dealing with two epochs: the latest epoch, and possibly one previous
epoch if there are still wrong-path instructions in the pipeline. With a 1-bit representation,
updating the epoch register is a just a matter of inverting 1 bit.

6.3.2 Elastic pipeline: two-rules, fully-decoupled, distributed

Fig. 6.5 shows the decoupled architecture using epoch registers. The FIFO f2d connects

Figure 6.5: Decoupled solution

the two stages in the forward direction, and redirect is the reverse-direction FIFO. The
Fetch stage updates pc and fEpoch based on the values it receives through redirect. Here
is the code for this solution:

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 6-7

Decoupled solution
1 module mkProc(Proc);

2 FIFO #(Fetch2Execute) f2d <- mkFifo;

3 FIFO #(Addr) execRedirect <- mkFifo;

4 Reg #(Bool) fEpoch <- mkReg(False);

5 Reg #(Bool) eEpoch <- mkReg(False);

6

7 rule doFetch;

8 let inst = iMem.req(pc);

9 if (execRedirect.notEmpty) begin

10 fEpoch <= !fEpoch; pc <= execRedirect.first;

11 execRedirect.deq;

12 end

13 else begin

14 let ppc = nextAddrPredictor (pc);

15 pc <= ppc;

16 f2d.enq (Fetch2Execute{pc:pc, ppc:ppc, inst:inst, epoch:fEpoch});

17 end

18 endrule

19

20 rule doExecute;

21 let x = f2d.first;

22 if (x.epoch == eEpoch) begin

23 let dInst = decode(x.inst);

24 ... register fetch ...;

25 let eInst = exec(dInst, rVal1, rVal2, x.pc, x.ppc);

26 if (eInst.mispredict) begin

27 execRedirect.enq (eInst.addr);

28 eEpoch <= !eEpoch;

29 end

30 end

31 f2d.deq;

32 endrule

33 endmodule

Since we need only 1 bit to represent an epoch, and since epoch numbers always toggle
between 0 and 1, we don’t actually have to carry any epoch number on a redirect mes-
sage. The very arrival of the message is a signal to toggle it. Thus, the redirect queue
(execRedirect) only carries PC values (in later chapters, where more than two epochs may
be in play simultaneously, the message will also contain an actual epoch number).

In the Fetch rule, if there is any message in the redirect queue, we update pc and fEpoch

(toggle it). Otherwise, we perform the normal instruction fetch and send it into f2d. In
the Execute rule, the conditional on line 22 effectively causes the incoming instruction to
be ignored if its epoch is not equal to the actual current epoch eEpoch. If we resolve a
misprediction we send eInst.addr back to the Fetch stage via the execRedirect queue
(line 27), and immediately update the local, actual epoch eEpoch (line 28).

6-8 Ch 6: SMIPS: Control Hazards (DRAFT)

6.4 Conclusion

In this chapter we developed a decoupled 2-stage SMIPS pipeline implementation, illus-
trating the principle of treating the design as a distributed system of independent entities
communicating only with messages over channels of unspecified latency. Decoupling sim-
plifies reasoning about correctness, and simplifies the independent refinement of entities
(stages) for higher performance. We have still been somewhat informal about what we
mean by “concurrent” execution of rules (which is necessary for actually getting pipelined
behavior); this will be addressed in the chapter on rule semantics.

Chapter 7

BSV Rule Semantics

Parallelism within rules, and Concurrent rules within clocks

7.1 Introduction

We now examine BSV rule semantics in more detail, which we have described only informally
so far. Specifically, we will describe individual rule semantics (what it means to execute a
rule by itself), and then show how these are combined to describe how all the rules of a
system execute within the framework of clock cycles. With this understanding, we should
be able to reason about functionality of a BSV program (what does it compute?) as well
as performance (how long does it take to compute it?).

Figure 7.1: Overview of rule semantics

Although our treatment will go bottom-up, from primitive Action methods to multiple
actions to individual rules to multiple rules, it is useful to keep the big picture in mind,
illustrated in Fig. 7.1, so that you always have a context for each topic. The figure depicts
the “logical” or semantic view of the world, i.e., the mental model that we keep in mind
as BSV programmers. The bsc compiler will produce optimized hardware in which this
structure may not be apparent, but its behavior will always precisely reflect this semantic

7-1

7-2 Ch 7: Rule Semantics (DRAFT)

model. All rules in a BSV program are placed in a linear order: r1, r2, ..., rN (this order is
chosen by the bsc compiler, perhaps guided by preferences from the user). The semantics
are explained using this pseudo-code:

for each clock
for each rule rj in r1, r2, ..., rN (in that order)

let WILL FIREj = CAN FIREj AND
rj does not “conflict” with r1, r2, ..., rj−1 (earlier rules)

if WILL FIREj

then execute the body of rj (the rule “fires”)

Fig. 7.1 shows that in each clock we consider the logical sequence of rules (each vertical bar
represents a rule). On each clock, some rules fire and some don’t. A rule does not fire if it
either conflicts with an earlier rule in the sequence, or if its CAN FIRE condition is false.
Logically, each rule fires in an instant (zero time). Firing a rule involves performing all the
actions in the rule body (depicted in the figure by circular dots on each rule).

There are many concepts in this description the require fleshing out, which we shall do
in sections that follow, such as:

• What is an action in a rule?
• How do we combine multiple actions in a rule?
• What is the CAN FIRE condition for a rule?
• When does a rule “conflict” with another?
• How does bsc choose a particular sequence for the set of rules?

Some terminology: we use the words “simultaneous” and “parallel” to refer to the in-
stantaneous execution of all actions within a rule. We use the word “concurrent” to refer to
the execution of multiple rules within a clock. In the linear sequence of rules, we say that
ri is “earlier” than rj if i < j.

7.2 Actions and ActionValues

We have used the word “action” informally so far to refer to the actions in a rule. In fact,
BSV has formal types called Action and ActionValue (the latter is a generalization of
the former). The body of a rule is an expression of type Action, and many methods have
Action and ActionValue type. Being formal types in BSV, one can even write expressions
and functions of type Action and ActionValue.

The simplest action is an invocation of an Action method in the interface of some sub-
module. For methods like enq and deq for FIFOs, the method invocation is obvious in the
BSV syntax, but even ordinary register writes are in fact Action method invocations. The
syntax:

Special syntax for register reads and writes
1 rule ...

2 ...

3 r <= s + 1; // register write and register read

4 ...

5 endrule

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 7-3

is in fact just a special syntax for method invocations:

Register access is just method invocation
1 rule ...

2 ...

3 r._write (s._read + 1);

4 ...

5 endrule

because BSV’s standard register interface is declared as follows:

Register interface
1 interface Reg #(type t);

2 method Action _write (t data);

3 method t _read;

4 endinterface

i.e., a register-write is an Action method.

All change of state in a BSV program ultimately happens in primitive Action or
ActionValue methods (the latter are just Actions that also return a non-void value; for
simplicity, we will just talk about Actions from now on, keeping in mind that everything
we say about Actions also applies to ActionValues).

Figure 7.2: Hardware interpretation of interface methods

The hardware intuition for an Action method interface was shown in Fig. 3.7, which
we repeat here for convenience in Fig. 7.2. In addition to input buses (method arguments),
output buses (method results), and output RDY signals (method conditions), Action meth-
ods also have an input EN (enable) signal. Asserting this signal causes the action (state
change) to take place inside the method’s module. Until this signal is asserted, it does not
modify any state inside the module. Performing an Action is synonymous with asserting
the corresponding EN signal.

Each primitive module specifies the meaning of each of its methods with respect to
the instant of rule firing, i.e., the rule from which the method is invoked (all methods are
invoked from rules, either directly or indirectly via other methods).

The idea is depicted in Fig. 7.3. Anything “read” by a method is always with respect
to the state before the firing instant (due to earlier rules); we also call this the pre-Action

7-4 Ch 7: Rule Semantics (DRAFT)

Figure 7.3: All actions in a rule happen at the same instant

state. Anything “updated” by a method produces a new state visible after the firing instant
(visible to later rules); we also call this the post-Action state.

The primitive register module specifies that a _read returns the value that was in the
register just before the rule execution instant (i.e., from an earlier rule), and that the value
written by _write Action is visible just after the rule execution instant (for _reads in later
rules).

The FIFO primitive specifies that first returns the value at the head of the FIFO (if
it is not empty), and that enq and deq change the state of the FIFO in the expected way,
where this new state is visible in later rules.

7.2.1 Combining Actions

Actions are combined into larger actions with syntactic combining forms. For example:

x <= x + 1;

y <= y + 2;

fifo.enq (z);

represents a “parallel composition” of three Actions into a single composite Action. Per-
forming the composite Action is equivalent to performing the three sub-actions. Another
example:

x <= x + 1; // A

if (p) begin

y <= y + 2; // B

fifo.enq(z); // C

end

else

fifoB.deq; // D

This combines Actions B and C using parallel composition (call this BC); combines BC and
D using a conditional composition (call this BCD), and combines A and BCD using parallel
composition (call this ABCD). Performing an action created using conditional composition,
like BCD, is equivalent to performing the action in either its “then” or its “else” arms,
depending on the value of the conditional predicate. Note that the entire composite action
ABCD is still logically instantaneous, with just a pre-Action state and a post-Action state;

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 7-5

there is no temporal sequencing within an Action, and no concept of any intermediate state
within an Action. The entire state-change conceptually happens in a single instant.

In this way, the entire body of a rule, or of an Action method, can be viewed as an
expression of type Action. But if we follow its recursive structure down to its component
actions, and further to their sub-component actions, and so on, we eventually reach a set
of Action method invocations.

7.3 Parallelism: semantics of a rule in isolation

Figure 7.4: Anatomy of a rule

Fig. 7.4 shows the anatomy of a rule. Every rule has rule name and two semantically
significant parts, highlighted in the figure as light green boxes1. The rule condition is a
boolean expression, which may involve method invocations. The rule body is an expression
of type Action which, recursively, may be composed of many sub-actions of type Action.
The rule body also contains method invocations.

A rule can be executed only if its CAN FIRE condition is true. This is a boolean
condition that is the conjunction (AND) of several components:

• The value of the boolean expression in the rule condition,
• the (boolean) value of the method conditions of all methods invoked in the rule condition,

and
• the (boolean) value of the method conditions of all methods invoked in the rule body.

There is a nuance to the last two components. Since a method can be invoked inside a
conditional construct (if, case, ...), the method condition is qualified by the conditional
predicates, so that it is only relevant if would actually be executed. For example, if we had
a construct:

if (p) fifo1.enq (x);

else fifo2.enq (y);

1The rule name does play a role in so-called “scheduling annotations” and in debugging, but is otherwise
not semantically significant; we do not discuss those features in this chapter.

7-6 Ch 7: Rule Semantics (DRAFT)

then the contribution of the fifo1.enq and fifo2.enq method conditions (call them mc1

and mc2) will be (p?mc1:mc2), i.e., mc1 is only relevant if p is true, and mc2 is only relevant
if p is false.

If the CAN FIRE condition of a rule is true, we say that the rule is “enabled” for firing
(execution of the body). When we execute the rule (if it does not “conflict” with earlier
rules), all the Actions in the rule (which are all typically method invocations) are performed
simultaneously and instantaneously.

A rule can be seen as a specification of an acyclic combinational circuit whose inputs
and outputs are connected to the interface methods of sub-modules invoked in the rule. For
example, consider this rule:

Simple example for 1-rule semantics
1 rule rf (mod1.f > 3);

2 x <= x+1;

3 if (x != 0) y <= x >> 7;

4 endrule

Figure 7.5: Combinational circuit for a rule

Fig. 7.5 illustrates the combinational circuit, or the “data flow graph” for this rule. The
CAN FIRE condition for this rule will be the conjunction of the expression (mod1.f>3) with
the method conditions of the methods in the rule. The only method condition of interest
is mod1.f since, for registers (here, x and y) the _read and _write methods have trivial
method conditions (always true). The computation of the CAN FIRE condition is seen in
the AND gate on the left of the figure. Let us also call this the WILL FIRE condition, since
we are for the moment ignoring other rules in the system. The WILL FIRE signal activates
the EN input of register x directly. However, since the update of y is inside a conditional,
you can see that the WILL FIRE is further ANDed with the predicate of the conditional.

Another example:

Another example for 1-rule semantics
1 rule rg;

2 let x = fifo1.first;

3 if (x != 0) begin

4 fifo1.deq;

5 for (Integer j = 1; j <= 4; j = j + 1)

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 7-7

6 x = x + j;

7 fifo2.enq (x);

8 end

9 endrule

Figure 7.6: Combinational circuit for a rule: another example

Fig. 7.6 shows the data flow graph for this rule. The CAN FIRE signal is a conjunction of
the RDY signals for fifo1.first, fifo1.deq and fifo2.enq, but notice that the latter two
are ANDed with x!=0, since they are only relevant if that expression is true. The CAN FIRE
becomes the WILL FIRE signal through the schedule manager (discussed later), and this
enables the enq and deq actions, which happen in one, simultaneous instant. The for-loop
has been statically elaborated into a chain of four adders, incrementing by 1, 2, 3 and 4
respectively. The input to the chain comes from fifo1.first and the output goes into
fifo2.enq.

Another concept reinforced in Fig. 7.6 is that ordinary variables like x never refer to
storage locations, as they do in C or C++. They are merely names for intermediate values
(in the hardware, wires). A repeated “assignment” of x in a statically elaborated loop, as in
line 5, does not update any storage, as in C or C++: it is just conceptually naming a new
x for another set of wires. In the figure we have disambiguated them by calling them x’,
x’’, x’’’ and x’’’’.

In general, the data flow graph of a rule may weave in and out of module methods, for
example if an invoked method is itself a combinational function, or an invoked method is
an ActionValue method. Further, for a user-defined sub-module, its methods will, in turn,
invoke methods of deeper sub-modules. The data flow graph of a rule is the entire data flow
graph, crossing user-defined module boundaries, eventually originating and terminating at
methods of primitive modules.

To summarize single rule semantics:

• Compute the values of all value expressions in the rule. This is equivalent to tracing
through the corresponding combinational circuit, starting with constants and method
outputs and ending in method inputs.

7-8 Ch 7: Rule Semantics (DRAFT)

• Compute the CAN FIRE condition for the rule. This is a conjunction of the boolean
expression explicitly given as the rule condition, along with the method conditions of
all the methods mentioned in the rule. For methods inside conditionals, the method
conditions are modified by the predicates of the conditionals.
• For now (single rule in isolation), let WILL FIRE = CAN FIRE
• Compute the EN conditions for all the action methods in the rule. For top-level meth-

ods, this is just WILL FIRE. For methods inside conditionals, it is the conjunction of
WILL FIRE with the conditional predicates (or its negation, depending on which arm
of the conditional it is in).
• Perform the actions of all enabled methods (EN is true). Thus, the overall state change

when we fire a rule is composed of the state changes of the enabled Action methods
when it fires.

The data flow graph is implemented by hardware combinational circuits and of course
signals take time to propagate through such circuits. However, in BSV semantics we abstract
away from this detail: we assume the values are instantly known on all the edges of the
data flow graph, and that all the EN signals are simultaneously enabled.

7.3.1 Per-rule method well-formedness constraints

We close this section on semantics of individual rules by observing that some pairs of
methods cannot be combined to execute simultaneously within the same rule.

Every primitive BSV module comes with a set of pairwise constraints on its methods,
i.e., for every pair of its methods mi and mj (including where i = j), whether or not that
pair can both be invoked in a single rule on the same module instance. These constraints
arise from hardware realizability.

For example, the primitive register modules specify that a single rule cannot invoke more
than one _write on the same register within a rule. This makes intuitive hardware sense:
if two _writes on a register occur at the same instant, which value should it now hold? On
the other hand, there is no constraint on the number of _reads of a particular register that
can be invoked within a rule (in hardware terms, reads are merely fan-outs of wires).

Similarly, FIFO modules have well-formedness constraints like these:

• Method first can be invoked multiple times.
• There can be at most one invocation of either enq or deq (but not both) on a particular

FIFO in a rule.

Constraints on methods of primitive or user-defined modules may also arise due to hardware
resource limitations. For example, a method m3(x), when implemented in hardware, may
have a single input bus for x; this bus can only be driven with one value at a time; thus, it
would not make sense to allow two invocations of m3 within a single rule.

Note, these constraints are on simultaneous dynamic invocations, which is not the same
thing as the number of textual (static) occurrences of invocations. For example, it is per-
fectly ok to invoke f.enq(e1) in one arm of a conditional and f.enq(e2) in the other arm
(on the same FIFO f). Even though there are two textual (static) occurrences of f.enq(),
there can only be one dynamic invocation. The bsc compiler analyzes method-invocation
conditions and will allow such multiple invocations if it can prove them to be mutually
exclusive.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 7-9

Constraints on the methods of user-defined modules follow naturally from the constraints
on methods of primitive modules. For example, if a user-defined module has two methods
um1 and um2 which both write into a common register, the constraints and meaning of the
underlying _writes carry upward to um1 and um2, that is, um1 and um2 cannot be invoked
in the same rule.

In summary: a rule can invoke any actions for simultaneous execution, provided we
respect the well-formedness constraints (mostly obvious). The bsc compiler will flag any
violations of these constraints as static, compile-time errors.

Examples of legal and illegal combinations of actions into rules

Example 1:

Parallel methods in a rule
1 rule ra if (z>10);

2 x <= x+1;

3 endrule

This rule is fine: a read and a write on register x is ok, as is a read from register z.

Example 2:

Parallel methods in a rule
1 rule rb;

2 x <= x+1;

3 if (p) x <= 7;

4 endrule

This rule is not ok, since it potentially performs two writes on register x. bsc will accept it
only in the trivial case where it can statically prove that p is false.

Example 3:

Parallel methods in a rule
1 rule rb;

2 if (q)

3 x <= x+1;

4 else

5 x <= 7;

6 endrule

This rule is ok. Even though there are two syntatic occurrences of a write to x, they are in
the context of a conditional which ensures that only one of them will be performed. It is
equivalent to a more explicit muxed expression:

Parallel methods in a rule
1 rule rb;

2 x <= (q ? x+1 : 7);

3 endrule

7-10 Ch 7: Rule Semantics (DRAFT)

Example 4:

Parallel methods in a rule
1 rule rc;

2 x <= y+1;

3 y <= x+2;

4 endrule

This rule is ok, since it contains one read and one write for each of x and y. According to
the given (axiomatic) semantics of the _read and _write methods, both reads of x and y

read the value just before the rule execution instant, and both writes of x and y will update
the registers with values visible just after the execution instant. Thus, this rule does a kind
of “exchange and increment” of x and y, incrementing by 2 and 1, respectively.

Example 5:

Parallel methods in a rule
1 rule re;

2 s2 = f (s1);

3 s3 = g (s2);

4 x <= s3;

5 endrule

This rule will be ok if it is ok to call f and g simultaneously. For example, if f and g are
ordinary arithmetic functions, there is no problem. Even if f and g are the same arithmetic
function, the logic will simply be replicated. However, suppose f and g contain calls to
a method on some hardware module (such as reading a single port in a register file but
with different indexes); then that method will have a constraint that it cannot be called
simultaneously, and the rule will not be ok.

7.4 Logical semantics vs. implementation: sequential rule
execution

Before we move on to the semantics of multiple rules in a clock (next section), we would like
to review a concept that is ubiquitous in Computer Science, namely the clean separation of
abstract, logical semantics from what happens in any particular implementation.

For example, the semantic view of a processor instruction set (such as the MIPS or x86
instruction set) is one instruction at a time. The semantics of each opcode is described in
terms of what it reads and writes in registers and memory, and the semantics of a program
is explained as a sequence of instructions executed one at a time. Programmers writing
assembly or machine code and compilers generating such code rely on this semantic model.
However, under the covers, a particular processor implementation may (and nowadays usu-
ally will) execute instructions in parallel (e.g., pipelining, and superscalar) or out-of-order,
but the hardware will always behave equivalently to the sequential semantics. This sep-
aration allows clients (programmers and compilers) to create programs independently of

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 7-11

implementors (processor designers); each can create new artifacts at their own developmen-
tal pace.

In Fig. 7.1 we described how we always view the concurrent execution of rules within
a clock as a logical sequence of rule executions. This is just a programmer’s view. In the
actual hardware implementation generated by bsc there may be nothing recognizable as a
sequence of rules, but the hardware will always behave equivalently to a sequential execution
of rules.

7.5 Concurrent rule execution, and scheduling rules into clocks

In Sec. 7.1 and Fig. 7.1 we described BSV system execution as an operation repeated once
per clock. This operation is a traversal of all the rules in the system in a logical linear
sequence. For each rule, we execute it if its CAN FIRE is true, and if it does not conflict
with earlier rules in the sequence that have fired. In this section we describe the concept of
inter-rule “conflict” precisely.

Figure 7.7: Two rules in a clock, and their methods

Conflicts arise out of violations of ordering constraints on pairs of module methods.
Fig. 7.7 shows two rules ruleA and ruleB in the same clock, in that logical order. They
contain method invocations mA1, mA2, mA3, mB1, and mB2. Of course, each rule can execute
only if its guard condition is true. In addition, ruleB is only allowed to execute if each of
its methods mBj is free of conflicts with any method mAi executed in the earlier rule.

Inter-rule method ordering constraints are specified like this:

Allowed ordering(s)

mi CF mj Either order (“conflict-free”)

mi < mj mi must be invoked before mj (else conflict)
mj > mi ... ditto ...

mi C mj Neither order (“always conflict”)

Referring back to Fig. 7.7, suppose ruleA executes in this clock, i.e., its condition is true
and it does not violate any ordering constraints with any previous rules in this clock. Then,
ruleB executes if its condition is true and

mAi CF mBj
or mAi < mBj

7-12 Ch 7: Rule Semantics (DRAFT)

Of course, ruleB does not execute if its condition is false. But, even if its condition is true,
it cannot execute if

mAi C mBj
or mAi > mBj

If ruleA does not execute (either because its condition is false, or because its method invo-
cations conflicted with earlier rules), the rule is irrelevant when deciding whether to execute
ruleB.

It is important to note that the intra-rule constraints described earlier in Sec. 7.3.1 are
completely independent of the inter -rule constraints described here. The former are con-
straints on well-formedness of a single rule, i.e., if a rule can simultaneously invoke certain
pairs of methods, and are checked statically by the compiler. The constraints described
here are constraints on methods in different rules, and result in a dynamic decision whether
to allow or suppress a rule that conflicts with an earlier one.

Where do these inter-rule constraints come frome? Once again, like intra-rule con-
straints, they are “given” (or axiomatic) for methods of primitive modules, and are typically
imposed out of considerations of hardware realizability. Constraints on primitive methods
may in turn imply constraints for methods of user-defined modules.

Consider again the register interface. For concurrent execution, we have the constraints:

_read < _write

_read CF _read

_write C _write

We can easily see the hardware intuitions behind these constraints. The first constraint
captures the idea that, within a clock, the value we read from a register is the one from
the previous clock edge, and any value we write will only be visible at the next clock edge.
The constraint allows BSV register _reads and _writes to map naturally onto ordinary
hardware register reads and writes. Suppose we had a rule that invoked _write on a
particular register. Then, according to sequential rule semantics, rules later in the ordering
that invoked _read on the same register would have to see the updated value, within the
same clock, and this is not compatible with hardware semantics. Our method constraints
will prevent the latter rules from firing, thus finessing this situation.

The second constraint permits multiple reads of a register within a clock, and the third
constraint ensures that there is at most one write into a register in each clock.

7.5.1 Schedules, and compilation of schedules

A schedule is any linear sequence of rules. The pseudo-code describing rule execution
semantics in Sec. 7.1 will provide correct execution for any schedule, because rules are only
executed if they do not conflict with earlier rules. This raises the question: Which schedule?
If there are N rules, there are N ! (N-factorial) possible permutations,2 i.e., schedules, so
which one does bsc choose?

2In fact, more than N ! combinations if we allow multiple executions of a rule within a clock.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 7-13

The bsc compiler performs extensive static analysis of the method ordering constraints
on the rules of a program to choose a good schedule, one that maximizes the number of
rules that can execute within each clock. The user can place “attributes” in the source code
to fix certain choices in schedule. Compilation outputs allow the user to view the schedule
chosen, both graphically and textually. bsc generates hardware that implements the rules
with this schedule.

7.5.2 Examples

Let us now firm up this simple idea of rule ordering constraints by looking at a series of
examples.

Example 1

Conflict-free example
1 rule ra if (z>10);

2 x <= x+1;

3 endrule

4

5 rule rb if (z>20);

6 y <= y+2;

7 endrule

The methods involved are: z._read, x._read, x._write, y._read, and y._write. There
are no constraints between x’s methods and y’s methods and z’s methods. There are no
constraints between z._read in different rules (the method is conflict free (CF) with itself).
Thus, there are no constraints between the rules, and they can execute concurrently no
matter which order they appear in a schedule.

Example 2

Conflict example
1 rule ra if (z>10);

2 x <= y+1;

3 endrule

4

5 rule rb if (z>20);

6 y <= x+2;

7 endrule

Here, y._read < y._write requires ra to precede rb. But, x._read < x._write requires rb
to precede ra. This is a conflict, and bsc will ensure that these rules do not fire concurrently.
In other words, whichever linear ordering bsc picks, it will ensure that, in any clock, the
latter rule is suppressed if the former rule fires.

7-14 Ch 7: Rule Semantics (DRAFT)

Example 3

Conflict-free example
1 rule ra if (z>10);

2 x <= y+1;

3 endrule

4

5 rule rb if (z>20);

6 y <= y+2;

7 endrule

Here, y._read < y._write requires ra to precede rb, and that is the only inter-rule con-
straint. bsc will try to pick a schedule where ra is earlier than rb, which will allow these
rules to fire concurrently.

Example 4

Conflict example
1 rule ra;

2 x <= y+1;

3 u <= u+2;

4 endrule

5

6 rule rb;

7 y <= y+2;

8 v <= u+1;

9 endrule

Here, y._read < y._write requires ra to precede rb. u._read < u._write requires rb

to precede ra. Once again, we have a conflict, and bsc will not allow these rules to fire
concurrently, i.e., whichever linear ordering bsc picks, it will ensure that, in any clock, the
latter rule is suppressed if the former rule fires.

7.5.3 Nuances due to conditionals

Consider the following rules:

Conflict-freeness due to conditionals
1 rule ra;

2 if (p) fifo.enq (8);

3 u <= u+2;

4 endrule

5

6 rule rb;

7 if (! p) fifo.enq (9);

8 y <= y+23;

9 endrule

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 7-15

There are no concurrency constraints due to u and y, but what about fifo.enq()? The
enq method on most FIFOs will have a concurrency constraint that it conflicts with itself,
arising out of the hardware implementation constraint that we can only handle one enqueue
per clock cycle. However, in the above code, the p and !p conditions ensure that, even
if the rules fire concurrently, only one enq will happen. bsc takes this into account when
analyzing rules for conflicts, and will in fact deem these rules to be conflict free.

However, there is a caveat: the above conclusion depends on realizing (proving) that the
conditions p and !p are mutually exclusive. When those expressions get more complicated,
it may not be possible for bsc to prove mutual exclusivity. In such cases, bsc is conserative
and will declare a conflict due to a potential concurrent invocation of the method.

7.5.4 Hardware schedule managers

In the examples in Fig. 7.5 and Fig.7.6 we got a sense of the hardware generated for each
rule in isolation. In each figure, we left unspecified (using a dashed line) the transformation
of the CAN FIRE signal into the WILL FIRE signal. We can now fill in that last missing
detail.

Figure 7.8: The Schedule Manager module

Conceptually, we have a module as shown in Fig. 7.8. Its inputs are the CAN FIRE
signals from all the rules, and its outputs are the WILL FIRE signals for all the rules. It
directly implements the following very simple logic:

WILL FIREj = CAN FIREj &&
(! WILL FIREi1) && (if ri1 is an earlier conflicting rule)
(! WILL FIREi2) && (if ri2 is an earlier conflicting rule)
... for each earlier conflicting rule ...

In other words, this directly implements the idea that a rule is not allowed to fire if any
previous conflicting rule has fired. Or, to put it another way, a rule can only fire if none of
its earlier conflicting rules has fired.

7.6 Conclusion

We conclude this chapter with some very things to remember:

7-16 Ch 7: Rule Semantics (DRAFT)

• Rule semantics come in two parts: intra-rule and inter-rule.

• Intra-rule semantics (parallel/simultaneous) is about execution of the rule body, which
is always of type Action:

– Action composition: sequential and conditional composition, modulo well-formedness
constraints about pairs of actions that cannot be performed simultaneously.

– Instantaneous execution of the rule body Action (which may be composed of
other Actions).

– Execution of the rule body, which transforms a pre-Action state into a post-
Action state. This is logically instantaneous; there is no intermediate states.

• Inter-rule semantics (concurrency) is about the logically sequential execution of rules
according to a schedule:

– Each rule fires in a clock if its CAN FIRE condition is true and if it does not
conflict with rules that have previously fired in the same clock.

– Its CAN FIRE condition is a combination of the explicit rule condition expression
and the method conditions of all the methods it invokes in the rule condition
and body. The combination takes into account conditional constructs in the rule
condition and body.

– A rule conflicts with an earlier rule if one of its methods conflicts with a method
in the earlier rule (violates a method-ordering constraint) and the earlier rule
fired in this clock.

– The bsc compiler picks a schedule that attempts to maximize rule concurrency.

As you write more and more BSV programs and internalize these concepts, these semantics
will become as natural and second-nature to you as the traditional sequential semantics of
C, C++ or your favorite sequential software language.

Chapter 8

Concurrent Components

Concurrent components, and implementing them using Con-
current Registers (CRegs)

8.1 Introduction

As we proceed to more sophisticated processor pipelines, we will repeatedly encounter the
need for components that are highly concurrent, that is, modules with multiple methods
that must be invoked in the same clock. The latter part of this chapter presents concurrent
FIFOs (so-called “Pipeline” and “Bypass” FIFOs) which we will use heavily in our pipeline
designs. Rather than presenting them as primitives we show how they can be constructed
using a very useful basic component called an Concurrent Register (CReg).1 CRegs can be
used to construct other concurrent data structures as well, such as concurrent register files
and register scoreboards that we will see in later chapters.

An important point is that there is a systematic methodology for designing new concur-
rent components—we first explicitly specify the desired concurrent semantics of the compo-
nent unambiguously in terms of ordering constraints on its methods, and then implement
these semantics using CRegs.

8.2 A motivating example: an up-down counter

Suppose we want to construct a module that is a two-port up-down counter of 16-bit signed
integers, with the following interface:

Up-down saturating counter interface
1 interface UpDownSatCounter;

2 method ActionValue #(Int #(16)) incr1 (Int #(16) delta);

1The names“Concurrent Registers”and“CRegs”are used today in BSV. The idea was originally conceived
and developed by Daniel Rosenband in [10, 11] where they were called Ephemeral History Registers or EHRs.

8-1

8-2 Ch 8: Concurrent Components (DRAFT)

3 method ActionValue #(Int #(16)) incr2 (Int #(16) delta);

4 endinterface

Let’s assume that a module with this interface has some internal state holding the
Int#(16) counter value, initially 0. When either incr method is called, the internal value
should change by delta (which may be negative), and the the previous value is returned.
Here is a module implementing this:

Up-down saturating counter module
1 module mkUpDownCounter (UpDownSatCounter);

2

3 Int #(16) ctr <- mkReg (0);

4

5 function ActionValue #(Int #(16)) fn_incr (Int #(16) delta);

6 actionvalue

7 ctr <= ctr + delta;

8 return ctr; // note: returns previous value

9 endactionvalue

10 endfunction

11

12 method ActionValue #(Int #(16)) incr1 (Int#(16) delta) = fn_incr (delta);

13

14 method ActionValue #(Int #(16)) incr2 (Int#(16) delta) = fn_incr (delta);

15 endmodule

We define an internal function fn_incr that performs the desired increment and returns
the previous value, and then we define the two methods to just invoke this function. In the
function, note that even though the register updates are textually before the return ctr

statement, we return the previous value because an Action or ActionValue in BSV is se-
mantically an instantaneous event, and all “reads” return the previous value.

8.2.1 Intra-clock concurrency and semantics

The module above may be functionally correct, but in hardware design we are usually
interested in more than that—performance, in particular. The performance of a system
that uses this up-down counter may boil down to this question: can incr1 and incr2 be
operated in the same clock cycle, i.e., concurrently? For example, the counter may be used
for credits in a network flow-control application, incremented whenever a packet is sent and
decremented whenever a packet is received. If both methods cannot be called concurrently,
we may not be able to send and receive a packet on the same clock.

If we compile the code as written with bsc we will discover that the two methods cannot
be operated in the same clock cycle. This follows from our discussion of conflicts in Sec. 7.5.
Both methods invoke methods ctr._read and ctr._write; the method constraints require
that incr1 precedes incr2 and vice versa, a classic case of a conflict, thereby preventing
concurrent execution.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 8-3

Before we try solving this, we must first examine a crucial semantic issue: what does it
mean for these methods to be operated concurrently in the same cycle? Specifically, what
do we mean by the “previous value” returned by each method? Suppose the current counter
value is 3 and we invoke incr1(5) and incr2(-7) concurrently (in the same clock). In pure
rule semantics, where each rule is atomic, either incr1(5) happens before incr2(-7) or
vice versa. In the former ordering, incr1(5) should return 3 and incr2(-7) should return
8 (= 3 + 5). In the latter ordering, incr2(-7) should return 3 and incr1(5) should return
-4 (= 3 − 7). These choices are not inherently right or wrong—the designer should choose
one based on the application’s requirements:

incr1 < incr2 (A)
or incr2 < incr1 (B)

Below, we will show that we can implement either choice with CRegs.

8.2.2 Concurrent Registers (CRegs)

As we saw in the previous section, using ordinary registers in the implementation does not
permit the desired concurrency. For this, we use a somewhat richer primitive called a CReg
(for Concurrent Register) which will have n logically sequenced Reg interfaces for reads and
writes. In fact, the conventional ordinary register is just a special case of a CReg with just
one Reg interface.

Figure 8.1: A Concurrent Register (CReg) implementation

A CReg is a module whose interface is an array of n Reg interfaces, indexed by 0 ≤ j ≤
n − 1, and which can all be read and written concurrently (in the same clock). We’ll call
each Reg sub-interface a “port”. Fig. 8.1 illustrates a possible CReg implementation (other
implementations are possible, too). Suppose we read from port j, and suppose zero or more
writes were performed on ports < j. Then the value returned on read port j is the “most
recent” write, i.e., corresponding to the highest port < j amongst the writes. If there are no
writes into any ports < j, the value returned is the value originally in the register. Finally,
the register is updated with the value written at the highest port number, if any; if there
are no writes, the original value is preserved. Thus, increasing port numbers correspond to
an intra-clock, concurrent, logical sequence.

8-4 Ch 8: Concurrent Components (DRAFT)

The intra-rule (simultaneous/parallel) semantics of each Reg sub-interface cr[j] of a
CReg cr is just like an ordinary register:

• cr[j]._read and cr[j]._write can be invoked in the same Action;
• if so, then the _read returns the pre-Action value and the _write’s value is visible

post-Action.

The inter-rule (concurrent) semantics on a CReg cr’s ports are:

cr[0]._read < cr[0]._write
< cr[1]._read < cr[1]._write
< ... < ...
< cr[n− 1]._read < cr[n− 1]._write

Specifically, note that cr[i]._write precedes cr[j]._read if i < j; this is precisely what
makes a value written by a ._write visible to a ._read within the same clock (which was
not possible with an ordinary register).

8.2.3 Implementing the counter with CRegs

Using CRegs, it is easy to implement our up-down counter.

Up-down saturating counter with CRegs
1 module mkUpDownCounter (UpDownSatCounter);

2

3 Reg #(Int#(16)) ctr [2] <- mkCReg (2, 0); // 2 ports, initial value 0

4

5 function ActionValue#(Int#(16)) fn_incr (Integer port, Int#(16) delta);

6 actionvalue

7 ctr [port] <= ctr [port] + delta;

8 return ctr [port];

9 endactionvalue

10 endfunction

11

12 method ActionValue#(Int#(16)) incr1 (Int#(16) delta) = fn_incr(0,delta);

13

14 method ActionValue#(Int#(16)) incr2 (Int#(16) delta) = fn_incr(1,delta);

15 endmodule

In line 3, we instantiate a CReg holding an Int#(16) value, with two ports (the
“[2]” declarator on ctr and the “2” parameter to mkCReg ()). The function fn_incr is
parametrized by by a port number. The method incr1 uses port 0, while the method incr2

uses port 1. This implements semantic choice (A), i.e., incr1<incr2. If we exchanged the
0 and 1 indexes, we’d implement choice (B), i.e., incr2<incr1. These methods can indeed
be invoked concurrently, i.e., in the same clock.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 8-5

Exercise

Add a third method which just sets the counter to a known value n:

Additional set method
1 method Action set (UInt #(4) n);

First, define a semantics for this, i.e., provide a specification of what should happen
when this method is called in the same clock as either or both of the other two methods
(there is no“right”answer to this: you should choose a semantics). Then, extend the module
implementation so that it implements this new method with these semantics.

8.3 Concurrent FIFOs

In Sec. 4.3 we introduced elastic pipelines where the stages are separated by FIFOs. For
true pipeline behavior, all the individual rules (one for each stage) must be capable of firing
concurrently, so that the whole pipeline moves together. More specifically, the enq method
in an upstream rule must fire concurrently with the first and deq methods in a downstream
rule. In this section we will introduce various FIFOs with this behavior, but with different
semantics. Most of the FIFOs we present will have the following standard interface from
the BSV library, which is obtained by importing the FIFOF package:

FIFOF interface
1 interface FIFOF #(type t);

2 method Bool notEmpty;

3 method Bool notFull;

4

5 method Action enq (t x);

6

7 method t first;

8 method Action deq;

9

10 method Action clear;

11 endinterface

The notEmpty and notFull methods are always enabled, and can be used to test for empti-
ness and fullness. The enq method will only be enabled in the notFull state. The first

and deq methods will only be enabled in the notEmpty state. The clear method is always
enabled, and can be used to set the FIFO to the empty state.

8.3.1 Multi-element concurrent FIFOs

It is subtle, but not hard to create a concurrent multi-element FIFO using ordinary registers.
Here is a first attempt at creating a two element FIFO (note that arithmetic on Bit#(n)

types is unsigned, and will wrap around):

8-6 Ch 8: Concurrent Components (DRAFT)

Two element FIFO, first attempt
1 module mkFIFOF2 (FIFOF #(t));

2 Reg #(t) rg_0 <- mkRegU; // data storage

3 Reg #(t) rg_1 <- mkRegU; // data storage

4 Reg #(Bit #(1)) rg_tl <- mkReg (0); // index of tail (0 or 1)

5 Reg #(Bit #(2)) rg_count <- mkReg (0); // # of items in FIFO

6

7 Bit #(2) hd = extend (rg_tl) - rg_count; // index of head

8

9 method Bool notEmpty = (rg_count > 0);

10 method Bool notFull = (rg_count < 2);

11

12 method Action enq (t x) if (rg_count < 2);

13 if (rg_tl == 0)

14 rg_0 <= x;

15 else

16 rg_1 <= x;

17 rg_count <= rg_count + 1;

18 endmethod

19

20 method t first () if (rg_count > 0);

21 return ((hd[0] == 0) ? rg_0 : rg_1);

22 endmethod

23

24 method Action deq () if (rg_count > 0);

25 rg_count <= rg_count - 1;

26 endmethod

27

28 method Action clear;

29 rg_count <= 0;

30 endmethod

31 endmodule

Although functionally ok, enq and deq cannot run concurrently because they both read and
write the rg_count register, and so any concurrent execution would violate a“_read< _write”
constraint. We can modify the code to avoid this, as follows:

Concurrent two element FIFO
1 module mkFIFOF2 (FIFOF #(t));

2 Reg #(t) rg_0 <- mkRegU; // data storage

3 Reg #(t) rg_1 <- mkRegU; // data storage

4 Reg #(Bit #(2)) rg_hd <- mkReg (0); // index of head

5 Reg #(Bit #(2)) rg_tl <- mkReg (0); // index of tail

6

7 Bit #(2) count = ((rg_hd <= rh_tl)

8 ? (rg_tl - rg_hd)

9 : (rg_tl + 2 - rg_hd));

10

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 8-7

11 method Bool notEmpty = (count > 0);

12 method Bool notFull = (count < 2);

13

14 method Action enq (t x) if (count < 2);

15 if (rg_tl[0] == 0)

16 rg_0 <= x;

17 else

18 rg_1 <= x;

19 rg_tl <= rg_tl + 1;

20 endmethod

21

22 method t first () if (count > 0);

23 return ((rg_hd[0] == 0) ? rg_0 : rg_1);

24 endmethod

25

26 method Action deq () if (count > 0);

27 rg_hd <= rg_hd + 1;

28 endmethod

29

30 method Action clear;

31 rg_hd <= 0;

32 rg_tl <= 0;

33 endmethod

34 endmodule

In this version of the code, enq and deq both read the rg_hd and rg_tl registers. The
former only writes rg_tl, and the latter only writes rg_hd. Thus, the methods can run
concurrently. Note that first reads rg_0 and rg_1, while enq writes them; therefore,
because of the “_read < _write” constraint, first must precede enq in any concurrent
schedule.

Larger FIFOs

In the two-element FIFOs just shown, we explicitly instantiated two registers to hold
the FIFO data. This would get quite tedious for larger FIFOs, where n > 2. We could,
instead, use BSV’s Vector library, like this:

Concurrent n-element FIFO
1 import Vector :: *;

2 ...

3 module mkFIFOF_n #(numeric type n)

4 (FIFOF #(t));

5 Vector #(n, Reg #(t)) vrg <- replicateM (mkRegU);

6 ...

7 method t first () if (count > 0);

8 return vrg [rg_hd];

9 endmethod

8-8 Ch 8: Concurrent Components (DRAFT)

10 ...

11 endmodule

The BSV library provides the mkSizedFIFOF family of modules to create such FIFOs. When
n is very large, even such implementations would not be efficient, since it requires large
muxes to select a particular value from the vector. The BSV library provides various
memory-based FIFO modules for very large FIFOs, in the BRAMFIFO package.

8.3.2 Semantics of single element concurrent FIFOs

If we attempt to define a single element concurrent FIFO using ordinary registers, we will
face a problem. Here is a first attempt (a specialization of the two element FIFO):

One element FIFO, first attempt
1 module mkFIFOF1 (FIFOF #(t));

2 Reg #(t) rg <- mkRegU; // data storage

3 Reg #(Bit #(1)) rg_count <- mkReg (0); // # of items in FIFO (0 or 1)

4

5 method Bool notEmpty = (rg_count == 1);

6 method Bool notFull = (rg_count == 0);

7

8 method Action enq (t x) if (rg_count == 0);

9 rg <= x;

10 rg_count <= 1;

11 endmethod

12

13 method t first () if (rg_count == 1);

14 return rg;

15 endmethod

16

17 method Action deq () if (rg_count == 1);

18 rg_count <= 0;

19 endmethod

20

21 method Action clear;

22 rg_count <= 0;

23 endmethod

24 endmodule

The problem is that, since a one element FIFO is either empty or full (equivalently, either
notFull or notEmpty), either enq or deq will be enabled, but not both. Thus, we could
never concurrently enq and deq into this FIFO.

Before looking at implementations, let us first step back and clarify what we mean by
concurrency on a one element FIFO, i.e., define the concurrency semantics. There are two
obvious choices:

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 8-9

• In a Pipeline FIFO, we can enq and deq concurrenty even when it already contains
an element, with the following logical ordering:

first < enq

deq < enq

This ordering makes it clear that the element returned by first is the element already
in the FIFO; that deq logically empties the FIFO; and that enq then inserts a new
element into the FIFO. When the FIFO is empty, first and deq are not enabled, and
there is no concurrency.

• In a Bypass FIFO, we can enq and deq concurrenty even when it contains no elements,
with the following logical ordering:

enq < first

enq < deq

This ordering makes it clear that enq inserts a new element into the empty FIFO,
and this is the element returned by first and emptied by deq. Thus, the enqueued
element can “fly through” the FIFO within the same clock, which is why it is called a
Bypass FIFO. When the FIFO is full, enq is not enabled, and there is no concurrency.

As we shall see in subsequent chapters, both kinds of FIFOs are used heavily in processor
design. Typically, Pipeline FIFOs are used in the forward direction of a pipeline, and Bypass
FIFOs are used for feedback paths that go upstream against the pipeline data flow. Fig. 8.2
illustrates a typical structure. For concurrent operation we typically want rule rb to be

Figure 8.2: Typical Pipeline and Bypass FIFO usage

earlier in the schedule than rule ra because when the forward FIFO aTob has data we want,
conceptually to dequeue it first from rb and then concurrently refill it from ra. Thus, for a
consistent schedule, you can see that:

aTob.first and aTob.deq < aTob.enq

bToa.enq < bToa.first and bToa.deq

and thus aTob is a Pipeline FIFO and bToa is a Bypass FIFO. There are other possibilities,
namely that one or both of the FIFOs is a “conflict-free” FIFO with no ordering constraint
on first/deq and enq.

A nuance: although single element FIFOs make the concurrency question stark, the
same issues can arise even in larger element FIFOs (n > 1). In those FIFOs this issue is
often masked because the FIFO has additional states where it is neither empty nor full,

8-10 Ch 8: Concurrent Components (DRAFT)

and in those states, concurrency is easy. But even in those FIFOs, we may want to enrich
the corner cases to have Pipeline FIFO behavior when it is actually full, or Bypass FIFO
behavior when it is actually empty.

8.3.3 Implementing single element concurrent FIFOs using CRegs

With CRegs, it is easy to implement single element Pipeline and Bypass FIFOs. Here is an
implementation of a Pipeline FIFO:

Pipeline FIFO with CRegs
1 module mkPipelineFIFOF (FIFOF #(t));

2

3 Reg #(t) cr[3] <- mkCRegU (3); // data storage

4 Reg #(Bit #(1))) cr_count[3] <- mkCReg (3, 0); // # of items in FIFO

5

6 method Bool notEmpty = (cr_count[0] == 1);

7 method Bool notFull = (cr_count[1] == 0);

8

9 method Action enq (t x) if (cr_count[1] == 0);

10 cr[1] <= x;

11 cr_count[1] <= 1;

12 endmethod

13

14 method t first () if (cr_count[0] == 1);

15 return cr[0];

16 endmethod

17

18 method Action deq () if (cr_count[0] == 1);

19 cr_count[0] <= 0;

20 endmethod

21

22 method Action clear;

23 cr_count[2] <= 0;

24 endmethod

25 endmodule

We’ve generalized the data storage and item count from ordinary registers to CRegs.
The notEmpty, first and deq methods use port 0 of the CRegs, and are thus earliest in
the schedule. The notFull and enq methods use port 1 of the CRegs, and are thus next in
the schedule. Finally, the clear method uses port 2, and is thus last in the schedule.

Note the choice of indexes in the definitions of notEmpty and notFull. This is because
notEmpty is often used in a rule condition whose body invokes first and deq; hence they
all use the same CReg index (0). If we used different indexes, the state of the FIFO
could change (due to some intervening rule) between the notEmpty test and the first/deq
invocations, which would be surprising to the user. Similarly, notFull is often used in a
rule condition whose body invokes enq; hence they both use the same CReg index (1).

Similarly, here is an implementation of a Bypass FIFO:

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 8-11

Bypass FIFO with CRegs
1 module mkBypassFIFOF (FIFOF #(t));

2 Reg #(3, t) cr[3] <- mkCRegU (3); // data storage

3 Reg #(Bit #(1))) cr_count[3] <- mkCReg (3,0); // # of items in FIFO

4

5 method Bool notEmpty = (cr_count[1] == 1);

6 method Bool notFull = (cr_count[0] == 0);

7

8 method Action enq (t x) if (cr_count[0] == 0);

9 cr[0] <= x;

10 cr_count[0] <= 1;

11 endmethod

12

13 method t first () if (cr_count[1] == 1);

14 return cr[1];

15 endmethod

16

17 method Action deq () if (cr_count[1] == 1);

18 cr_count[1] <= 0;

19 endmethod

20

21 method Action clear;

22 cr_count[2] <= 0;

23 endmethod

24 endmodule

Here we have just reversed the port assignments compared to the Pipeline FIFO: notFull
and enq use port 0 and are thus earliest in the schedule; notEmpty, first and deq use port
1 and are next in the schedule; and clear, as before, used port 2 and is last in the schedule.

8-12 Ch 8: Concurrent Components (DRAFT)

Chapter 9

Data Hazards (Read-after-Write
Hazards)

9.1 Read-after-write (RAW) Hazards and Scoreboards

Figure 9.1: Alternate two-stage pipelining of SMIPS

Consider an alternative partitioning of our 2-stage pipeline from Chapter 6. Let us
move the stage boundary from its current position, between the fetch and decode functions,
to a new position, between the decode and execute functions, as illustrated in Fig. 9.1.
The decode state looks up the values of the source registers in the Register File, and these
values are forwarded to the Execute stage. The information carried from the Decode to the
Execute stage (in the d2e FIFO) has the following data type:

Decode to Execute information
1 typedef struct {

2 Addr pc;

3 Addr ppc; // predicted PC

4 Bool epoch;

5 DecodedInst dInst;

9-1

9-2 Ch 9: Data Hazards (DRAFT)

6 Data rVal1; // value from source register 1

7 Data rVal2; // value from source register 2

8 } Decode2Execute

9 deriving (Bits, Eq);

The code for the processor now looks like this:

Processor pipelined at Decode-to-Execute
1 module mkProc(Proc);

2 Reg#(Addr) pc <- mkRegU;

3 RFile rf <- mkRFile;

4 IMemory iMem <- mkIMemory;

5 DMemory dMem <- mkDMemory;

6

7 FIFO #(Decode2Execute) d2e <- mkFIFO; // forward

8

9 Reg#(Bool) fEpoch <- mkReg(False);

10 Reg#(Bool) eEpoch <- mkReg(False);

11 FIFO#(Addr) execRedirect <- mkFIFO; // backward

12

13 rule doFetch;

14 let inst = iMem.req(pc);

15 if (execRedirect.notEmpty) begin

16 fEpoch <= ! fEpoch;

17 pc <= execRedirect.first;

18 execRedirect.deq;

19 end

20 else begin

21 let ppc = nextAddrPredictor(pc);

22 pc <= ppc;

23 // ---- The next three lines used to be in the Execute rule

24 let dInst = decode(inst);

25 let rVal1 = rf.rd1 (validRegValue(dInst.src1));

26 let rVal2 = rf.rd2 (validRegValue(dInst.src2));

27 d2e.enq (Decode2Execute {pc: pc, ppc: ppc,

28 dIinst: dInst, epoch: fEpoch,

29 rVal1: rVal1, rVal2: rVal2});

30 end

31 endrule

32

33 rule doExecute;

34 let x = d2e.first;

35 let dInst = x.dInst;

36 let pc = x.pc;

37 let ppc = x.ppc;

38 let epoch = x.epoch;

39 let rVal1 = x.rVal1;

40 let rVal2 = x.rVal2;

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 9-3

41 if (epoch == eEpoch) begin

42 ... same as before ...

43

44 ... rf.wr (validRegValue (eInst.dst), eInst.data);

45 if (eInst.mispredict) begin

46 ... same as before ...

47 end

48 end

49 d2e.deq

50 endrule

51 endmodule

Figure 9.2: Classical pipeline schedule

This code is not quite correct, since it has a “data hazard.” The Fetch rule reads
from the register file (rf.rd1 and rf.rd2), and the Execute rule writes to the register file
(rf.wr). Unfortunately the Fetch rule may be reading the wrong values from the register
file (“stale values”). This can be understood using Fig. 9.2, which is a classical illustration
of a pipeline schedule (i.e., a sketch of what happens in each pipe stage at each point in
time). At time t1, the Fetch-Decode stage is occupied by the first instruction, depicted by
FD1. At time t2, this instruction now occupies the Execute stage, depicted by EX1, while
the next instruction now occupies the Fetch-Decode stage, depicted by FD2, and so on.
Suppose these two instructions were:

I1 R1 = Add (R2, R3)
I2 R4 = Add (R1, R2)

When I2 reads register R1 (in FD2), it should get the value computed by I1 (in EX1).
However, in the schedule above, FD2 and EX1 occur at the same time t2. The EX1 register
update will not be visible until time t3, and so FD2 will read an old (stale) value. This is
called a Read-after-Write (or RAW) data hazard. What we need to do is to delay, or “stall”
I2 until I1 has written its value into the register file. This is illustrated in Fig. 9.3. FD2 is
stalled until t3, when it can read the correct values. This also means that the execute stage
does nothing during t3; we refer to this as a “bubble” in the pipeline.

To deal with RAW hazards, we need to:

• Keep a pending list of the names of those registers which will be written by instructions
that are still ahead in the pipeline (in the Execute stage). When an instruction enters

9-4 Ch 9: Data Hazards (DRAFT)

Figure 9.3: Pipeline schedule with a stall

the Execute stage we enter its destination in this list; when the instruction completes,
we remove this entry.
• Stall the Decode stage when it has an instruction with a RAW hazard, i.e., whose source

registers are in the pending list.

In computer architecture literature, this pending list is called a “Scoreboard.” In BSV,
we express its interface as follows:

Scoreboard interface
1 interface Scoreboard;

2 method Action insert (Maybe #(RIndx) dst);

3 method Bool search1 (Maybe #(RIndx) src1);

4 method Bool search2 (Maybe #(RIndx) src2);

5 method Action remove;

6 endinterface

The search1, search2 and insert methods are used by the Decode stage, and the
remove method is used by the Execute stage. The search1 method searches the scoreboard
to see if the src1 register name exists in the scoreboard. The search2 method has the same
functionality; we need two such methods because we need to test both source registers of an
instruction in parallel. The insert method adds a new destination register name into the
scoreboard. The remove method discards the oldest entry in the scoreboard (the one that
was inserted first). Conceptually, the scoreboard is a FIFO, with insert corresponding
to the enqueue operation and remove the dequeue operation.

Figure 9.4: Pipeline with scoreboard

Fig. 9.4 illustrates the pipeline along with the scoreboard. We modify the processor
code as follows.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 9-5

Scoreboard interface
1

2 module mkProc(Proc);

3 .. same state elements as before ...

4

5 Scoreboard sb <- mkScoreboard (1);

6

7 rule doFetch;

8 let inst = iMem.req(pc);

9 if (execRedirect.notEmpty) begin

10 ... seame as before ...

11 end

12 else begin

13 let ppc = nextAddrPredictor (pc);

14 let dInst = decode(inst);

15 let stall = sb.search1 (dInst.src1) || sb.search2 (dInst.src2);

16 if (! stall) begin

17 let rVal1 = rf.rd1 (validRegValue(dInst.src1));

18 let rVal2 = rf.rd2 (validRegValue(dInst.src2));

19 d2e.enq(Decode2Execute {pc: pc, ppc: ppc,

20 dIinst: dInst, epoch: fEpoch,

21 rVal1: rVal1, rVal2: rVal2});

22 sb.insert(dInst.rDst);

23 pc <= ppc;

24 end

25 end

26 endrule

27

28 rule doExecute;

29 let x = d2e.first;

30 ... same as before ...

31 if (epoch == eEpoch) begin

32 ... same execution as before ...

33 end

34 d2e.deq;

35 sb.remove;

36 endrule

37 endmodule

In line 5 we instantiate a scoreboard with size 1 (holds one entry). This is because,
in this pipeline, there is at most one pending instruction in the Execute stage. In line 15
we search the scoreboard for data hazards; we perform the register reads and forward the
instruction in the following lines only if we do not stall. In line 22 we insert the destination
register of the current instruction into the scoreboard. Note that line 23 updates the PC
only if we do not stall; if we stall, this rule will be repeated at the same PC. In the Execute
rule, the only difference is that, in line 35, we remove the completed instruction’s destination
register from the scoreboard.

9-6 Ch 9: Data Hazards (DRAFT)

We invoke search1, search2 and insert in a single rule (doFetch), i.e., at a single
instant. Clearly, we expect the single-rule semantics of these methods to be such that the
searches check the existing state of the scoreboard (due to previous instructions only), and
insert creates the next state of the scoreboard. There is no concurrency issue here since
they are invoked in the same rule.

9.2 Concurrency issues in the pipeline with register file and
scoreboard

Figure 9.5: Abstraction of the pipeline for concurrency analysis

Fig.9.5 is an abstraction of the key elements of the pipeline so that we can analyze its
concurrency.

In general, we think of the concurrent schedule of pipelines as going from right to left
(from downstream to upstream). Please refer back to Fig. 4.6 which depicts an elastic
pipeline with a number of stages. In full-throughput steady state, it is possible that every
pipeline register (FIFO) is full, i.e., contains data. In this situation, the only rule that can
fire is the right-most (most downstream) rule, because it is the only one that is not stalled
by a full downstream FIFO. Once it fires, the pipeline register to its left is empty, and this
permits the rule to its left to fire. Its firing, in turn, permits the rule to its left to fire, and
so on. Of course, these are concurrent firings, i.e., they all fire in the same clock with the
right-to-left logical order, thus advancing data through the entire pipeline on each clock.

This idea was also discussed around Fig. 8.2, where we saw that we typically deploy
PipelineFIFOs in the forward direction (with first and deq < enq) and BypassFIFOs in
the reverse direction (with enq < first and deq).

Referring now again to Fig.9.5, we expect a schedule with rule doExecute followed by
rule doFetch, d2e is PipelineFIFO, and redirect is a BypassFIFO. Consistent with this
schedule:

• We expect Scoreboard to have remove < insert. This is just like a PipelineFIFO,
whose implementation we have already seen in Sec. 8.3.3.

• We expect Register File to have wr < rd1 and rd2. This read-after-write ordering is
like a BypassFIFO, and is the opposite order of a conventional register (where _read

< _write).

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 9-7

A register file with the given method ordering can easily be implemented using CRegs
(described in Sec. 8.2.2):

Register File with R-A-W
1 module mkBypassRFile(RFile);

2 Vector #(32, Array #(Reg #(Data))) rfile <- replicateM (mkCReg (2, 0));

3

4 method Action wr (RIndx rindx, Data data);

5 if (rindex !== 0)

6 (rfile [rindex]) [0] <= data;

7 endmethod

8

9 method Data rd1 (RIndx rindx) = (rfile [rindx]) [1];

10

11 method Data rd2 (RIndx rindx) = (rfile [rindx]) [1];

12 endmodule

9.3 Write-after-Write Hazards

What happens if a fetched instruction has no RAW hazards, but writes to the same register
as an instruction that is still in the pipeline? This is called a Write-after-Write (WAW)
hazard. Note, there can be no instruction ahead of it that reads that register, since any
instruction would still be stalled in the Fetch stage.

There are two ways we could solve this problem:

1. If we implement our scoreboard as a FIFO, there is no problem. The current instruc-
tion will be enqueued into the scoreboard, which may now contain two identical entries.
Any later instruction that reads this register will be stalled until both corresponding
writing instructions have completed and these entries have been removed.

2. We could implement the scoreboard as a simple bit vector with one bit per register
in the register file. The insert method sets a bit, and the remove method resets it.
In this case, since we can’t keep track of multiple instructions writing to the same
register, we must stall any instruction that has a WAW hazard. Thus, the Decode
stage, in addition to testing if the source registers are in the scoreboard, must now
also test the destination register. This will require another search3 method in the
scoreboard module.

Note: the search1, search2 and search3 methods can be combined into a single method
taking multiple arguments.

9.4 Deeper pipelines

Fig. 9.6 illustrates a version of our pipeline that is partitioned into 3 stages. The previous
Execute stage has been refined into two parts, one that executes the ALU and memory

9-8 Ch 9: Data Hazards (DRAFT)

Figure 9.6: 3-stage pipeline

operations and another, the “Commit” stage, that performs the writeback of the output
value to the register file and the remove operation on the scoreboard (if the instruction has
an output). Since there can now be two instructions “in flight” ahead of the Decode stage,
we need to increase the depth of the scoreboard queue to hold at least two destination
register names.

In the Execute stage, when we kill a wrong-path instruction, we can pass an “Invalid”
destination to the Commit stage, like so:

Execute stage in 3-stage pipeline
1 rule doExecute;

2 ... same as before ...

3 if (epoch == eEpoch) begin

4 ... same as before, but without rf.wr() ...

5 e2c.enq (Exec2Commit {dst:eInst.dst, data:eInst.data});

6

7 else

8 e2c.enq (Exec2Commit {dst:Invalid, data:?}); // will be ignored

9 d2e.deq;

10 endrule

11

12 rule doCommit;

13 let dst = eInst.first.dst;

14 let data = eInst.first.data;

15 if (dst matches tagged Valid .rdst) begin

16 rf.wr (rdst, data);

17 sb.remove; // was in doExecute

18 end

19 e2c.deq;

20 endrule

The new doCommit rule performs the writeback, if the destination is valid, and also

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 9-9

removes the destination from the scoreboard.

Figure 9.7: 6-stage pipeline

Fig. 9.7 illustrates a further refinement of our pipeline into 6 stages. The previous Fetch
stage has been split into three stages: Fetch, Decode and RegRead (which performs the
register reads). The previous Execute stage has been split into two stages: Execute ALU
ops and Memory Request, and Memory Response. Data Memory accesses will take at least
1 cycle on a cache hit and may take many more cycles on a cache miss, so we always split
it into a request action and a later response action.

9.5 Conclusion

The systematic application of pipelining requires a deep understanding of hazards, espe-
cially in the presence of concurrent operations. Performance issues are usually more subtle,
compared to correctness issues.

In the next chapter we turn our attention back to control hazards, and we will look
at the implementation of more sophisticated branch predictors that improve as execution
proceeds by learning from the past branching of the program.

9-10 Ch 9: Data Hazards (DRAFT)

Chapter 10

Branch Prediction

10.1 Introduction

In this chapter, we turn our attention back to control hazards and study some increasingly
sophisticated schemes for branch prediction. How important is this issue? Modern processor

Figure 10.1: Loop penalty without branch prediction

pipelines are very deep; they may have ten or more stages. Consider the pipeline shown in
Fig. 10.1. It is not until the end of the Execute stage, when a branch has been fully resolved,
that we know definitively what the next PC should be. If the Fetch stage were always to
wait until this moment to fetch the next instruction, we would effectively have no pipeline
behavior at all. The time taken to execute a program loop containing N instructions would
be N× pipeline-depth.

Of course, such a penalty might be acceptable if it were very rare. For example, if we
only paid this penalty on actual branch instructions, and branch instructions were few and

10-1

10-2 Ch 10: Branch Prediction (DRAFT)

far between, then the penalty would be amortized over the high pipelining performance we
would get on the other instructions.

Unfortunately this is not so in real programs. The SPEC benchmarks are a collection
of programs intended to be representative of real application programs, and people have
measured the statistics of instructions in these programs. The following table shows the
dynamic instruction mix from SPEC, i.e., we run the programs and count each kind of
instruction actually executed.

Instruction type SPECint92 SPECfp92

ALU 39% 13 %
FPU Add — 20 %
FPU Mult — 13 %

load 26 % 23 %
store 9 % 9 %

branch 16 % 8 %
other 10 % 12 %

SPECint92 programs: compress, eqntott, espresso, gcc , li
SPECfp92 programs: doduc, ear, hydro2d, mdijdp2, su2cor

In particular, the average run length between branch instructions is hardly 6 to 12 instruc-
tions, i.e., branch instructions are quite frequent.

Our simple pipelined architecture so far performs very simple next-address predictions—
it always predicts PC+4. This means that it always predicts that branches are not taken.
This is not bad, since most instructions are not control-transfer instructions, and has been
measured on real codes to have about a 70% accuracy.

In this chapter we will study improvements to this simple prediction scheme. Our
improvements will be dynamic, i.e., the prediction schemes “learn”, or “self-tune” based on
past program behavior to improve future prediction.

10.2 Static Branch Prediction

Figure 10.2: Branch probabilities for forward and backward branches

It turns out that in real codes, the probability that a branch is taken can correlate to the
branch direction, i.e., whether the branch is forward (towards a higher PC) or backward
(towards a lower PC). Fig. 10.2 illustrates the situation.1

1Of course, these probabilities also depend on the compiler’s code generation choices.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 10-3

Based on this observation, an ISA designer can pro-actively attach preferred direction
semantics to particular opcodes, so that compilers can take advantage of this. For example,
in the Motorola MC88110, the bne0 opcode (branch if not equal to zero) is a preferred taken
opcode, i.e., it is used in situations where the branch is more often taken. Conversely, the
beq0 opcode (branch if equal to zero) is a preferred not taken opcode, and is used in
situations where the fall-through is more frequent.

The Hewlett Packard PA-RISC and the Intel IA-64 ISAs went further, allowing an
arbitrary (static) choice of predicted direction. Measurements indicate that this achieves
an 80% accuracy.

10.3 Dynamic Branch Prediction

Dynamic branch predictor have a “learning” or “training” component. As a program is
executed, it records some information about how each branch instruction actually resolves
(not taken or taken and, if taken, to which new PC). It uses this information in predictions
for future executions of these branch instructions. If branch behavior were random, this
would be useless. Fortunately, branch behaviors are often correlated:

• Temporal correlation: the way a branch resolves may be a good predictor of how it will
resolve on the next execution. For example, the loop-exit branch for a loop with 1000
iterations will resolve the same way for the first 999 iterations. The return address of
a function called in the loop may be the same for every iteration.

• Spatial correlation: Several branches may resolve in a highly correlated manner (e.g.,
to follow a preferred path of execution).

There are a large number of branch prediction schemes described in the literature and in
actual products. Their importance grows with the depth of the processor pipeline, since the
penalty is proportional to this depth. Even a particular processor implementation nowadays
may use multiple branch prediction schemes. Each scheme is typically easy to understand
in the abstract and in isolation. But there is considerable subtlety in how each scheme
is integrated into the pipeline, and how multiple schemes might interact with each other.
Fortunately, the atomic rule ordering semantics of BSV gives us a clean semantic framework
in which to analyze and design correct implementations of such schemes. As illustrated in

Figure 10.3: Dynamic prediction is a feedback control system

Fig. 10.3, dynamic prediction can be viewed as a dynamic feedback control system with the
main mechanism sitting in the Fetch stage. It has two basic activities:

10-4 Ch 10: Branch Prediction (DRAFT)

• Predict : In the forward direction, the Fetch logic needs an immediate prediction of the
next PC to be fetched.
• Update: It receives feedback from downstream stages about the accuracy of its prediction

(“truth”), which it uses to update its data structures to improve future predictions.

The key pieces of information of interest are: Is the current instruction a branch? Is it taken
or not taken (direction)? If taken, what is the new target PC? These pieces of information
may become known known at different stages in the pipeline. For example:

Instruction Direction known after Target known after

J After Decode After Decode
JR After Decode After Register Read
BEQZ, BNEZ After Execute After Decode

Figure 10.4: Overview of control flow prediction

A predictor can redirect the PC only after it has the relevant information. Fig. 10.4 shows
an overview of branch (control flow) prediction. In the Fetch stage there is a tight loop
that requires a next-PC prediction for every instruction fetched. At this point the fetched
instruction is just an opaque 32-bit value. After the Decode, we know the type of instruction
(including opcodes). If it is an unconditional absolute or fixed PC-relative branch, we also
know the target. After the Register Read stage, we know targets that are in registers, and
we may also know some simple conditions. Finally, in the Execute stage, we have complete
information. Of course, once we have recognized a misprediction, we must kill (filter out)
all mispredicted instructions without them having any effect on architectural state.

Given a PC and its predicted PC (ppc), a misprediction can be corrected (used to
redirect the pc) as soon as it is detected. In fact, pc can be redirected as soon as we have a
“better” prediction. However, for forward progress it is important that a correct PC should
never be redirected. For example, after the Decode stage, once we know that an instruction
is a branch, we can use the past history of the that instruction to immediately check if the
direction prediction was correct.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 10-5

10.4 A first attempt at a better Next-Address Predictor (NAP)

Find another branch? There’s a NAP for that!

Figure 10.5: A first attempt at a better Next-Address Predictor

Fig. 10.5 illustrates a proposed Next-Address Predictor (NAP). Conceptually we could
have a table mapping each PC in a program to another PC, which is its next-PC prediction.
This table is called the Branch Target Buffer (BTB). Unfortunately, this table would be
very large. So, we approximate it with a table that has just 2k entries. For prediction, we
simply fetch the next-PC from this table using k bits of the PC. Later, when we recognize
a misprediction, we update this table with the corrected information.

Figure 10.6: Address collisions in the simple BTB

Of course, the problem is that many instructions (where those k bits of their PCs
are identical) will map into the same BTB location. This is called an address collision,
or aliasing (a similar issue arises in caches, hash tables, etc.). Fig. 10.6 illustrates the
problem. Instructions at PC 132 and 1028 have the same lower 7 bits, and so they will
map to the same location in a 128-entry BTB. If we first encounter the Jump instruction
at PC 132, the entry in the table will be 236 (132 + 4 + 100). Later, when we encounter
the Add instruction at PC 1028, we will mistakenly predict a next-PC of 236, instead of
1032. Unfortunately, with such a simple BTB, this would be quite a common occurrence.
Fortunately, we can improve our BTB to ameliorate this situation, which we discuss in the
next section.

10-6 Ch 10: Branch Prediction (DRAFT)

10.5 An improved BTB-based Next-Address Predictor

Figure 10.7: An improved BTB

This particular problem of address collisions is a familiar problem—we also encounter it
in hash tables and caches. The solution is standard: if k bits are used for the table index,
store the remaining 32− k bits of the PC in the table as a tag that disambiguates multiple
PCs that might map to the same location. This is illustrated in Fig. 10.7. Given a PC, we
use k bits to index the table, and then we check the remaining 32−k bits against the tag to
verify that this entry is indeed for this PC and not for one of its aliases. If the entry does
not match, we use a default prediction of PC+4.

Second, we only update the table with entries for actual branch instructions, relying
on the default PC+4 prediction for the more common case where the instruction is not a
branch. The “valid” bits in the table are initially False. When we update an entry we set
its valid bit to True.

Note that this prediction is based only on the PC value of an instruction, i.e., before we
have decoded it. Measurements have shown that even very small BTBs, which now hold
entries only for branch instructions, are very effective in practice.

10.5.1 Implementing the Next-Address Predictor

As usual, we first define the interface of our predictor:

Interface for next-address predictor
1 interface AddrPred;

2 method Addr predPc (Addr pc);

3 method Action update (Redirect rd);

4 endinterface

5

6 typedef struct {

7 Bool taken; // branch was taken

8 Addr pc;

9 Addr nextPC;

10 } Redirect

11 deriving (Bits)

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 10-7

The predPC method is used in Fetch’s tight loop to predict the next PC. The update

method carries a Redirect struct that contains information about what really happened,
to train the predictor. A simple PC+4 predictor module (which we’ve been using so far)
implementing this interface is shown below:

Simple PC+4 predictor module
1 module mkPcPlus4(AddrPred);

2 method Addr predPc (Addr pc) = pc+4;

3 method Action update (Redirect rd) = noAction;

4 endmodule

Next, we show the code for a BTB-based predictor. We use a register file for the actual
table, which is fine for small tables, but we can easily substitute it with an SRAM for larger
tables.

BTB-based predictor module
1 typedef struct {

2 Addr ppc;

3 BtbTag tag;

4 } BTBEntry

5 deriving (Bits);

6

7 module mkBTB (AddrPred);

8 RegFile #(BtbIndex, Maybe #(BTBEntry)) btb <- mkRegFileFull;

9

10 function BtbIndex indexOf (Addr pc) = truncate (pc >> 2);

11 function BtbTag tagOf (Addr pc) = truncateLSB (pc);

12

13 method Addr predPc (Addr pc);

14 BtbIndex index = indexOf (pc);

15 BtbTag tag = tagOf (pc);

16 if (btb.sub (index) matches tagged Valid .entry &&& entry.tag == tag)

17 return entry.ppc;

18 else

19 return (pc + 4);

20 endmethod

21

22 method Action update (Redirect redirect);

23 if (redirect.taken) begin

24 let index = indexOfPC (redirect.pc);

25 let tag = tagOfPC (redirect.pc);

26 btb.upd (index,

27 tagged Valid (BTBEntry {Addr:redirect.nextPc, tag:tag}));

28 end

29 endmethod

30 endmodule

10-8 Ch 10: Branch Prediction (DRAFT)

10.6 Incorporating the BTB-based predictor in the 2-stage
pipeline

Below, we show our 2-stage pipeline (including scoreboard for data hazard management),
modified to incorporate the BTB-based predictor. The changes are marked with NEW
comments.

2-stage pipeline with BTB
1 module mkProc(Proc);

2 Reg#(Addr) pc <- mkRegU;

3 RFile rf <- mkRFile;

4 IMemory iMem <- mkIMemory;

5 DMemory dMem <- mkDMemory;

6 Fifo#(Decode2Execute) d2e <- mkFifo;

7 Reg#(Bool) fEpoch <- mkReg(False);

8 Reg#(Bool) eEpoch <- mkReg(False);

9 Fifo#(Addr) execRedirect <- mkFifo;

10 AddrPred btb <- mkBtb; // NEW
11

12 Scoreboard#(1) sb <- mkScoreboard;

13

14 rule doFetch;

15 let inst = iMem.req(pc);

16 if (execRedirect.notEmpty) begin

17 if (execRedirect.first.mispredict) begin // NEW
18 fEpoch <= !fEpoch;

19 pc <= execRedirect.first.ppc;

20 end

21 btb.update (execRedirect.first); // NEW
22 execRedirect.deq;

23 end

24 else begin

25 let ppc = btb.predPc (pc); // NEW
26 let dInst = decode(inst);

27 let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2);

28 if (! stall) begin

29 let rVal1 = rf.rd1 (validRegValue (dInst.src1));

30 let rVal2 = rf.rd2 (validRegValue (dInst.src2));

31 d2e.enq (Decode2Execute {pc: pc,

32 nextPC: ppc,

33 dIinst: dInst,

34 epoch: fEpoch,

35 rVal1: rVal1,

36 rVal2: rVal2});

37 sb.insert(dInst.rDst); pc <= ppc; end

38 end

39 end

40 endrule

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 10-9

41

42 rule doExecute;

43 let x = d2e.first;

44 let dInst = x.dInst; let pc = x.pc;

45 let ppc = x.ppc; let epoch = x.epoch;

46 let rVal1 = x.rVal1; let rVal2 = x.rVal2;

47 if (epoch == eEpoch) begin

48 let eInst = exec(dInst, rVal1, rVal2, pc, ppc);

49 if (eInst.iType == Ld)

50 eInst.data <- dMem.req (MemReq{op:Ld,

51 addr:eInst.addr, data:?});

52 else if (eInst.iType == St) begin

53 let d <- dMem.req (MemReq{op:St,

54 addr:eInst.addr, data:eInst.data});

55 end

56 if (isValid (eInst.dst))

57 rf.wr (validRegValue(eInst.dst), eInst.data);

58 // ---- NEW begin
59 if (eInst.iType == J || eInst.iType == Jr || eInst.iType == Br)

60 execRedirect.enq (Redirect{pc: pc,

61 nextPc: eInst.addr,

62 taken: eInst.brTaken,

63 mispredict: eInst.mispredict,

64 brType: eInst.iType});

65 // ---- NEW end
66 if (eInst.mispredict) eEpoch <= !eEpoch;

67 d2e.deq;

68 sb.remove;

69 endrule

70 endmodule

In line 10 we instantiate the BTB. In the Fetch rule, in lines 17-20, we change the epoch
and the PC only if execRedirect says it’s describing a misprediction. In line 21 we update
the BTB. In line 25 we use the BTB to perform our next-address prediction. In the Execute
rule, in lines 58-65, if it is a branch-type instruction, we send information back to the BTB
about what really happened.

10.7 Direction predictors

Conceptually, a direction predictor for a branch instruction is just a boolean (1 bit) that says
whether the branch was taken or not. Unfortunately, using just 1 bit is fragile. Consider
the branch for a loop-exit in a loop with 1000 iterations. For 999 iterations, it branches one
way (stays in the loop), and the last iteration branches the other way (exits the loop). If we
remember just 1 bit of information, we will only remember the exit direction, even though
the probability is 0.999 in the other direction. This can be rectified by incorporating a little
hysteresis into the control system. Suppose we remember 2 bits of information, treating it

10-10 Ch 10: Branch Prediction (DRAFT)

Figure 10.8: 2 bits to remember branch direction

as a 2-bit saturating counter. Every time we branch one way, we increment the counter, but
we saturate (don’t wrap around) at 3. When we branch the other way, we decrement the
counter, but we saturate (don’t wrap around) at 0. This is illustrated in Fig. 10.8. Now,
it takes 2 mispredictions to change the direction prediction. Of course, this idea could be
generalized to more bits, increasing the hysteresis.

Fig. 10.9 shows a Branch History Table to implement this idea. Note that this cannot
be used any earlier than the Decode stage, because we consult the table only on Branch
opcodes (which become known only in Decode). Again, we use k bits of the PC to index the
table, and again we could use tags (the remaining 32 − k bits of the PC) to disambiguate
due to aliasing. In practice, measurements show that even a 4K-entry BHT, with 2 bits per
entry, can produce 80%-90% correct predictions.

Figure 10.9: The Branch History Table (BHT)

Where does this information for updating the BHT come from? Once again, it comes
from the Execute stage. In the next section, we discuss how multiple predictors, such as
the BTB and BHT, are systematically incorporated into the pipeline.

10.8 Incorporating multiple predictors into the pipeline

Fig. 10.10 shows a sketch of an N-stage pipeline with just one prediction mechanism, the
BTB (the figure only shows N = 3 stages, but the same structure holds for N > 3. In
Execute, if there is an epoch mismatch, we mark the instruction as“poisoned”and send it on.
Semantically, we are “dropping” or “discarding” the instruction, but in the implementation

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 10-11

Figure 10.10: N-stage pipeline, with one predictor (BTB) only

the“poisoned”attribute tells downstream stages to use it only for book-keeping and cleanup,
such as removing it from the scoreboard, and not to let it affect any architectural state.
If there is no epoch mismatch but it is a branch instruction that was mispredicted, then
change the eEpoch. If it is a branch, send the true information back to the Fetch stage.

In Fetch: when it receives a redirect message from Execute, use it to train the BTB,
and to change epoch and redirect PC if necessary.

Fig. 10.11 shows how we incorporate 2 predictors into the pipeline, such as adding the
BHT into the Decode stage. Since this stage, also, can now detect mispredictions, we provide
it with its own epoch register dEpoch which is incremented when this happens. The Fetch
stage now has two registers, feEpoch and fdEpoch which are approximations of Decode’s
dEpoch and Execute’s eEpoch, respectively. Finally, Decode gets a deEpoch register that
is an approximation of Execute’s eEpoch register. In summary: each mispredict-detecting
stage has its own epoch register, and each stage has a register that approximates downstream
epoch registers. In all this, remember that Execute’s redirect information (the truth) should
never be overridden.

Figure 10.11: N-stage pipeline, with two predictors

Fig. 10.12 illustrates how redirection works. The Fetch stage now attaches two epoch
numbers to each instruction it sends downstream, the values from both fdEpoch and
feEpoch. We refer to these values with the instruction as idEp and ieEp, respectively.

The Execute stage behaves as before, comparing the ieEp (on the instruction) with

10-12 Ch 10: Branch Prediction (DRAFT)

Figure 10.12: N-stage pipeline, with two predictors and redirection logic

its eEpoch register. In Decode, if ieEp (on the instruction) is different from its deEpoch

register, then it now learns that the Execute stage has redirected the PC. In this case, it
updates both its epoch registers dEpoch and deEpoch from the values on the instruction,
idEp and ieEp, respectively. Otherwise, if idEp (on the instruction) is different from its
dEpoch register, then this is a wrong-path instruction with respect to on one of its own
redirections, and so it drops the instruction. For non-dropped instructions, if the predicted
PC on the instruction differs from its own prediction (using the BHT), it updates its dEpoch
register and sends the new information to the Fetch stage.

The Fetch stage can now receive redirect messages from both the Execute and Decode
stages. Messages from Execute are treated as before. For a message from Decode, if ideEp 6=
feEpoch, then this is a message about a wrong-path instruction, so we ignore this message.
Otherwise, we respond to the message by redirecting the PC and updating fdEpoch.

10.8.1 Extending our BSV pipeline code with multiple predictors

Now that we understand the architectural ideas behind incorporating multiple predictors
in the pipeline, let us modify our BSV code for the pipeline accordingly. We shall work
with a 4-stage pipeline, F (Fetch), D&R (Decode and Register Read), E&M (Execute and
Memory), and W (Writeback). This version will have no predictor training, so messages
are sent only for redirection.

2-stage pipeline with BTB
1 module mkProc (Proc);

2 Reg#(Addr) pc <- mkRegU;

3 RFile rf <- mkBypassRFile;

4 IMemory iMem <- mkIMemory;

5 DMemory dMem <- mkDMemory;

6 Fifo#(1, Decode2Execute) d2e <- mkPipelineFifo;

7 Fifo#(1, Exec2Commit) e2c <- mkPipelineFifo;

8 Scoreboard#(2) sb <- mkPipelineScoreboard;

9 // ---- NEW section begin
10 Reg#(Bool) feEp <- mkReg(False);

11 Reg#(Bool) fdEp <- mkReg(False);

12 Reg#(Bool) dEp <- mkReg(False);

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 10-13

13 Reg#(Bool) deEp <- mkReg(False);

14 Reg#(Bool) eEp <- mkReg(False);

15 Fifo#(ExecRedirect) execRedirect <- mkBypassFifo;

16 Fifo#(DecRedirect) decRedirect <- mkBypassFifo;

17 AddrPred#(16) addrPred <- mkBTB;

18 DirPred#(1024) dirPred <- mkBHT;

19 // ---- NEW section end
20

21 rule doFetch;

22 let inst = iMem.req(pc);

23 if (execRedirect.notEmpty) begin

24 feEp <= !feEp;

25 pc <= execRedirect.first.newPc;

26 execRedirect.deq;

27 end

28 else if (decRedirect.notEmpty) begin

29 if (decRedirect.first.eEp == feEp) begin

30 fdEp <= ! fdEp;

31 pc <= decRedirect.first.newPc;

32 end

33 decRedirect.deq;

34 end

35 else begin

36 let ppc = addrPred.predPc (pc); // NEW
37 f2d.enq (Fetch2Decoode {pc: pc, ppc: ppc, inst: inst,

38 eEp: feEp, dEp: fdEp}); // NEW
39 end

40 endrule

41

42 function Action decAndRegFetch(DInst dInst, Addr pc, Addr ppc, Bool eEp);

43 action

44 let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2)

45 || sb.search3(dInst.dst); // WAW hazard check

46 if (!stall) begin

47 let rVal1 = rf.rd1 (validRegValue (dInst.src1));

48 let rVal2 = rf.rd2 (validRegValue (dInst.src2));

49 d2e.enq (Decode2Execute {pc: pc, ppc: ppc,

50 dInst: dInst, epoch: eEp,

51 rVal1: rVal1, rVal2: rVal2});

52 sb.insert (dInst.rDst);

53 end

54 endaction

55 endfunction

56

57 rule doDecode;

58 let x = f2d.first; let inst = x.inst; let pc = x.pc;

59 let ppc = x.ppc; let idEp = x.dEp; let ieEp = x.eEp;

60 let dInst = decode(inst);

10-14 Ch 10: Branch Prediction (DRAFT)

61 let newPc = dirPrec.predAddr(pc, dInst);

62 if (ieEp != deEp) begin // change Decode’s epochs and

63 // continue normal instruction execution

64 deEp <= ieEp; let newdEp = idEp;

65 decAndRegRead (inst, pc, newPc, ieEp);

66 if (ppc != newPc) begin

67 newDEp = !newdEp;

68 decRedirect.enq (DecRedirect {pc: pc,

69 newPc: newPc, eEp: ieEp});

70 end

71 dEp <= newdEp

72 end

73 else if (idEp == dEp) begin

74 decAndRegRead (inst, pc, newPc, ieEp);

75 if (ppc != newPc) begin

76 dEp <= !dEp;

77 decRedirect.enq (DecRedirect {pc: pc,

78 newPc: newPc, eEp: ieEp});

79 end

80 end

81 f2d.deq;

82 endrule

83

84 rule doExecute;

85 let x = d2e.first;

86 let dInst = x.dInst; let pc = x.pc;

87 let ppc = x.ppc; let epoch = x.epoch;

88 let rVal1 = x.rVal1; let rVal2 = x.rVal2;

89 if (epoch == eEpoch) begin

90 let eInst = exec (dInst, rVal1, rVal2, pc, ppc);

91 if (eInst.iType == Ld)

92 eInst.data <- dMem.req (MemReq {op:Ld, addr:eInst.addr, data:?});

93 else if (eInst.iType == St)

94 let d <- dMem.req (MemReq {op:St, addr:eInst.addr, data:eInst.data});

95 e2c.enq (Exec2Commit {dst:eInst.dst, data:eInst.data});

96 if (eInst.mispredict) begin

97 execRedirect.enq (eInst.addr);

98 eEpoch <= !eEpoch;

99 end

100 end

101 else

102 e2c.enq (Exec2Commit {dst:Invalid, data:?});

103 d2e.deq;

104 endrule

105

106 rule doCommit;

107 let dst = eInst.first.dst;

108 let data = eInst.first.data;

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 10-15

109 if (isValid (dst))

110 rf.wr (validValue(dst), data);

111 e2c.deq;

112 sb.remove;

113 endrule

Lines 10-19 instantiate all the new modules and state needed for the predictors. Line
38, in the Fetch rule, attaches two epoch values to each instruction sent downstream. Lines
62-80 in the Decode rule perform the decode-stage prediction that we just described. They
use the function shown on lines 42-55. The Execute and Commit rules are completely
unchanged from before.

10.9 Conclusion

This chapter has again shown the value of thinking about processor pipelines as distributed
systems (logically independent units communicating with messages) instead of as a globally
synchronous state machine. Trying to manage the complex concurrency issues around mul-
tiple branch predictors by thinking about the pipeline as a globally synchronous machine
can be very difficult and error-prone. The concept of epochs, distributed approximations of
the epoch, and messages whose exact latency does not affect correctness, allow us to design
a solution that is clean and modular, and whose correctness is easier to reason about.

10-16 Ch 10: Branch Prediction (DRAFT)

Chapter 11

Exceptions

11.1 Introduction

Interrupts, traps and exceptions are “infrequent” events that occur unpredictably during
normal instruction execution. These could be synchronous or asynchronous. Synchronous
exceptions occur due to some problem during a particular instruction’s execution: unde-
fined opcodes, privileged instructions attempted in user mode, arithmetic overflows, divide
by zero, misaligned memory accesses, page faults, TLB misses, memory access protection
violations, traps into the OS kernel, and so on. Asynchronous exceptions occur due to
some external event requiring the processor’s attention: timer expiry, signal for an event of
interest in an I/O device, hardware failures, power failures, and so on.

Figure 11.1: Instruction flow on an interrupt

When such an interrupt occurs, the normal flow of instructions is temporarily suspended,
and the processor executes code from a handler. This is illustrated in Fig. 11.1. When the
handler completes, the processor resumes the interrupted normal flow. Of course, we must
take care that handler execution does not disturb the architectural state of the normal flow,
so that it can be resumed cleanly.

11-1

11-2 Ch 11: Exceptions (DRAFT)

11.2 Asynchronous Interrupts

An asynchronous interrupt is typically initiated by an external device (such as a timer or
I/O device) by asserting one of the prioritized interrupt request lines (IRQs) to get the
processor’s attention. The processor may not respond immediately, since it may be in the
middle of a critical task (perhaps even in the middle of responding to a previous interrupt).

Most ISAs have a concept of precise interrupts, i.e., even though the processor may
have a deep pipeline with many instructions simultaneously in flight, even though it may
be executing instructions in superscalar mode or out of order, there is always a well-defined
notion of the interrupt occurring precisely between two instructions Ij−1 and Ij such that it
is as if Ij−1 has completed and updated its architectural state, and Ij has not even started.

When the interrupt occurs, the processor saves the PC of instruction Ij in a special
register, epc. It disables further interrupts, and jumps to a designated interrupt handler
and starts running in kernel mode. Disabling is typically done by writing to an interrupt
mask register which has a bit corresponding to each kind of interrupt or each external
interrupt line; when a bit here is 0, the processor ignores interrupts from that source.
Kernel mode (also sometimes called supervisor mode or privileged mode) is a special mode
allowing the processor full access to all resources on the machine; this is in contrast to user
mode, which is the mode in which normal application code is executed, where such accesses
are prohibited (by trapping if they are attempted). Most ISAs have this kernel/user mode
distinction for protection purposes, i.e., it prevents ordinary application programs from
accessing or damaging system devices or other application programs that may be time
multiplexed concurrently by the operating sytem.

At the speeds at which modern processors operate, interrupts are a major disruption to
pipelined execution, and so raw speed of interrupt handling is typically not of paramount
concern.

11.2.1 Interrupt Handlers

In effect, the processor is redirected to a handler when an interrupt occurs. What is the PC
target for this redirection? In some machines it is a known address fixed by the ISA. Other
machines have an interrupt vector at a known address, which is an array of redirection PCs.
When an interrupt occurs, the kind and source of the interrupt indicate an index into this
array, from which the processor picks up the redirection PC.

Once the PC has been redirected and the handler starts executing, it saves the epc

(the PC of the instruction to resume on handler completion). For this, the ISA has an
instruction to move the epc into a general purpose register. At least this much work must
be done before the handler re-enables interrupts in order to handle nested interrupts. The
ISA typically also has a status register that indicates the cause or source of the interrupt,
so that the handler can respond accordingly.

On handler completion, it executes a special indirect jump instruction ERET (return
from exception) which:

• enables interrupts,
• restores the processor to user mode from kernel mode, and

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 11-3

• restores the hardware status and control state so that instruction resumes where it left
off at the interrupted instruction.

11.3 Synchronous Interrupts

A synchronous interrupt is caused by a particular instruction, and behaves like a control
hazard, i.e., the PC has to be redirected and instructions that follow in the normal flow
that are already in the pipeline have to be dropped, just like wrong-path instructions after
a misprediction. As mentioned before, the ISA defines a special register epc in which the
processor stores PC+4 of the interrupted instruction, and a special ERET instruction to
return to normal operation after an exception handler.

Synchronous interrupts come in two flavors:

• Exceptions: The instruction cannot be completed (e.g., due to a page fault) and needs
to be restarted after the exception has been handled.

• Faults or Traps: These are like system calls, i.e., deliberate calls into kernel mode
routines, and the instruction is regarded as completed.

11.3.1 Using synchronous exceptions to handle complex and infrequent
instructions

Synchronous exceptions offer an alternative implementation for complex or infrequent in-
structions. For example, some processors do not implement floating point operations in
hardware, because of their complexity in hardware. In such an implementation, an instruc-
tion like:

mult ra, rb

causes an exception, and the handler implements a floating point multiplication algorithm in
software. When the instruction is encountered, PC+4 is stored in epc, the handler performs
the multiplication and returns using ERET, and execution continues at PC+4 as usual.

11.3.2 Incorporating exception handling into our single-cycle processor

We need to extend many of our interfaces to express exception-related information wherever
necessary, in addition to the normal information. For example, a memory request will now
return a 2-tuple, {memory response, memory exception}. Our instruction definitions are
extended for instructions like eret and mult, and so on.

New instructions for exceptions
1 typedef enum {Unsupported, Alu, Ld, St, J, Jr, Br, Mult, ERet }

2 IType

3 deriving (Bits, Eq);

Decode has to be extended to handle the new opcodes:

11-4 Ch 11: Exceptions (DRAFT)

Decode
1 Bit#(6) fcMULT = 6’b011000; // mult opcode

2 Bit#(5) rsERET = 5’b10000; // eret opcode

3

4 function DecodedInst decode(Data Inst);

5 DecodedInst dInst = ?;

6 ...

7 case

8 ...

9 opFUNC: begin

10 case (funct)

11 ...

12 fcMULT:

13 dInst.iType = Mult;

14 dInst.brFunc = AT;

15 dInst.rDst = Invalid;

16 dInst.rSrc1 = validReg (rs);

17 dInst.rSrc2 = validReg (rt);

18 end

19 opRS: begin

20 ...

21 if (rs==rsERET) begin

22 dInst.iType = ERet;

23 dInst.brFunc = AT;

24 dInst.rDst = Invalid;

25 dInst.rSrc1 = Invalid;

26 dInst.rSrc2 = Invalid;

27 end

28 end

29 endcase

30 return dInst;

31 endfunction

We modify the code for branch address calculation to hande ERet and to redirect Mult to
its software handler:

Branch address calculation
1 function Addr brAddrCalc (Addr pc, Data val,

2 IType iType, Data imm, Bool taken, Addr epc);

3 Addr pcPlus4 = pc + 4;

4 Addr targetAddr =

5 case (iType)

6 J : pcPlus4[31:28], imm[27:0];

7 Jr : val;

8 Br : (taken? pcPlus4 + imm : pcPlus4);

9 Mult: h’1010; // Address of multiplication handler

10 ERet: epc;

11 Alu, Ld, St, Unsupported: pcPlus4;

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 11-5

12 endcase;

13 return targetAddr;

14 endfunction

In the code for instruction execution, we pass epc as an additional argument to the branch
address calculator:

Instruction execution
1 function ExecInst exec (DecodedInst dInst, Data rVal1,

2 Data rVal2, Addr pc, Addr epc);

3 ...

4 let brAddr = brAddrCalc (pc, rVal1, dInst.iType,

5 validValue(dInst.imm), brTaken, epc); ...

6 eInst.brAddr = ... brAddr ...;

7 ...

8 return eInst;

9 endfunction

In the Execute rule, we load epc if it is mult instruction:

Execute rule
1 rule doExecute;

2 let inst = iMem.req (pc);

3 let dInst = decode (inst);

4 let rVal1 = rf.rd1 (validRegValue (dInst.src1));

5 let rVal2 = rf.rd2 (validRegValue (dInst.src2));

6 let eInst = exec (dInst, rVal1, rVal2, pc, epc);

7 if (eInst.iType == Ld)

8 eInst.data <- dMem.req (MemReq {op: Ld, addr:

9 eInst.addr, data: ?});

10 else if (eInst.iType == St)

11 let d <- dMem.req (MemReq {op: St, addr:

12 eInst.addr, data: eInst.data});

13 if (isValid (eInst.dst))

14 rf.wr (validRegValue (eInst.dst), eInst.data);

15 pc <= eInst.brTaken ? eInst.addr : pc + 4;

16 if (eInst.iType == Mult) epc <= eInst.addr;

17 endrule

With these changes, our single-cycle implementation handles exceptions.

11.4 Incorporating exception handling into our pipelined pro-
cessor

Fig. 11.2 shows that synchronous exceptions can be raised at various points in the pipeline.
In Fetch, the PC address may be invalid or we may encounter a page fault. In Decode, the

11-6 Ch 11: Exceptions (DRAFT)

Figure 11.2: Synchronous interrupts raised at various points in the pipeline

opcode may be illegal or unimplemented. In Execute, there may be an overflow, or a divide
by zero. In Memory, the data address may be invalid or we may encounter a page fault.

In fact, a single instruction can raise multiple exceptions as it passes through the pipeline.
If so, which one(s) should we handle? This will be specified in the ISA (which makes
no mention of the implementation question of pipelining). In an ISA, an instruction’s
functionality is often described in pseudocode, and this will provide a precise specifcation
of which potential exceptions should be handled, and in what order. Normally, this order
will correspond to the upstream-to-downstream order in implementation pipelines.

In the pipeline, if multiple instructions raise exceptions, which one(s) should we process?
This is an easier question, since the ISA is specified with one instruction-at-a-time execution:
clearly we should handle the exception from the oldest instruction in the pipeline.

Figure 11.3: Exception handling in the processor pipeline

Fig. 11.3 illustrates that, in addition to the normal values carried down the pipeline (top
of diagram), we must also carry along exception information and the PC of the instruction
causing the exception (bottom of diagram). Further, we must have the ability to kill younger
instructions.

In order to implement the idea of precise exceptions, we do not “immediately” respond
to an exception; we carry the information along with the instruction until the final Commit
stage, where instruction ordering is finally resolved. Remember also that the exception may
be raised by an instruction that is later discovered to be a wrong-path instruction, in which
case we should ignore it as part of killing that instruction; these questions are resolved when

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 11-7

we reach the final Commit stage. Similarly, we can also inject external interrupts in the
Commit stage, where we have precise knowledge of actual instruction ordering; in this case,
we kill all instructions that logically follow the injection point.

Figure 11.4: Redirection logic in the processor pipeline

Other than these exception-specific features, an exception raised in stage j is just like
discovering a misprediction in stage j: we use the same epoch mechanisms and kill/poison
mechanisms that we saw in dealing with control hazards in Chapter 6 to deal with redirection
and instruction-dropping. This is sketched in Fig. 11.4. Every instruction carries along three
pieces of information (amongst other things):

• epoch: the global epoch number with which it entered the pipeline
• poisoned: a boolean indicating whether a previous stage has already declared that this

instruction should be dropped
• cause: if a previous stage raised an exception, this contains the cause

Each stage contains a local epoch register stageEp.

Each stage pseudocode
1 if (poisoned || epoch < stageEp)

2 pass through <epoch:epoch, poisoned:True, cause:?, ...>

3 else

4 if (cause == None)

5 local_cause <- do stage work

6 pass <epoch:epoch, poisoned:False, cause:local_cause, ...>

7 else

8 local_cause = False;

9 pass <epoch:epoch, poisoned:False, cause:cause, ...>

10 stageEp <= ((local_cause != None) ? (epoch+1) : epoch);

11

If an exception makes it successfully into the Commit stage, then we store the informa-
tion in the cause and epc registers, and redirect Fetch to the exception handler.

Commit stage pseudocode
1 if (! poisoned)

2 if ((cause != None) || mispredict)

3 redirect.enq (redirected PC)

11-8 Ch 11: Exceptions (DRAFT)

Let us revisit the question of the size (bit-width) of the epoch values. We need to
distinguish 3 cases:

• <: represents a wrong-path instruction
• =: represents a normal instruction
• >: represents a normal path instruction where a later stage caused a redirect

Thus, 3 values are enough, so 2 bits are enough.

11.4.1 BSV code for pipeline with exception handling

Figure 11.5: 4 stage pipeline in which we add exception handling

In the rest of this chapter we present code for a pipeline with exception handling. As
a baseline, we take the 4-stage pipeline illustrated in Fig. 11.5: Fetch (F), Decode and
Register Read (D&R), Execute and Memory (E&M), and Writeback (W). It has a single
branch predictor and no training, i.e., messages are only sent for redirection. We also
integrate Instruction and Data memories. Because (for the moment) we take these to have
zero-latency (combinational) reads, we balance the corresponding part of the pipeline with
BypassFIFOs as shown in the figure.

Pipeline with exception handling
1 module mkProc(Proc);

2 Reg #(Addr) pc <- mkRegU;

3 Rfile rf <- mkBypassRFile;

4 Cache #(ICacheSize) iCache <- mkCache;

5 Cache #(DCacheSize) dCache <- mkCache;

6

7 FIFO #(1, Fetch2Decode) f12f2 <- mkBypassFifo;

8 FIFO #(1, EInst) e2m <- mkBypassFifo;

9 FIFO #(1, Decode2Execute) d2e <- mkPipelineFifo;

10 FIFO #(1, Exec2Commit) e2c <- mkPipelineFifo;

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 11-9

11

12 Scoreboard #(2) sb <- mkPipelineScoreboard;

13

14 Reg #(Epoch) globalEp <- mkReg(False);

15 FIFO #(ExecRedirect) execRedirect <- mkBypassFifo;

16 AddrPred #(16) addrPred <- mkBTB;

17

18 Reg #(Epoch) fEp <- mkReg(False); // Present in 2nd fetch stage

19 Reg #(Epoch) dEp <- mkReg(False);

20 Reg #(Epoch) eEp <- mkReg(False);

21 Reg #(Epoch) mEp <- mkReg(False); // Present in 2nd execute stage

22

23 rule doFetch1;

24 if (execRedirect.notEmpty) begin

25 globalEp <= next(globalEp);

26 pc <= execRedirect.first.newPc;

27 execRedirect.deq;

28 end

29 else begin

30 iCache.req (MemReq {op: Ld, addr: pc, data:?});

31 let ppc = addrPred.predPc (pc);

32 f12f2.enq (Fetch2Decode {pc: pc, ppc: ppc, inst: ?,

33 cause: None, epoch: globalEp});

34 end

35 endrule

36

37 rule doFetch2;

38 match inst, mCause <- iCache.resp;

39 f12f2.deq;

40 let f2dVal = f12f2.first;

41 if (lessThan (f2dVal.epoch, fEp)) begin

42 /* discard */

43 end

44 else begin

45 f2dVal.inst = inst;

46 f2dVal.cause = mCause;

47 f2d.enq (f2dVal);

48 if (mCause != None)

49 fEp <= next (fEp);

50 end

51 endrule

52

53 rule doDecode;

54 let x = f2d.first;

55 let inst = x.inst;

56 let cause = x.cause;

57 let pc = x.pc;

58 let ppc = x.ppc;

11-10 Ch 11: Exceptions (DRAFT)

59 let epoch = x.epoch;

60 if (lessThan (epoch, dEp)) begin

61 /* discard */

62 end

63 else

64 if (cause != None) begin

65 d2e.enq (Decode2Execute {pc: pc, ppc: ppc,

66 dInst: ?, cause: cause, epoch: epoch,

67 rVal1: ?, rVal2: ?});

68 dEp <= epoch;

69 end

70 else begin

71 // Not poisoned and no exception in the previous stage
72 match dInst, dCause = decode(inst);

73 let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2)

74 || sb.search3(dInst.dst);

75 if (dCause != None) begin

76 d2e.enq (Decode2Execute {pc: pc, ppc: ppc,

77 dInst: ?, cause: dCause,

78 epoch: epoch,

79 rVal1: ?, rVal2: ?});

80 dEp <= next(epoch);

81 end

82 else if (!stall) begin

83 let rVal1 = rf.rd1 (validRegValue(dInst.src1));

84 let rVal2 = rf.rd2 (validRegValue(dInst.src2));

85 d2e.enq (Decode2Execute {pc: pc, ppc: ppc,

86 dInst: dInst, cause: dCause,

87 epoch: epoch,

88 rVal1: rVal1, rVal2: rVal2});

89 dEp <= epoch;

90 sb.insert(dInst.rDst);

91 end

92 end

93 f2d.deq;

94 endrule

95

96 // pc redirect has been moved to the Commit stage where exceptions are resolved
97 rule doExecute1;

98 let x = d2e.first;

99 let dInst = x.dInst;

100 let pc = x.pc;

101 let ppc = x.ppc;

102 let epoch = x.epoch;

103 let rVal1 = x.rVal1;

104 let rVal2 = x.rVal2;

105 let cause = x.cause;

106 if (lessThan (epoch, eEpoch))

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 11-11

107 e2m.enq (EInst {pc: pc, poisoned: True});

108 else begin

109 if (cause != None) begin

110 eEp <= epoch;

111 e2m.enq (EInst {pc: pc, poisoned: False, cause: cause});

112 end

113 else begin

114 let eInst = exec (dInst, rVal1, rVal2, pc, ppc);

115 e2m.enq (eInst);

116 if (eInst.cause == None) begin

117

118 // Memory operations should be done only for non-exceptions
119 // and non-poisoned instructions (next slide)
120 if (eInst.iType == Ld)

121 dCache.req (MemReq {op:Ld, addr:eInst.addr, data:? });

122 else if (eInst.iType == St)

123 dCache.req (MemReq {op:St,addr:eInst.addr,

124 data:eInst.data});

125

126 if (eInst.mispredict)

127 eEp <= next(epoch);

128 else

129 eEp <= epoch;

130 end

131 else

132 eEp <= next(epoch);

133 end

134 end

135 d2e.deq;

136 endrule

137

138 // Data Memory response stage
139 rule doExecute2;

140 let x = e2m.first;

141 let eInst = x.eInst;

142 let poisoned = x.poisoned;

143 let cause = x.cause;

144 let pc = x.pc;

145 let epoch = x.epoch;

146 if (poisoned || lessThan (epoch,mEp)) begin

147 eInst.poisoned = True;

148 e2c.enq (Exec2Commit {eInst: eInst, cause: ?, pc: ?, epoch: ?});

149 end

150 else begin

151 if (cause != None) begin

152 mEp <= epoch;

153 e2c.enq (Exec2Commit {eInst:eInst,cause:cause,

154 pc:pc,epoch:epoch});

11-12 Ch 11: Exceptions (DRAFT)

155 end

156 else begin

157 if (eInst.iType == Ld || eUbst.iType == St) begin

158 match data, mCause <- dCache.resp; eInst.data = data;

159 if (mCause == None)

160 mEp <= epoch;

161 else

162 mEp <= next(epoch);

163 e2c.enq (Exec2Commit {eInst:eInst, cause:mCause, pc:pc});

164 end

165 else begin

166 mEp <= epoch;

167 e2c.enq (Exec2Commit {eInst:eInst, cause:None, pc:pc});

168 end

169 end

170 endrule

171

172 rule doCommit;

173 let x = e2c.first;

174 let cause = x.cause;

175 let pc = x.pc;

176 e2c.deq;

177 if (! (iMemExcep (cause) || iDecodeExcep (cause)))

178 sb.remove;

179 if (! x.eInst.poisoned) begin

180 if (cause == None) begin

181 let y = validValue (x.eInst);

182 let dst = y.dst;

183 let data = y.data;

184 if (isValid (dst))

185 rf.wr (tuple2 (validValue (dst), data);

186 if (eInst.mispredict)

187 execRedirect.enq(eInst.addr);

188 end

189 else begin

190 let newpc = excepHandler (cause);

191 eret <= pc;

192 execRedirect.enq (newpc);

193 end

194 end

195 endrule

196 endmodule

Chapter 12

Caches

12.1 Introduction

Figure 12.1: 4 stage pipeline

Fig. 12.1 recaps our 4-stage pipeline structure from previous chapters. So far, we have
just assumed the existence of an Instruction Memory and a Data Memory which we can
access with zero delay (combinationally). Such “magic” memories were useful for getting
started, but they are not realistic.

Figure 12.2: Simple memory model

12-1

12-2 Ch 12: Caches (DRAFT)

Fig. 12.2 shows a model of one of these simple memories. When an address is presented
to the module, the data from the corresponding location is available immediately on the
ReadData bus. If WriteEnable is asserted, then the WriteData value is immediately written
to the corresponding address. In real systems, with memories of realistic sizes and a realistic
“distance” from the processor, reads and writes can take many cycles (even 100s to 1000s
of cycles) to complete.

Figure 12.3: A memory hierarchy

Unfortunately it is infeasible to build a memory that is simultaneously large (capacity),
fast (access time) and consumes low power. As a result, memories are typically organized
into hierarchies, as illustrated in Fig. 12.3. The memory “near” the processor is typically
an SRAM (Static Random Access Memory), with limited capacity and high speed. This
is backed up by a much larger (and slower) memory, usually in DRAM (Dynamic RAM)
techology. The following table gives a general comparison of of their properties (where <<
means “much less than”):

size (capacity in bytes): RegFile << SRAM << DRAM
density (bits/mm2): RegFile << SRAM << DRAM

latency (read access time): RegFile << SRAM << DRAM
bandwidth (bytes per second): RegFile >> SRAM >> DRAM

power consumption (watts per bit): RegFile >> SRAM >> DRAM

This is because, as we move from RegFiles to SRAMs to DRAMs, we use more and more
highly specialized circuits for storage, and to multiplex data in and out of the storage arrays.

The idea of a cache is that we use fast (low latency), nearby memory as a temporary
container for a subset of the memory locations of interest. When we want to read an address,
if it is in the cache (a “hit”), we get the data quickly. If it is not in the cache (a “miss”),
we must first invoke a process that brings that address from the backing memory into the
cache, which may take many cycles, before we can service the original request. To do this
we may also need to throw out or write back something else from the cache to the backing
memory (which raises the question: which current item in the cache should we choose to
replace with the new one?).

If, in a series of n accesses, most of them hit in the cache (we call this a high “hit rate”),
then the overhead of processing a few misses is amortized over the many hits. Fortunately,
most programs exhibit both spatial locality and temporal locality, which leads to high hit
rates. Spatial locality means that if a program accesses an address A, it is likely to access
nearby addresses (think of successive elements in an array, or fields in a struct, or sequences

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 12-3

of instructions in instruction memory). Temporal locality means that much data is accessed
more than once within a short time window (think of an index variable in a loop).

When we want to write an address, we are again faced with various choices. If that
location is currently cached (a “write hit”), we should of course update it in the cache, but
we could also immediately send a message to the backing memory to update its original
copy; this policy is called Write-through. Alternatively, we could postpone updating the
original location in backing memory until this address must be ejected from the cache (due
to the need to use the space it occupies for some other cache line); this policy is called
Writeback.

When writing, if the location is not currently cached, we could first bring the location
into the cache and update it locally; this policy is called Write-allocate. Alternatively,
we could just send the write to backing memory; this policy is called Write-no-allocate or
Write-around.

Figure 12.4: Sketch of the information in a cache

Fig. 12.4 illustrates the key information held in a cache. Each entry (each row shown)
has an address tag, identifying to which (main memory) address A this entry corresponds.
Along with this is a cache line, which is a vector of bytes corresponding to addresses A,
A+ 1, A+ 2, ..., A+ k− 1 for some small fixed value of k. For example, a modern machine
may have cache lines of 64 bytes. There are several reasons for holding data in cache-line-
sized chunks. First, spatial and temporal locality suggest that when one word of the cache
line is accessed, the other words are likely to be accessed soon. Second, the cost of fetching
a line from main memory is so high that it’s useful to amortize it over larger cache lines,
and the buses and interconnects to memory are often more efficient in transporting larger
chunks of data. Finally, The larger the cache line, the fewer things to search for in the cache
(resulting in smaller tags, for example).

Conceptually, a cache is an associative or content-addressable memory, i.e., to retrieve
an entry with main memory address A we must search the cache for the entry with the
address tag of A. A common software example of such a structure is a hash table. This
poses an engineering challenge: it is not easy to build large and fast associative memories
(we typically want a response in just 1 cycle if it is a cache hit). Solutions to this problem
are the subject of this chapter.

12-4 Ch 12: Caches (DRAFT)

Cache misses are usually classified into three types:

• Compulsory misses: The first time a cache line is accessed, it must be a miss, and it
must be brought from memory into the cache. On large, long-running programs (billions
of instructions), the penalty due to compulsory misses becomes insignificant.
• Capacity misses: This is a miss on a cache line that used to be in the cache but was

ejected to make room for some other line, and so had to be retrieved again from backing
memory.
• Conflict misses: Because large, fast, purely associative memories are difficult to build,

most cache organizations have some degree of direct addressing using some of the bits
of the candidate address. In this case, two addresses A1 and A2, where those bits are
the same, may map into the same “bucket” in the cache. If A1 is in the cache and we
then want to read A2, we may have to eject A1, which may then be required again later;
such a miss is called a conflict miss.

12.2 Cache organizations

Large, fast, purely associative memories are difficult to build. Thus, most caches compromise
by incorporating some degree of direct addressing, using some of the bits of the target
address as a direct address of the cache memories. Direct addressing and associative lookup
can be mixed to varying degrees, leading to the following terminology:

• Direct-Mapped caches only use direct addressing. Some subset of the bits of the
original address (typically the lower-order bits) are used directly as an address into
the cache memory. Different addresses where the subset of bits have the same value
will collide in the cache; only one of them can be held in the cache.

• N -way Set-Associative caches first, like direct-mapped caches, use some of the address
bits directly to access the cache memory. However, the addressed location is wide
enough to hold N entries, which are searched associatively. For different addresses
where the subset of bits have the same value, N of them can be held in the cache
without a collision.

Fig. 12.5 illustrates the organization of a direct-mapped cache. We use k bits (called the
Index field) of the original address directly to address the 2k locations of the cache memory.
In that entry, we check the Valid bit (V); if invalid, the entry is empty, and we have a miss.
If full, we compare the t bits of the Tag field of the address with the t bits of the Tag field
of the entry, to see if it is for the same address or for some other address that happens to
map to the same bucket due to having the same Index bits. If it matches, then we have a
hit, and we use the b bits of the Offset field of the original address to extract the relevant
byte(s) of the cache line.

Fig. 12.6 illustrates how we could have swapped the choice of t and k bits for the Index
and Tag from the original address. In fact, any partitioning of the top t + k bits into t and
k bits would work. But it is hard to say which choice will result in a higher hit rate, since
it depends on how programs and data are laid out in the address space.

Fig. 12.7 illustrates a 2-way set-associative cache. From a lookup point of view, it is
conceptually like two direct-mapped caches in parallel, and the target may be found on

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 12-5

Figure 12.5: Direct-mapped cache organization

Figure 12.6: Choice of which bits to use in a direct mapped cache

Figure 12.7: 2-way set-associative cache organization

12-6 Ch 12: Caches (DRAFT)

either side. This can, of course, easily be generalized in principle to wider (4-way, 8-way,
...) associativity. But note that it costs more hardware: in particular, more comparators to
test all k candidates in parallel.

The k entries at each location in the cache truly form a set, i.e., we will be careful not to
place duplicates in these entries, so that they represent distinct addresses, and do not waste
cache resources. Thus, set-associativity is likely to improve the hit rate for the program,
and thereby improve average memory access time which, in turn, should improve program
performance. The average access time is given by the formula:

average acces time = hit probability × hit time + miss probability × miss time

12.2.1 Replacement policies

When a new cache line is to be brought in, usually it is necessary to eject another to make
room for it. Which one should we eject? For direct-mapped caches, there is no choice—
there is precisely one candidate entry. For k-way set-associative caches, we must choose one
of the k candidates. There are many policies used in practice:

• Prefer lines that are “clean”, i.e., lines that have been not been updated in the cache,
and so are identical to the copy in backing store, and so can simply be thrown away. The
complementary “dirty” lines must incur the overhead of writing them back to backing
memory. Note that in Harvard architectures (where we do not dynamically modify
code), cache lines in the instruction cache are always clean.
• A “fair” choice policy that does not always favor some members of the k-set over others.

Such policies include LRU (Least Recently Used), MRU (Most Recently Used), Ran-
dom, and Round-Robin. There is no “best” policy, since the effectiveness of each policy
depends on how it interacts with the access patterns of a particular program. Only
actual measurements on actual programs can determine what is a good policy choice
(for that set of programs).

12.2.2 Blocking and Non-blocking caches

In some pipelined processors, when a Ld (load) instruction misses in the cache, it is possible
that another Ld instruction following it closely in the pipeline also issues a request to the
cache. What should the cache’s behavior be in this situation?

Blocking caches only service one memory request at a time, i.e., they do not accept
another request until they have completed the response to the previous one. In the case of
a cache miss, this could be a delay of hundreds of cycles while it send a request and waits
for a response from backing memory.

Non-blocking caches continue to accept requests while waiting to handle a miss on a
previous request. These subsequent requests may actually hit in the cache, and the cache
may be able to send that response immediately, out of order. Non-blocking caches typically
have some bound on the number of requests that can simultaneously be in flight.

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 12-7

12.3 A Blocking Cache Design

In this section we will examine a design for a blocking cache with single-word cache lines,
and with writeback and no-write-miss-allocate policies.

Figure 12.8: A cache interface

Fig. 12.8 shows the interface to a cache. In BSV:

Cache interface
1 interface Cache;

2 method Action req (MemReq r);

3 method ActionValue #(Data) resp;

4

5 method ActionValue #(MemReq) memReq;

6 method Action memResp (Line r);

7 endinterface

On the processor side of the cache, the processor sends a memory request (of type
MemReq) to the cache using the req method. It retrieves a response (of type Data) from the
cache using the resp method. On the memory side of the cache, the memory (or the bus)
receives a memory request from the cache by using the memReq method (usually due to a
cache miss), and returns a response to the cache using the memResp method. All methods
are guarded so, for example, the req method will block until the cache yields a response
via the resp method. The memReq will block until the cache is ready to issue a request to
memory. The req to resp path essentially behaves like a 1-element FIFO: until a response
is delivered (“dequeued”), the next request cannot be accepted (“enqueued”).

Figure 12.9: State elements in the cache

Fig. 12.9 shows the state elements of the cache, which are specified in the BSV code for
the cache module, below.

Cache module
1 typedef enum { Ready, StartMiss, SendFillReq, WaitFillResp } CacheStatus

2 deriving (Eq, Bits);

12-8 Ch 12: Caches (DRAFT)

3

4 module mkCache (Cache);

5 // Controls cache state machine

6 Reg #(CacheStatus) status <- mkReg (Ready);

7

8 // The cache memory

9 RegFile #(CacheIndex, Line) dataArray <- mkRegFileFull;

10 RegFile #(CacheIndex, Maybe #(CacheTag)) tagArray <- mkRegFileFull;

11 RegFile #(CacheIndex, Bool) dirtyArray <- mkRegFileFull;

12

13 FIFO #(Data) hitQ <- mkBypassFIFO; // Allows 0-cycle hit responses
14 Reg #(MemReq) missReq <- mkRegU;

15

16 FIFO #(MemReq) memReqQ <- mkCFFIFO;

17 FIFO #(Line) memRespQ <- mkCFFIFO;

18

19 function CacheIndex idxOf (Addr addr) = truncate (addr >> 2);

20 function CacheTag tagOf (Addr addr) = truncateLSB (addr);

21

22 rule startMiss (status == StartMiss);

23 let idx = idxOf (missReq.addr);

24 let tag = tagArray.sub (idx);

25 let dirty = dirtyArray.sub (idx);

26 if (isValid (tag) && dirty) begin // writeback

27 let addr = {validValue(tag), idx, 2’b0};

28 let data = dataArray.sub (idx);

29 memReqQ.enq (MemReq {op: St, addr: addr, data: data});

30 end

31 status <= SendFillReq;

32 endrule

33

34 rule sendFillReq (status == SendFillReq);

35 memReqQ.enq (missReq);

36 status <= WaitFillResp;

37 endrule

38

39 rule waitFillResp (status == WaitFillResp);

40 let idx = idxOf (missReq.addr);

41 let tag = tagOf (missReq.addr);

42 let data = memRespQ.first;

43 dataArray.upd (idx, data);

44 tagArray.upd (idx, tagge Valid tag);

45 dirtyArray.upd (idx, False);

46 hitQ.enq (data);

47 memRespQ.deq;

48 status <= Ready;

49 endrule

50

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 12-9

51 method Action req (MemReq r) if (status == Ready);

52 let idx = idxOf (r.addr);

53 let hit = False;

54 if (tagArray.sub (idx) matches tagged Valid .currTag

55 &&& currTag == tagOf (r.addr))

56 hit = True;

57 if (r.op == Ld) begin

58 if (hit)

59 hitQ.enq (dataArray.sub (idx));

60 else begin

61 missReq <= r;

62 status <= StartMiss;

63 end

64 end

65 else begin // It is a store request

66 if (hit) begin

67 dataArray.upd(idx, r.data);

68 dirtyArray.upd (idx, True); // for a 1-word cache line

69 end

70 else

71 memReqQ.enq(r); // write-miss no allocate

72 end

73 endmethod

74

75 method ActionValue#(Data) resp;

76 hitQ.deq;

77 return hitQ.first;

78 endmethod

79

80 method ActionValue#(MemReq) memReq;

81 memReqQ.deq;

82 return memReqQ.first;

83 endmethod

84

85 method Action memResp (Line r);

86 memRespQ.enq(r);

87 endmethod

88 endmodule

The cache behavior is a state machine that normally rests in the Ready state. On a
miss, it goes into the StartMiss state, sending a fill request (and possibly a writeback) to
memory. It waits for the response in the WaitFillResp state. When the response arrives,
it performs final actions, including sending a response to the processor, and returns to the
Ready state. The type for this state is defined on lines 1 and 2.

The cache memory itself is implemented on lines 9-11 using mkRegFileFull for peda-
gogical convenience; more realistically, it would be implemented with an SRAM module.
The hitQ on line 13 is a BypassFIFO to enable a 0-cycle (combinational) response on hits.

12-10 Ch 12: Caches (DRAFT)

More realistic caches typically do not give a 0-cycle response, in which case this can become
an ordinary FIFO or a PipelineFIFO.

The memory request and response FIFOs on lines 16-17 are conflict-free FIFOs because
they totally isolate the cache from the external memory system, and they are in any case
not performance-critical. The two functions on lines 19-20 are just convenience functions
to extract the appropriate bits from index and tag bits of an address.

The req method only accepts requests in the Ready state. It tests for a hit on lines
54-55 by indexing the tag array, checking that it is valid, and checking that the entry’s tag
matches the tag of the address. Line 59 handles a hit for a Load request; the response
is entered in hitQ. Lines 61-62 start the miss-handling state machine. Line 67-68 handle
Store requests that hit. The data is stored in the cache entry and the entry is marked dirty
(remember, we are implementing a writeback policy, and so this write is not communicated
to memory until the line is ejected). This example code assumes one Data word per cache
line; for longer cache lines, we’d have to selectively update only one word in the line. In
the write-miss case, we merely send the request on to memory, i.e., we do not allocate any
cache line for it.

The remaining methods are just interfaces into some of the internal FIFOs. The pro-
cessor receives its response from hitQ.

The startMiss rule on line 22 fires when the req method encounters a miss and sets
state to StartMiss. It checks if the current cache entry is dirty and, if so, writes it back
to memory. Finally, it enters the SendFillReq state, which is handled by the sendFillReq

rule which sends the request for the missing line to memory. It waits for the response in
the WaitFillResp state. When the response arrives, the waitFillResp rule stores the
memory response in the cache entry and resets its dirty bit, enters the response into hitQ,
and returns to the Ready state.

Note that in case of a Load-miss, if the cache line is not dirty, then the startMiss rule
does nothing (line 29 is not executed). In general, a few idle cycles like this don’t seriouly
affect the miss penalty (if it is important, it is possible to code it to avoid idle cycles like
this).

12.4 Integrating caches into the processor pipeline

Integrating the Instruction and Data Caches into the processor pipeline is quite straight-
forward. The one issue that might bear thinking about is that the caches have a variable
latency. Each cache behaves like a FIFO for Loads: we “enqueueue” a Load request, and we
later “dequeue” its response. In the case of a hit, the response may come back immediately;
whereas in the case of miss, the response may come back after many (perhaps 100s) of
cycles. But this is not a problem, given our methodology from the beginning of structur-
ing our pipelines as elastic pipelines that work correctly no matter what the delay of any
particular stage.

Fig. 12.10 shows our 4-stage pipeline. The orange boxes are FIFOs that carry the
rest of the information associated with an instruction (instruction, pc, ppc, epoch, poison,
...) while a request goes through the corresponding cache “FIFO”. In other words, we are
conceptually forking the information; one part goes through our in-pipeline FIFO and the

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 12-11

Figure 12.10: Integrating caches into the pipeline

other part goes through the cache. These pieces rejoin on the other side of the FIFOs.
Because of the elastic, flow-controlled nature of all the components, all of this just works.

The one nuance we might consider is that, if the caches can return responses in 0
cycles (combinationally, on a hit), then the accompanying FIFOs in the pipeline should be
BypassFIFOs, to match that latency.

12.5 A Non-blocking cache for the Instruction Memory (Read-
Only)

In this section we show a non-blocking cache for the Instruction Memory. Remember that
in Harvard architectures, Instruction Memory is never modified, so there are no Store re-
quests to this cache, nor are there ever any dirty lines. Non-blocking caches for Data
Memory (Read-Write) are significantly more complicated, and we discuss them briefly in
the Conclusion section.

Fig. 12.11 shows the structure of the non-blocking cache. The key new kind of element
is the “Completion Buffer” (CB), on the top right of the diagram. A CB is like a FIFO. The
reserve method is like an “early” enqueue operation, in that we reserve an ordered place
in the FIFO, with a promise to deliver the data later using the complete method. When
we reserve the space, the CB gives us a “token” with our reservation, which is essentially a
placeholder in the FIFO. When we later complete the enqueue operation, we provide the
data and the token, so that the CB knows exactly where to place it in the FIFO. The
drain method is just like dequeing the FIFO: it drains it in order, and will block until the
actual data has arrived for the first reserved space in the FIFO. The Completion Buffer is
a standard package in the BSV library.

Below, we show the BSV code for the non-blocking read-only cache. The completion
buffer is instantiated in line 6. The parameter 16 specifies the capacity of the completion
buffer, i.e., which allows the non-blocking cache to have up to 16 requests in flight.

The req method first reserves a space in the cb fifo. Then, if it is a hit, it completes the
operation immediately in the cb fifo. If it is a miss, it sends the request on to memory, and
enqueues the token and the request in the fillQ, in lines 35-36. Note that the req method
is immediately available now to service the next request, which may be a hit or a miss.

12-12 Ch 12: Caches (DRAFT)

Figure 12.11: Non-blocking cache for Instruction Memory

Independently, when a fill response comes back from memory, the fill rule collects
it and the information in the fillQ, updates the cache information and then invokes the
complete method on the completion buffer. In the meanwhile, the req method could have
accepted several more requests, some of which may be hits that are already in the completion
buffer.

The resp method returns the responses in the proper order by using the drain method
of the completion buffer.

Non-blocking Read-Only Cache module
1 module mkNBCache (Cache);

2 // The cache memory

3 RegFile #(CacheIndex, Line) dataArray <- mkRegFileFull;

4 RegFile #(CacheIndex, Maybe #(CacheTag)) tagArray <- mkRegFileFull;

5

6 CompletionBuffer #(16, Data) cb <- mkCompletionBuffer;

7 FIFO #(Tuple2 #(Token, MemReq)) fillQ <- mkFIFO;

8

9 FIFO #(MemReq) memReqQ <- mkCFFIFO;

10 FIFO #(Line) memRespQ <- mkCFFIFO;

11

12 function CacheIndex idxOf (Addr addr) = truncate (addr >> 2);

13 function CacheTag tagOf (Addr addr) = truncateLSB (addr);

14

15 rule fill;

16 match .token, .req = fillQ.first; fillQ.deq;

17 data = memRespQ.first; memRespQ.deq;

18

19 let idx = idxOf (req.addr);

20 let tag = tagOf (req.addr);

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 12-13

21 dataArray.upd (idx, data);

22 tagArray.upd (idx, tagged Valid tag);

23

24 cb.complete.put (tuple2 (token, dataArray.sub (idx)))

25 endrule

26

27 method Action req (MemReq r);

28 let token <- cb.reserve.get;

29 if (tagArray.sub (idxOf (r.addr)) matches tagged Valid .currTag

30 &&& currTag == tagOf (r.addr))

31 // hit

32 cb.complete.put (token, dataArray.sub (idx));

33 else begin

34 // miss

35 fillQ.enq (tuple2 (token, r));

36 memReqQ.enq (r); // send request to memory

37 end

38 endmethod

39

40 method ActionValue#(Data) resp;

41 let d <- cb.drain.get

42 return d;

43 endmethod

44

45 method ActionValue#(MemReq) memReq;

46 memReqQ.deq;

47 return memReqQ.first;

48 endmethod

49

50 method Action memResp (Line r);

51 memRespQ.enq (r);

52 endmethod

53 endmodule

How big should the fillQ be? Suppose it has size 2. Then, after the req method has
handled 2 misses by sending 2 requests to memory and enqueuing 2 items into fillQ, then
fillQ is full until the first response from memory returns and rule fill dequeues an item
from fillQ. Method req will then be stuck on the next miss, since it will be blocked from
enqueueing into fillQ. Thus, the capacity of fillQ is a measure of how many requests to
memory can be outstanding, i.e., still in flight without a response yet. This choice is a
design decision.

12.5.1 Completion Buffers

Here we show the code for a Completion Buffer, which is quite easy to implement using
CRegs. First, here are some type definitions for completion buffer tokens (FIFO placehold-

12-14 Ch 12: Caches (DRAFT)

ers) and the interface. The interface is parameterized by n, the desired capacity, and t, the
type of data stored in the buffer.

Completion Buffer token and interface types
1 typedef struct UInt #(TLog #(n)) ix; CBToken2 #(numeric type n)

2 deriving (Bits);

3

4 interface CompletionBuffer2 #(numeric type n, type t);

5 interface Get #(CBToken2 #(n)) reserve;

6 interface Put #(Tuple2 #(CBToken2 #(n), t)) complete;

7 interface Get #(t) drain;

8 endinterface

Completion Buffer module
1 module mkCompletionBuffer2 (CompletionBuffer2 #(n, t))

2 provisos (Bits #(t, tsz),

3 Log #(n, logn));

4

5 // The following FIFOs are just used to register inputs and outputs

6 // before they fan-out to/fan-in from the vr_data array

7 FIFOF #(Tuple2 #(CBToken2 #(n), t)) f_inputs <- mkFIFOF;

8 FIFOF #(t) f_outputs <- mkFIFOF;

9

10 // This is the reorder buffer

11 Vector #(n, Reg #(Maybe #(t))) vr_data <- replicateM (

12 mkReg (tagged Invalid));

13

14 // Metadata for the reorder buffer (head, next, full)

15 Reg #(Tuple3 #(UInt #(logn),

16 UInt #(logn),

17 Bool) cr_head_next_full [3]

18 <- mkCReg (3, tuple3 (0,0, False));

19

20 match .head0, .next0, .full0 = cr_head_next_full [0];

21 match .head1, .next1, .full1 = cr_head_next_full [1];

22

23 function UInt #(logn) modulo_incr (UInt #(logn) j);

24 return ((j == fromInteger (valueOf (n) - 1)) ? 0 : j+1);

25 endfunction

26

27 rule rl_move_inputs;

28 let t2 = f_inputs.first; f_inputs.deq;

29 match .tok, .x = t2;

30 vr_data [tok.ix] <= tagged Valid x;

31 endrule

32

33 rule rl_move_outputs (vr_data [head0] matches tagged Valid .v

34 &&& ((head0 != next0) || full0));

35 vr_data [head0] <= tagged Invalid;

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 12-15

36 cr_head_next_full [0] <= tuple3 (modulo_incr (head0), next0, False);

37 f_outputs.enq (v);

38 endrule

39

40 // --

41 // Interface

42

43 interface Get reserve;

44 method ActionValue #(CBToken2 #(n)) get () if (! full1);

45 let next1_prime = modulo_incr (next1);

46 cr_head_next_full [1] <= tuple3 (head1,

47 next1_prime,

48 (head1==next1_prime));

49 return CBToken2 ix: next1 ;

50 endmethod

51 endinterface

52

53 interface complete = toPut (f_inputs);

54 interface drain = toGet (f_outputs);

55 endmodule

12.6 Conclusion

In the previous section, even though the non-blocking cache could accept and service mul-
tiple requests, it returned responses in standard FIFO order. More sophisticated processor
designs will expose the out-of-order responses into the processor, i.e., the cache would re-
turn responses immediately, and the processor may go ahead to execute those instructions
if it were safe to do so. In this case, the processor itself will associate a token with each
request, and the cache would return this token with the corresponding response; this allows
the processor to know which request each response corresponds to.

Non-blocking caches for the Data Memory are more complex, because we can then
encounter RAW (Read-After-Write) hazards corresponding to memory locations, analogous
to the RAW hazards we saw in Chapter 9 that concerned register file locations. For example,
suppose the cache gets a read request Q1 which misses; it initiates the request to memory,
and is pending the response. Suppose now it gets a write request Q2 for the same cache
line. Clearly it must wait for the pending memory read response; it must respond to the
processor for Q1 based on the data returned from memory; and only then can it process Q2

by updating the cache line. If we allow several such interactions to be in progress across
different cache lines, the design becomes that much more complex.

In this chapter we have barely scratched the surface on the subject of caches. High-
performance memory systems, which revolve around clever cache design, is one of the major
subjects in Computer Architecture, since it is such a major determinant of program and
system performance.

12-16 Ch 12: Caches (DRAFT)

Chapter 13

Virtual Memory

13.1 Introduction

Almost all modern general-purpose processors implement a virtual memory system. Virtual
memory systems, sketched in Fig. 13.1, simultaneously addresses many requirements.

Figure 13.1: Virtual Memory by Paging between physical memory and secondary store

Large address spaces: many applications need large address spaces for the volume of data
to which they need random access. Further, modern computer systems often multiplex
amongst several such applications. Virtual memory systems permit these larger “memories”
actually to reside on large, cheap secondary stores (primarily magnetic disk drives), using
a much smaller, but more expensive, DRAM memory as a cache for the disk. For historical
reasons, this DRAM memory is also called core memory1 or physical memory.

Just as an SRAM cache temporarily holds cache lines from DRAM, in virtual memory
systems DRAM temporarily holds pages from secondary store. Whereas cache line sizes are
typically a few tens of bytes (e.g., 64 bytes), page sizes typically range from 512 Kilobytes

1Since the days when memories were implemented using magnetic cores (principally the 1960s and 1970s).

13-1

13-2 Ch 13: Virtual Memory (DRAFT)

(small) to 4 or 8 kilobytes (more typical). The disk is also known as a swapping store, since
pages are swapped between physical memory and disk.

Protection and Privacy : Even in a single user system, the user’s application should not
be allowed, inadvertently or maliciously, to damage the operating systems code and data
structures that it uses to manage all the devices in the system. In a multi-user system,
one user’s application program should not be allowed to read or damage another users’s
application code or data.

Relocatability, dynamic libraries and shared dynamic libraries: We should be able to gen-
erate machine code for a program independently of where it is loaded in physical memory;
specifically, the PC target information in the branch instructions should not have to be
changed for each loading. For several years we have also started dynamically loading pro-
gram libraries on demand during program execution. And, more recently, dynamic libraries
have been shared across multiple applications running at the same time, and they may not
be loadable at the same address in different applications.

Paging systems for virtual memory enable a solution for these and many similar require-
ments.

13.2 Different kinds of addresses

Fig. 13.2 shows various kinds of addresses in a system with virtual memory.

Figure 13.2: Various kinds of addresses in a Virtual Memory system

A machine language address is the address specified in machine code.

A virtual address (VA), sometimes also called an effective address, is a mapping from
the machine language address specified by the ISA. This might involve relocation from a
base address, or adding process identifier bits, segment bits, etc.

A physical address (PA) is an address in the physical DRAM memory. The virtual
address is translated into a physical address through a data structure called a Translation
Lookaside Buffer (TLB). The actual translation is always done in hardware, the operating
system is responsible for loading the TLB.

13.3 Paged Memory Systems

Fig. 13.3 shows how VAs are translated to PAs using a page table. At the top of the figure
we see how a virtual address can be interpreted as a virtual page number (VPN) and an
offset within the identified page. For example, if our page sizes are 4 KB, then the lower
12 bits specify the offset and the remaining bits specify the page number. Physical memory
is also divided into page-sized chunks. The VPN is used as an index into the page table,

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 13-3

Figure 13.3: Mapping VAs to PAs using a page table

where each entry is the physical address of a page in physical memory, i.e., a Physical Page
Number (PPN). The specified location is then accessed at the given offset within that page
of physical memory. As suggested by the criss-crossing lines in the diagram, this level of
indirection through the page table also allows us to store virtual pages non-contiguously in
physical memory.

Figure 13.4: Multiple address spaces using multiple page tables

The page table indirection also enables us to share the physical memories between the
Operating System and multiple users. Each such process has its own page table that maps
its addresses to its pages in physical memory. In fact the mapping does not have to be
disjoint: if many users are running the same application (e.g., the same web browser), we
could have a single copy of the code for the web browser in physical memory, and in each
page table the part of it that holds the web browser program code could point to the same,
shared physical pages.

13-4 Ch 13: Virtual Memory (DRAFT)

13.4 Page Tables

If we have 32-bit virtual addresses, we would need 4 Gigabytes of disk space to hold the
entire address space. Disks of this size are now feasible (they were not, a decade and more
ago), but of course many modern ISAs use 64-bit virtual addresses, for which it is simply
infeasible to actually hold the entire virtual address space on disk. But in fact programs
don’t actually use that much data, so in fact page tables are usually sparse, i.e., many
entries are simply “empty”.

Figure 13.5: A simple linear page table

Fig. 13.5 shows a simple linear page table. Each entry in the table, called a Page Table
Entry (PTE) typically contains at least the following information:

• A bit that indicates whether it is empty or not (valid bit).
• If valid and currently mapped to physical memory, the Physical Page Number (PPN)

identifying the physical memory page where it is mapped.
• A Disk Page Number identifying the “home” page on disk where the page resides when

it is not mapped into physical memory.
• Additional status and protection bits. For example, to implement the idea of a Harvard

architecture, pages that contain program code may be marked “read-only”; if there is an
attempt to write such page, then an exception is raised during the page table lookup.

The VPN of the virtual address is used as an index into the page table to retrieve a PTE,
which is then used to access the desired word at the offset in the virtual address. Since page
tables are set up by the operating system, it makes sense for page tables themselves to reside
in main memory, instead of in a separate, special memory. The PT Base Register shown in
the diagram is used to allow the OS to place the page table at a convenient address.

Page tables can be large. For example, with a 32-bit address space and 4 KB page size
(= 12-bit offset), the page number is 20 bits. If each PTE takes 4 bytes, the page table will
be 222 = 4 MB. If we have multiple users and multiple processors running on the machine,

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 13-5

Figure 13.6: Page table for multiple address spaces in physical memory

their combined page tables themselves may run into multiple Gigabytes. The only place
such large arrays will fit is in physical memory itself, as illustrated in Fig.13.6.

Of course, if we used larger pages, the page number would use fewer bits, and this would
reduce the size of the page table. But larger pages have two problems. First, it may result
in so-called internal fragmentation, where large parts of a page are unused (for example if
we place each subroutine in a shared library in its own page). Second, it increases the cost
of swapping a page between disk and physical memory (called the page fault penalty). The
problem gets worse in ISAs with 64-bit addresses. Even a 1 MB page size results in 44-bit
page numbers and 20-bit offsets. With 4-byte PTEs, the page table size is 246 bytes (70
Petabytes)! It is clearly infeasible actually to lay out such a large page table.

Fortunately, a 64-bit address space is very sparsely used, i.e., large tracts of the page
table would contain “empty” PTEs. A hierarchical (tree-like) page table is a more efficient
data structure for sparse page tables, and this is illustrated in Fig. 13.7. Entire subtrees
representing large, contiguous, unused regions of the address space are simply“pruned” from
the tree.

13.5 Address translation and protection using TLBs

Fig. 13.8 shows the activities involved in translating a virtual address into a physical address.
The inputs are: a virtual address, whether it is a read or a write access, and whether
the request was issued by a program in kernel mode or user mode (more generally, some
indication of the “capability” of the requestor to access this particular page). The VPN is
looked up in the page table, as we have discussed. The read/write and kernel/user attributes
are checked against the protection bits in the PTE, and if there is a violation, an exception
is raised in the processor pipeline instead of performing the memory operation.

Note that these activities are performed on every memory access! It has to be efficient

13-6 Ch 13: Virtual Memory (DRAFT)

Figure 13.7: Hierarchical page tables for large, sparse address spaces

Figure 13.8: Address translation and protection

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 13-7

if we are to maintain program performance! For example, it is infeasible to emulate this in
software; it must be done in hardware. Even in hardware, with a linear page table, each
logical memory reference becomse two physical memory references, one to access the PTE
and then one to access the target word. The solution, once again, is to cache PTEs in
small, fast, processor-local memory. These caches are called Translation Lookaside Buffers
(TLBs).

Figure 13.9: A Translation Lookaside Buffer

Fig. 13.9 shows a TLB, which is typically a very small local memory (at most a few tens
of PTEs, typically). It is associatively searched for the current VPN. If successful (a hit), it
immediately yields the corresponding PPN (and the protection checks can be done as well).
Otherwise (it is a miss), we need to suspend operations, load the corresponding PTE, and
then complete the original translation. This is called a Page Table Walk, since modern page
tables are hierarchical and finding the PTE involves traversing the tree, starting from the
root.

TLBs typically have from 32-128 entries, and are fully associative. Sometimes larger
TLBs (256-512 entries) are 4- or 8-way set-associative. The TLB Reach is a measure of
the largest chunk of virtual address space that is accessible from entries in the TLB. For
example, with 64 TLB entries and 4 KB pages, the program can access 64×4 = 256 KB of
the address space (may not be contiguous).

On a miss, which entry to eject? A random or LRU (least-recently used) policy is
common. Address mappings are typically fixed for each address space, so PTEs are not
updated, so there is no worry about dirty entries having to be written back.

13.6 Variable-sized pages

We mentioned earlier that a uniformly large page size, though it can shrink the page table
and increase the TLB hit rate, can lead to internal fragmentation and large page fault
penalties. However, there are plenty of programs that can exploit large, densely occupied,
contiguous regions of memory. Thus, one strategy is to support multiple page sizes. This
is illustrated in Fig. 13.10.

In the diagram, a 32-bit Virtual Page Address is interpreted either as having a 20-bit
VPN for a 4 KB page as before, or a 10-bit VPN for a 4 MB page (variously called “huge
pages”, “large pages” or “superpages”). In the translation process, we use 10 bits (p1) to
access the root of the page table tree, the Level 1 page table. Information in the PTE tells
us whether it directly points at a large page, or whether it points to a Level 2 page table
where the remaining 10 bits (p2) will be used to locate a normal page.

The TLB has to change accordingly, and this is illustrated in Fig. 13.11. Each entry in
the TLB has an extra bit indicating whether it is for a normal page or for a large page. If

13-8 Ch 13: Virtual Memory (DRAFT)

Figure 13.10: Variable-sized pages

Figure 13.11: TLB for variable-sized pages

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 13-9

for a large page, then only the first 10 bits are matched; the TLB yields a short PPN, and
the remaining address 10 bits are passed through to be concatenated into the offset. If for
a normal page, then all 20 bits are matched, and the TLB yields the longer PPN for the
normal page.2

13.7 Handling TLB misses

The page table walk may be done in hardware or in software. For example, in the DEC
Alpha AXP ISA (in the 1990s) and in the MIPS ISA, a TLB miss exception traps into a
software handler which fixes up the TLB before retrying the provoking instruction. The
handler executes in a privileged, “untranslated” addressing mode to perform this function
(since we don’t want the handler itself to encounter page faults).

Figure 13.12: Hierarchical Page Table Walk in SPARC v8

In the SPARC v8, x86, PowerPC and ARM ISAs, the TLB walk is performed in a
hardware unit called the Memory Management Unit (MMU). The hardware for a tree walk
is a relatively simple state machine. If a missing data or page table page is encountered by
the hardware, then the MMU abandons the attempt and raises a page-fault exception for
the original memory access instruction.

Fig. 13.12 shows the hierarchical page table walk in the MMU in the SPARC v8 archi-
tecture. It is essentially a sequential descent into the page table tree using various bits of
the virtual address to index into a table at each leve to retrieve the address of a sub-tree
table.

Fig. 13.13 summarizes the full address translation activities. We start with a TLB
lookup. If it’s a hit, we do the protection check and, if permitted, we have the physical
address and can perform the memory access. If there is a protection violation, we raise a
“segfault” (segment fault) exception. If the TLB lookup was a miss, we do the Page Table
Walk (in hardware or in software). If the page is in physical memory, we update the TLB
and complete the memory operation (protection check, etc.). If the page is not in physical

2Note: large and short pages will be aligned to 22 bit and 12 bit addresses, respectively, so their PPNs
will have correspondingly different sizes.

13-10 Ch 13: Virtual Memory (DRAFT)

Figure 13.13: Putting it all together

memory, we raise a Page Fault exception, which traps to the operating system to swap the
page in from disk, after which the original memory access can be retried.

13.8 Handling Page Faults

When we encounter a page fault, i.e., a memory request for a word in a virtual page that
currently only resides on disk and is not currently swapped into a physical page, the handler
must perform a swap operation. The missing page must be located (or allocated) on disk.
It must be copied into physical memory; the PTE for this page in the page table must be
updated; and, the TLB must be loaded with this entry.

We call it a “swap” because, as is generally true in cacheing, this may require another
page that is currently in physical memory to be written back to disk in order to make room
for this one. We have many of the same considerations as in cacheing:

• Only dirty pages need to be written back to disk, i.e., pages whose copies in physical
memory have been updated (written) since they were brought in from disk.
• The policy for selecting the “victim” page that will be overwritten (and, if dirty, first

ejected back to disk). Again, possible policies include: favoring clean pages over dirty
pages, random, LRU, MRU, round-robin, and so on.

Page fault handling is always done in software. Moving pages between physical memory
and disk can take milliseconds, which is extremely slow compared to modern processor
speeds; and well-behaved programs don’t page fault too often, and so doing it in software
has acceptable overheads and performance. The actual movement of page contents between
disk and physical memory is usually performed by a separate hardware component called a
Direct Memory Access engine (DMA): the processor merely initializes the DMA with the
information about the size of the transfer and its locations in memory and disk, and the
DMA engine then independently performs the copy, usually generating an interrupt to the
processor when it has completed. While the DMA is doing its work, the processor switches

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 13-11

to some other process to do some useful work in the interval, instead of waiting for this
operation.

13.9 Recursive Page Faults

Figure 13.14: Recursive problem of TLB misses and pages faults during PT walk

During a page table walk, the MMU (or a software handler) is itself accessing memory
(for the page tables). If the page tables are themselves in the operating system’s virtual
address space, these accesses may, in turn, miss in the TLB, which itself needs a page table
walk to refill. During this walk, we may again encounter a page fault. This is a kind of
recursive page fault problem. The situation (and the solution) is illustrated in Fig. 13.14.
As usual in recursive situation, we need a “base case” to terminate the recursion. We do
this by placing the the page table for the system in physical address space which requires
no translation. The TLB miss handler, and the page fault handler, for this page table
run in a special privileged mode that works directly on physical addresses. Of course, the
region of physical memory used for these “pinned” data structures and codes is a special
reserved region of physical memory that is not part of the pool of page frames where we swap
virtual pages. The partitioning of available physical memory (which varies across computer
systems) into these regions is typically done by the operating system at boot time.

Figure 13.15: Pages of a page table

13-12 Ch 13: Virtual Memory (DRAFT)

One issue about which page fault handlers must take care is illustrated in Fig. 13.15.
Consider a page PPT of a page table that itself resides in virtual memory. When it is
in physical memory, some of its PTEs will contain physical addresses of the pages P1, 2,
... which it is responsible—those final address-space pages that have also currently been
swapped in. We do not want to swap out PPT while P1, P2, ... are still swapped in—
that would mean we would encounter a page fault for accesses to those pages even though
they are resident in physical memory. Thus, we swap out PPT only after P1, P2, ... have
themselves been swapped out. A corollary to this is that when PPT resides on disk, all its
PTEs only contain disk addresses, never physical memory addresses.

13.10 Integating Virtual Memory mechanisms ino the pro-
cessor pipeline

Figure 13.16: Virtual Memory operations in the processor pipeline

Fig. 13.16 shows virtual memory operations in the processor pipeline. In two places—
when fetching an instruction from memory, and when accessing memory for a Ld or St
instruction— we may encounter TLB misses, protection violations and page faults. Each
of these raises an exception and is handled using the mechanisms we studied in Ch. 11
on exceptions. These exceptions are restartable exceptions, i.e, the operation (instruction
fetch, Ld/St instruction execution) is retried after the exception has been handled (unlike,
say, a divide-by-zero exception, where we do not retry the instruction).

In the TLB boxes in the diagram, how do we deal with the additional latency needed
for the TLB lookup? We can slow down the clock, giving more time for the TLB lookup
operation. We can pipeline the TLB and cache access (if done in that order, the caches
work on physical addresses). We can do the TLB access and cache access in parallel (in
which case the cache operates on virtual addresses).

Figure 13.17: Caches based on Virtual or Physical Addresses

Fig. 13.17 shows two different organizations of TLB lookup and cache lookup. In the
first case the cache works on the physical addresses that come out of TLB translation. In the

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 13-13

second case the cache works immediately on the virtual address from the processor pipeline.
The advantage of the latter is speed: the cache lookup is initiated earlier, and in the case
of a hit, the processor pipeline can proceed immediately. But it has some disadvantages as
well.

First, since all processes (contexts) have the same virtual address space, we must flush
the cache (empty it out completely) whenever there is a context switch. Otherwise, if
address 42 from process A was in the cache, then we would accidentally have a false hit
when process B tries to access its address 42, which in general has nothing to do with A’s
address 42. An alternative is to attach some process identifier bits to the cache tag of
address, so that tags will never match across contexts.

Figure 13.18: Aliasing in virtually-addressed caches

Second, we may have an aliasing problem due to sharing of pages. This is illustrated
in Fig. 13.18 i.e., if two different PTEs map to the same physical page, then a particular
word in physical memory has two different virtual addresses, and therefore may have two
different entries in a virtually-addressed cache. This is problematic because, for example,
suppose the program writes via one of the virtual addresses, the other entry may not be
marked dirty. Worse, it violates one of the normal properties and assumptions of memory,
i.e., that every memory location is independent, and that writes to one location do not
magically change some other location.

The general solution to the aliasing problem is to forbid it—to never allow aliases to
coexist in the cache (at least for addresses in writable pages). In early SPARCs, which had
direct-mapped caches, this was enforced by making sure that VAs of shared pages agreed
on cache index bits. This ensured that aliases always collided in the direct-mapped cache,
so that only one could be in the cache.

Figure 13.19: Concurrent access to the TLB and cache

Fig. 13.19 shows details of concurrent lookup in the TLB and cache. We use L bits
outside the VPN bits to access the cache, since these are available before TLB lookup
and invariant to the TLB translation. The cache entries contain tags based on physical
addresses, which are compared with the output of TLB translation. Note that if the L field

13-14 Ch 13: Virtual Memory (DRAFT)

extends into the VPN field of the address, the cache becomes partially virtually addressed,
which has to dealt with as discussed earlier (e.g., disambiguating with process ids).

Figure 13.20: A cache with virtual index and physical tag

Fig. 13.20 shows a cache with a virtual index and physical tag. Virtual address bits
are used for indexing the cache, but the cache entries contain physical addresses, which are
compared against the post-TLB PPN for a hit. Of course, this can be done on direct-mapped
as well as W-way set-associative caches.

13.11 Conclusion

Figure 13.21: System memory hierarchy

Fig. 13.21 reprises the major components of the overall system memory hierarchy. If
we were to add more detail, we would also include the register file in the processor at the
top of the hierarchy, and possible multiple levels of cache, called Level 1 (L1), Level 2 (L2),
Level 3 (L3) and so on. Modern processors often have 3 levels of cacheing or more. Many
of the issues of cacheing are in principle the same at all levels of the memory hierarchy:
associativity and lookup algorithms, clean vs. dirty, replacement policies, inclusiveness,
aliasing, and so on. But the solutions are engineered differently because of their different
scale (size), the size of units being cached, access patterns, and miss penalties. The table
below summarizes some of the differences:

c©2012-2015 Arvind, Nikhil, Emer and Vijayaraghavan; All Rights Reserved 13-15

Cacheing Virtual Memory Demand Paging

Unit cache line page
a.k.a. cache block

Typical size 32 bytes 4 Kbytes
Container cache entry page frame
Typical miss rates 1% to 20% < 0.001%
Typical hit latencies 1 clock cycle 100 cycles
Typical miss latencies 100 clock cycles 5 M cycles
Typical miss handling in hardware in software

Note for current draft of the book: In this chapter we have not shown any BSV code for virtual

memory components. This is only because we do not yet have the corresponding software tools

needed to exercise such solutions: operating system code using privileged instructions, TLB walkers,

page fault handlers, etc. We expect all these to be available with a future edition of the book.

13-16 Ch 13: Virtual Memory (DRAFT)

Chapter 14

Future Topics

This chapter lists a number of potential topics for future editions of this book.

14.1 Asynchronous Exceptions and Interrupts

14.2 Out-of-order pipelines

Register renaming, data flow. Precise exceptions.

14.3 Protection and System Issues

Protection issues and solutions. Virtualization. Capabilities.

14.4 I and D Cache Coherence

The coherence problem between Instruction and Data memories when Instruction memory
is modifiable. Princeton architecture. Self-modifying code. On-the-fly optimization. JIT
compiling. Binary translation.

14.5 Multicore and Multicore cache coherence

Multicore, SMPs.

Memory models and memory ordering semantics.

Multicore and directory-based cache coherence.

Synchronization primitives. Transactional memory.

14-1

14-2 Ch 14: Possible Remaining Topics (DRAFT)

14.6 Simultaneous Multithreading

SMT

14.7 Energy efficiency

Power and power management.

14.8 Hardware accelerators

Extending an ISA with HW-accelerated op codes, implemented in FPGAs or ASICs

Appendix A

SMIPS Reference

SMIPS (“Simple MIPS”) is a subset of the full MIPS instruction set architecture (ISA). MIPS
was one of the first commercial RISC (Reduced Instruction Set Computer) processors, and
grew out of the earlier MIPS research project at Stanford University. MIPS originally stood
for “Microprocessor without Interlocking Pipeline Stages” and the goal was to simplify the
machine pipeline by requiring the compiler to schedule around pipeline hazards including
a branch delay slot and a load delay slot (although those particular architectural choices
have been abandoned). Today, MIPS CPUs are used in a wide range of devices: Casio
builds handheld PDAs using MIPS CPUs, Sony uses two MIPS CPUs in the Playstation-
2, many Cisco internet routers contain MIPS CPUs, and Silicon Graphics makes Origin
supercomputers containing up to 512 MIPS processors sharing a common memory. MIPS
implementations probably span the widest range for any commercial ISA, from simple single-
issue in-order pipelines to quad-issue out-of-order superscalar processors.

There are several variants of the MIPS ISA. The ISA has evolved from the original
32-bit MIPS-I architecture used in the MIPS R2000 processor which appeared in 1986. The
MIPS-II architecture added a few more instructions while retaining a 32-bit address space.
The MIPS-II architecture also added hardware interlocks for the load delay slot. In practice,
compilers couldn’t fill enough of the load delay slots with useful work and the NOPs in the
load delay slots wasted instruction cache space. (Removing the branch delay slots might also
have been a good idea, but would have required a second set of branch instruction encodings
to remain backwards compatible.) The MIPS-III architecture debuted with the MIPS R4000
processor, and this extended the address space to 64 bits while leaving the original 32-
bit architecture as a proper subset. The MIPS-IV architecture was developed by Silicon
Graphics to add many enhancements for floating-point computations and appeared first in
the MIPS R8000 and later in the MIPS R10000. Over time, the MIPS architecture has been
widely extended, occasionally in non-compatible ways, by different processor implementors.
MIPS Technologies, the current owners of the architecture, are trying to rationalize the
architecture into two broad groupings: MIPS32 is the 32-bit address space version, MIPS64
is the 64-bit address space version. There is also MIPS16, which is a compact encoding of
MIPS32 that only uses 16 bits for each instruction. You can find a complete description
of the MIPS instruction set at the MIPS Technologies web site [7] or in the book by Kane
and Heinrich [8]. The book by Sweetman also explains MIPS programming [12]. Another
source of MIPS details and implementation ideas is “Computer Organization and Design:
The Hardware/Software Interface” [5].

SMIPS-1

SMIPS-2 Ch 1: SMIPS Reference

Our subset, SMIPS, implements a subset of the MIPS32 ISA. It does not include floating
point instructions, trap instructions, misaligned load/stores, branch and link instructions, or
branch likely instructions. There are three SMIPS variants which are discussed in more de-
tail in Appendix A. SMIPSv1 has only five instructions and it is mainly used as a toy ISA for
instructional purposes. SMIPSv2 includes the basic integer, memory, and control instruc-
tions. It excludes multiply instructions, divide instructions, byte/halfword loads/stores,
and instructions which cause arithmetic overflows. Neither SMIPSv1 or SMIPSv2 support
exceptions, interrupts, or most of the system coprocessor. SMIPSv3 is the full SMIPS ISA
and includes all the instructions in our MIPS subset.

A.1 Basic Architecture

Figure A.1: SMIPS CPU Registers

Fig. A.1 shows the programmer visible state in the CPU. There are 31 general purpose
32-bit registers r1-r31. Register r0 is hardwired to the constant 0. There are three special
registers defined in the architecture: two registers hi and lo are used to hold the results
of integer multiplies and divides, and the program counter pc holds the address of the
instruction to be executed next. These special registers are used or modified implicitly by
certain instructions.

SMIPS differs significantly from the MIPS32 ISA in one very important respect. SMIPS
does not have a programmer-visible branch delay slot. Although this slightly complicates
the control logic required in simple SMIPS pipelines, it greatly simplifies the design of
more sophisticated out-of- order and superscalar processors. As in MIPS32, Loads are fully
interlocked and thus there is no programmer-visible load delay slot.

Multiply instructions perform 32-bit × 32-bit→ 64-bit signed or unsigned integer multi-
plies placing the result in the hi and lo registers. Divide instructions perform a 32-bit/32-bit
signed or unsigned divide returning both a 32-bit integer quotient and a 32-bit remainder.
Integer multiplies and divides can proceed in parallel with other instructions provided the
hi and lo registers are not read.

The SMIPS CPU has two operating modes: user mode and kernel mode. The current
operating mode is stored in the KUC bit in the system coprocessor (COP0) status register.
The CPU normally operates in user mode until an exception forces a switch into kernel mode.
The CPU will then normally execute an exception handler in kernel mode before executing
a Return From Exception (ERET) instruction to return to user mode.

SMIPS-3

A.2 System Control Coprocessor (CP0)

The SMIPS system control coprocessor contains a number of registers used for exception
handling, communication with a test rig, and the counter/timer. These registers are read
and written using the MIPS standard MFC0 and MTC0 instructions respectively. User
mode can access the system control coprocessor only if the cu[0] bit is set in the status
register. Kernel mode can always access CP0, regardless of the setting of the cu[0] bit.
CP0 control registers are listed in Table A.1.

Number Register Description

0-7 unused
8 badvaddr Bad virtual address.
9 count Counter/timer register.
10 unused
11 compare Timer compare register.
12 status Status register.
13 cause Cause of last exception.
14 epc Exception program counter.

15-19 unused
20 fromhost Test input register.
21 tohost Test output register.

22-31 unused

Table A.1: CP0 control registers

A.2.1 Test Communication Registers

Figure A.2: Fromhost and Tohost Register Formats

There are two registers used for communicating and synchronizing with an external host
test system. Typically, these will be accessed over a scan chain. The fromhost register is
an 8-bit read only register that contains a value written by the host system. The tohost

register is an 8-bit read/write register that contains a value that can be read back by the
host system. The tohost register is cleared by reset to simplify synchronization with the
host test rig. Their format is shown in Fig. A.2.

A.2.2 Counter/Timer Registers

SMIPS includes a counter/timer facility provided by the two coprocessor 0 registers count

and compare. Both registers are 32 bits wide and are both readable and writeable. Their
format is shown in Fig. A.3.

SMIPS-4 Ch 1: SMIPS Reference

Figure A.3: Count and Compare Registers.

The count register contains a value that increments once every clock cycle. The count

register is normally only written for initialization and test purposes. A timer interrupt is
flagged in ip7 in the cause register when the count register reaches the same value as
the compare register. The interrupt will only be taken if both im7 and iec in the status

register are set. The timer interrupt flag in ip7 can only be cleared by writing the compare

register. The compare register is usually only read for test purposes.

A.2.3 Exception Processing Registers

A number of CP0 registers are used for exception processing.

Status Register

Figure A.4: Status Register Format

The status register is a 32-bit read/write register formatted as shown in Fig. A.4. The
status register keeps track of the processor’s current operating state.

The CU field has a single bit for each coprocessor indicating if that coprocessor is usable.
Bits 29-31, corresponding to coprocessors 1, 2, and 3, are permanently wired to 0 as these
coprocessors are not available in SMIPS. Coprocessor 0 is always accessible in kernel mode
regardless of the setting of bit 28 of the status register.

The IM field contains interrupt mask bits. Timer interrupts are disabled by clearing im7

in bit 15. External interrupts are disabled by clearing im6 in bit 14. The other bits within
the IM field are not used on SMIPS and should be written with zeros. Table A.4 includes
a listing of interrupt bit positions and descriptions.

The KUc/IEc/KUp/IEp/KUo/IEo bits form a three level stack holding the operating
mode (ker- nel=0/user=1) and global interrupt enable (disabled=0/enabled=1) for the
current state, and the two states before the two previous exceptions.

When an exception is taken, the stack is shifted left 2 bits and zero is written into
KUc and IEc. When a Restore From Exception (RFE) instruction is executed, the stack is
shifted right 2 bits, and the values in KUo/IEo are unchanged.

SMIPS-5

Cause Register

Figure A.5: Cause Register Format

The cause register is a 32-bit register formatted as shown in Fig. A.5. The cause

register contains information about the type of the last exception and is read only.

The ExcCode field contains an exception type code. The values for ExcCode are listed
in Table A.2. The ExcCode field will typically be masked off and used to index into a table
of software exception handlers.

ExcCode Mnemonic Description

0 Hint External interrupt
2 Tint Timer interrupt
4 AdEL Address or misalignment error on load
5 AdES Address or misalignment error on store
6 AdEF Address or misalignment error on fetch
8 Sys Syscall exception
9 Bp Breakpoint exception
10 RI Reserved instruction exception
12 Ov Arithmetic Overflow

Table A.2: Exception Types

If the Branch Delay bit (BD) is set, the instruction that caused the exception was execut-
ing in a branch delay slot and epc points to the immediately preceding branch instruction.
Otherwise,

The IP field indicates which interrupts are pending. Field ip7 in bit 15 flags a timer
interrupt. Field ip6 in bit 14 flags an external interrupt from the host test setup. The other
IP bits are unused in SMIPS and should be ignored when read. Table 4 includes a listing
of interrupt bit positions and descriptions.

Exception Program Counter

Figure A.6: EPC Register

Epc is a 32-bit read only register formatted as shown in Fig. A.6. When an exception
occurs, epc is written with the virtual address of the instruction that caused the exception.

SMIPS-6 Ch 1: SMIPS Reference

Bad Virtual Address

Figure A.7: Badvaddr Register

Badvaddr is a 32-bit read only register formatted as shown in Fig. A.7. When a memory
address error generates an AdEL or AdES exception, badvaddr is written with the faulting
virtual address. The value in badvaddr is undefined for other exceptions.

A.3 Addressing and Memory Protection

SMIPS has a full 32-bit virtual address space with a full 32-bit physical address space.
Sub-word data addressing is big-endian on SMIPS.

The virtual address space is split into two 2 GB segments, a kernel only segment
(kseg) from 0x0000 0000 to 0x7fff ffff, and a kernel and user segment (kuseg) from
0x8000 0000 to 0xffff ffff. The segments are shown in Fig. A.8.

Figure A.8: SMIPS virtual address space

In kernel mode, the processor can access any address in the entire 4 GB virtual address
space. In user mode, instruction fetches or scalar data accesses to the kseg segment are
illegal and cause a synchronous exception. The AdEF exception is generated for an illegal
instruction fetch, and AdEL and AdES exceptions are generated for illegal loads and stores
respectively. For faulting stores, no data memory will be written at the faulting address.

There is no memory translation hardware on SMIPS. Virtual addresses are directly
used as physical addresses in the external memory system. The memory controller simply
ignores unused high order address bits, in which case each physical memory address will be
shadowed multiple times in the virtual address space.

SMIPS-7

A.4 Reset, Interrupt, and Exception Processing

There are three possible sources of disruption to normal program flow: reset, interrupts
(asyn- chronous exceptions), and synchronous exceptions. Reset and interrupts occur asyn-
chronously to the executing program and can be considered to occur between instructions.
Synchronous exceptions occur during execution of a particular instruction.

If more than one of these classes of event occurs on a given cycle, reset has highest
priority, and all interrupts have priority over all synchronous exceptions. The tables below
show the priorities of different types of interrupt and synchronous exception.

The flow of control is transferred to one of two locations as shown in Table A.3. Reset
has a separate vector from all other exceptions and interrupts.

Vector Address Cause

0x0000_1000 Reset
0x0000_1100 Exceptions and internal interrupts

Table A.3: SMIPS Reset, Exception, and Interrupt Vectors.

A.4.1 Reset

When the external reset is deasserted, the PC is reset to 0x0000 1000, with kuc set to 0,
and iec set to 0. The effect is to start execution at the reset vector in kernel mode with
interrupts disabled. The tohost register is also set to zero to allow synchronization with
the host system. All other state is undefined.

A typical reset sequence is shown in Fig. A.9.

reset_vector:

mtc0 zero, $9 # Initialize counter.

mtc0 zero, $11 # Clear any timer interrupt in compare.

Initialize status with desired CU, IM, and KU/IE fields.

li k0, (CU_VAL|IM_VAL|KUIE_VAL)

mtc0 k0, $12 # Write to status register.

j kernel_init # Initialize kernel software.

Figure A.9: SMIPS virtual address space

A.4.2 Interrupts

The two interrupts possible on SMIPS are listed in Table A.4 in order of decreasing priority.

Vector ExcCode Mnemonic IM/IP Index Description

Highest Priority

0x0000_1100 0 Hint 6 Tester interrupt.
0x0000_1100 2 Tint 7 Timer interrupt.

Lowest Priority

SMIPS-8 Ch 1: SMIPS Reference

Table A.4: SMIPS Interrupts.

All SMIPS interrupts are level triggered. For each interrupt there is an IP flag in the
cause register that is set if that interrupt is pending, and an IM flag in the status register
that enables the interrupt when set. In addition there is a single global interrupt enable bit,
iec, that disables all interrupts if cleared. A particular interrupt can only occur if both IP
and IM for that interrupt are set and iec is set, and there are no higher priority interrupts.

The host external interrupt flag IP6 can be written by the host test system over a scan
interface. Usually a protocol over the host scan interface informs the host that it can clear
down the interrupt flag.

The timer interrupt flag IP7 is set when the value in the count register matches the
value in the compare register. The flag can only be cleared as a side-effect of a MTC0 write
to the compare register.

When an interrupt is taken, the PC is set to the interrupt vector, and the KU/IE stack
in the status register is pushed two bits to the left, with KUc and IEc both cleared to 0.
This starts the interrupt handler running in kernel mode with further interrupts disabled.
The exccode field in the cause register is set to indicate the type of interrupt.

The epc register is loaded with a restart address. The epc address can be used to restart
execution after servicing the interrupt.

A.4.3 Synchronous Exceptions

Synchronous exceptions are listed in Table A.5 in order of decreasing priority.

ExcCode Mnemonic Description

Highest Priority

6 AdEF Address or misalignment error on fetch.
10 RI Reserved instruction exception.
8 Sys Syscall exception.
9 Bp Breakpoint exception.
12 Ov Arithmetic Overflow.
4 AdEL Address or misalignment error on load.
5 AdES Address or misalignment error on store.

Lowest Priority

Table A.5: SMIPS Synchronous Exceptions.

After a synchronous exception, the PC is set to 0x0000_1100. The stack of kernel/user
and interrupt enable bits held in the status register is pushed left two bits, and both kuc

and iec are set to 0.

The epc register is set to point to the instruction that caused the exception. The
exccode field in the cause register is set to indicate the type of exception.

If the exception was a coprocessor unusable exception (CpU), the ce field in the cause

register is set to the coprocessor number that caused the error. This field is undefined for
other exceptions.

SMIPS-9

The overflow exception (Ov) can only occur for ADDI, ADD, and SUB instructions.

If the exception was an address error on a load or store (AdEL/AdES), the badvaddr

register is set to the faulting address. The value in badvaddr is undefined for other excep-
tions.

All unimplemented and illegal instructions should cause a reserved instruction exception
(RI).

A.5 Instruction Semantics and Encodings

SMIPS uses the standard MIPS instruction set.

A.5.1 Instruction Formats

There are three basic instruction formats, R-type, I-type, and J-type. These are a fixed 32
bits in length, and must be aligned on a four-byte boundary in memory. An address error
exception (AdEF) is generated if the PC is misaligned on an instruction fetch.

R-Type

R-type instructions specify two source registers (rs and rt) and a destination register
(rd). The 5-bit shamt field is used to specify shift immediate amounts and the 6-bit funct
code is a second opcode field.

I-Type

I-type instructions specify one source register (rs) and a destination register (rt). The
second source operand is a sign or zero-extended 16-bit immediate. Logical immediate
operations use a zero-extended immediate, while all others use a sign-extended immediate.

J-Type

SMIPS-10 Ch 1: SMIPS Reference

J-type instructions encode a 26-bit jump target address. This value is shifted left two
bits to give a byte address then combined with the top four bits of the current program
counter.

A.5.2 Instruction Categories

MIPS instructions can be grouped into several basic categories: loads and stores, computa-
tion instructions, branch and jump instructions, and coprocessor instructions.

Load and Store Instructions

Load and store instructions transfer a value between the registers and memory and are
encoded with the I-type format. The effective address is obtained by adding register rs to
the sign-extended immediate. Loads place a value in register rt. Stores write the value in
register rt to memory.

The LW and SW instructions load and store 32-bit register values respectively. The LH
instruction loads a 16-bit value from memory and sign extends this to 32-bits before storing
into register rt. The LHU instruction zero-extends the 16-bit memory value. Similarly
LB and LBU load sign and zero-extended 8-bit values into register rt respectively. The
SH instruction writes the low-order 16 bits of register rt to memory, while SB writes the
low-order 8 bits.

The effective address must be naturally aligned for each data type (i.e., on a four-byte
boundary for 32-bit loads/stores and a two-byte boundary for 16-bit loads/store). If not,
an address exception (AdEL/AdES) is generated.

The load linked (LL) and store conditional (SC) instructions are used as primitives to
implement atomic read-modify-write operations for multiprocessor synchronization. The
LL instruction performs a standard load from the effective address (base+offset), but as
a side effect the instruction should set a programmer invisible link address register. If for
any reason atomicity is violated, then the link address register will be cleared. When the
processor executes the SC instruction first, it first verifies that the link address register is
still valid. If link address register is valid then the SC executes as a standard SW instruction
except that the src register is overwritten with a one to indicate success. If the link address
register is invalid, the then SW instruction overwrites the src register with a zero to indicate
failure. There are several reasons why atomicity might be violated. If the processor takes an
exception after an LL instruction but before the corresponding SC instruction is executed
then the link address register will be cleared. In a multi-processor system, if a different
processor uses a SC instruction to write the same location then the link address register
will also be cleared.

SMIPS-11

Computational Instructions

Computational instructions are either encoded as register-immediate operations using the
I-type format or as register-register operations using the R-type format. The destination
is register rt for register-immediate instructions and rd for register-register instructions.
There are only eight register-immediate computational instructions.

ADDI and ADDIU add the sign-extended 16-bit immediate to register rs. The only
difference between ADD and ADDIU is that ADDI generates an arithmetic overflow ex-
ception if the signed result would overflow 32 bits. SLTI (set less than immediate) places
a 1 in the register rt if register rs is strictly less than the sign-extended immediate when
both are treated as signed 32-bit numbers, else a 0 is written to rt. SLTIU is similar but
compares the values as unsigned 32-bit numbers. [NOTE: Both ADDIU and SLTIU
sign-extend the immediate, even though they operate on unsigned numbers.]

ANDI, ORI, XORI are logical operations that perform bit-wise AND, OR, and XOR on
register rs and the zero-extended 16-bit immediate and place the result in rt.

LUI (load upper immediate) is used to build 32-bit immediates. It shifts the 16-bit
immediate into the high-order 16-bits, shifting in 16 zeros in the low order bits, then places
the result in register rt. The rs field must be zero.

[NOTE: Shifts by immediate values are encoded in the R-type format using
the shamt field.]

Arithmetic R-type operations are encoded with a zero value (SPECIAL) in the major
opcode. All operations read the rs and rt registers as source operands and write the result
into register rd. The 6-bit funct field selects the operation type from ADD, ADDU, SUB,
SUBU, SLT, SLTU, AND, OR, XOR, and NOR.

ADD and SUB perform add and subtract respectively, but signal an arithmetic overflow
if the result would overflow the signed 32-bit destination. ADDU and SUBU are identical
to ADD/SUB except no trap is created on overflow. SLT and SLTU performed signed and
unsigned compares respectively, writing 1 to rd if rs < rt, 0 otherwise. AND, OR, XOR,
and NOR perform bitwise logical operations. [NOTE: NOR rd, rx, rx performs a
logical inversion (NOT) of register rx.]

Shift instructions are also encoded using R-type instructions with the SPECIAL ma-
jor opcode. The operand that is shifted is always register rt. Shifts by constant values

SMIPS-12 Ch 1: SMIPS Reference

(SLL/SRL/SRA) have the shift amount encoded in the shamt field. Shifts by variable
values (SLLV/SRLV/SRAV) take the shift amount from the bottom five bits of register rs.
SLL/SLLV are logical left shifts, with zeros shifted into the least significant bits. SRL/SRLV
are logical right shifts with zeros shifted into the most significant bits. SRA/SRAV are
arithmetic right shifts which shift in copies of the original sign bit into the most significant
bits.

Multiply and divide instructions target the hi and lo registers and are encoded as R-type
instructions under the SPECIAL major opcode. These instructions are fully interlocked in
hardware. Multiply instructions take two 32-bit operands in registers rs and rt and store
their 64-bit product in registers hi and lo. MULT performs a signed multiplication while
MULTU performs an unsigned multiplication. DIV and DIVU perform signed and unsigned
divides of register rs by register rt placing the quotient in lo and the remainder in hi.
Divides by zero do not cause a trap. A software check can be inserted if required.

The values calculated by a multiply or divide instruction are retrieved from the hi and
lo registers using the MFHI (move from hi) and MFLO (move from lo) instructions, which
write register rd. MTHI (move to hi) and MTLO (move to lo) instructions are also provided
to allow the multiply registers to be written with the value in register rs (these instructions
are used to restore user state after a context swap).

Jump and Branch Instructions

Jumps and branches can change the control flow of a program. Unlike the MIPS32 ISA,
the SMIPS ISA does not have a programmer visible branch delay slot.

Absolute jumps (J) and jump and link (JAL) instructions use the J-type format. The
26-bit jump target is concatenated to the high order four bits of the program counter of the
delay slot, then shifted left two bits to form the jump target address (using Verilog notation,
the target address is {pc_plus4[31:28],target[25:0],2’b0}. JAL stores the address of
the instruction following the jump (PC+4) into register r31.

SMIPS-13

The indirect jump instructions, JR (jump register) and JALR (jump and link register),
use the R-type encoding under a SPECIAL major opcode and jump to the address contained
in register rs. JALR writes the link address into register rd.

All branch instructions use the I-type encoding. The 16-bit immediate is sign-extended,
shifted left two bits, then added to the address of the instruction in the delay slot (PC+4)
to give the branch target address.

BEQ and BNE compare two registers and take the branch if they are equal or unequal
respectively. BLEZ and BGTZ compare one register against zero, and branch if it is less
than or equal to zero, or greater than zero, respectively. BLTZ and BGEZ examine the sign
bit of the register rs and branch if it is negative or positive respectively.

System Coprocessor Instructions

The MTC0 and MFCO instructions access the control registers in coprocessor 0, transferring
a value from/to the coprocessor register specified in the rd field to/from the CPU register
specified in the rt field. It is important to note that the coprocessor register is always in
the rd field and the CPU register is always in the rt field regardless of which register is the
source and which is the destination.

The restore from exception instruction, ERET, returns to the interrupted instruction
at the completion of interrupt or exception processing. An ERET instruction should pop
the top value of the interrupt and kernel/user status register stack, restoring the previous
values.

SMIPS-14 Ch 1: SMIPS Reference

Coprocessor 2 Instructions

Coprocessor 2 is reserved for an implementation defined hardware unit. The MTC2 and
MFC2 instructions access the registers in coprocessor 2, transferring a value from/to the co-
processor register specified in the rd field to/from the CPU register specified in the rt field.
The CTC2 and CFC2 instructions serve a similar process. The Coprocessor 2 implementa-
tion is free to handle the coprocessor register specifiers in MTC2/MFC2 and CTC2/CFC2
in any way it wishes.

The LWC2 and SWC2 instructions transfer values between memory and the coprocessor
registers. Note that although cop2dest and cop2src fields are coprocessor register specifiers,
the ISA does not define how these correspond to the coprocessor register specifiers in other
Coprocessor 2 instructions.

The COP2 instruction is the primary mechanism by which a programmer can specify
instruction bits to control Coprocessor 2. The 25-bit copfunc field is compeletely implemen-
tation dependent.

Special Instructions

The SYSCALL and BREAK instructions are useful for implementing operating systems and
debuggers. The SYNC instruction can be necessary to guarantee strong load/store ordering
in modern multi-processors with sophisticated memory systems.

The SYSCALL and BREAK instructions cause and immediate syscall or break excep-
tion. To access the code field for use as a software parameter, the exception handler must
load the memory location containing the syscall instruction.

SMIPS-15

The SYNC instruction is used to order loads and stores. All loads and stores before the
SYNC instruction must be visible to all other processors in the system before any of the
loads and stores following the SYNC instruction are visible.

A.5.3 SMIPS Variants

The SMIPS specification defines three SMIPS subsets: SMIPSv1, SMIPSv2, and SMIPSv3.
SMIPSv1 includes the following five instructions: ADDIU, BNE, LW, SW, and MTC0. The
tohost register is the only implemented system coprocessor register. SMIPSv2 includes all
of the simple arithmetic instructions except for those which throw overflow exceptions. It
does not include multiply or divide instructions. SMIPSv2 only supports word loads and
stores. All jumps and branches are supported. Neither SMIPSv1 or SMIPSv2 support
exceptions, interrupts, or most of the system coprocessor. SMIPSv3 is the full SMIPS ISA
and includes everything described in this document except for Coprocessor 2 instructions.
Table A.7 notes which instructions are supported in each variant.

A.5.4 Unimplemented Instructions

Several instructions in the MIPS32 instruction set are not supported by the SMIPS. These
instructions should cause a reserved instruction exception (RI) and can be emulated in
software by an exception handler.

The misaligned load/store instructions, Load Word Left (LWL), Load Word Right
(LWR), Store Word Left (SWL), and Store Word Right (SWR), are not implemented. A
trap handler can emulate the misaligned access. Compilers for SMIPS should avoid gener-
ating these instructions, and should instead generate code to perform the misaligned access
using multiple aligned accesses.

The MIPS32 trap instructions, TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEIU,
TLTI, TLTIU, TEQI, TNEI, are not implemented. The illegal instruction trap handler
can perform the comparison and if the condition is met jump to the appropriate exception
routine, otherwise resume user mode execution after the trap instruction. Alternatively,
these instructions may be synthesized by the assembler, or simply avoided by the compiler.

The floating point coprocessor (COP1) is not supported. All MIPS32 coprocessor 1
instructions are trapped to allow emulation of floating-point. For higher performance, com-
pilers for SMIPS could directly generate calls to software floating point code libraries rather
than emit coprocessor instructions that will cause traps, though this will require modifying
the standard MIPS calling convention.

Branch likely and branch and link instructions are not implemented and cannot be
emulated so they should be avoided by compilers for SMIPS.

SMIPS-16 Ch 1: SMIPS Reference

A.6 Instruction listing for SMIPS

31 26 25 21 20 16 15 11 10 6 5 0
opcode rs rt rd shamt funct R-type
opcode rs rt immediate I-type
opcode target J-type

Load and Store Instructions
v3 100000 base dest signed offset LB rt, offset(rs)
v3 100001 base dest signed offset LH rt, offset(rs)
v1 100011 base dest signed offset LW rt, offset(rs)
v3 100100 base dest signed offset LBU rt, offset(rs)
v3 100101 base dest signed offset LHU rt, offset(rs)
v3 110000 base dest signed offset LL rt, offset(rs)
v3 101000 base src signed offset SB rt, offset(rs)
v3 101001 base src signed offset SH rt, offset(rs)
v1 101011 base src signed offset SW rt, offset(rs)
v3 111000 base src signed offset SC rt, offset(rs)

I-Type Computational Instructions
v3 001000 src dest signed immediate ADDI rt, rs, signed-imm.
v1 001001 src dest signed immediate ADDIU rt, rs, signed-imm.
v2 001010 src dest signed immediate SLTI rt, rs, signed-imm.
v2 001011 src dest signed immediate SLTIU rt, rs, signed-imm.
v2 001100 src dest zero-ext. immediate ANDI rt, rs, zero-ext-imm.
v2 001101 src dest zero-ext. immediate ORI rt, rs, zero-ext-imm.
v2 001110 src dest zero-ext. immediate XORI rt, rs, zero-ext-imm.
v2 001111 00000 dest zero-ext. immediate LUI rt, zero-ext-imm.

R-Type Computational Instructions
v2 000000 00000 src dest shamt 000000 SLL rd, rt, shamt
v2 000000 00000 src dest shamt 000010 SRL rd, rt, shamt
v2 000000 00000 src dest shamt 000011 SRA rd, rt, shamt
v2 000000 rshamt src dest 00000 000100 SLLV rd, rt, shamt
v2 000000 rshamt src dest 00000 000110 SRLV rd, rt, shamt
v2 000000 rshamt src dest 00000 000111 SRAV rd, rt, shamt
v3 000000 src1 src2 dest 00000 100000 ADD rd, rt, shamt
v2 000000 src1 src2 dest 00000 100001 ADDU rd, rt, shamt
v3 000000 src1 src2 dest 00000 100010 SUB rd, rt, shamt
v2 000000 src1 src2 dest 00000 100011 SUBU rd, rt, shamt
v2 000000 src1 src2 dest 00000 100100 AND rd, rt, shamt
v2 000000 src1 src2 dest 00000 100101 OR rd, rt, shamt
v2 000000 src1 src2 dest 00000 100110 XOR rd, rt, shamt
v2 000000 src1 src2 dest 00000 100111 NOR rd, rt, shamt
v2 000000 src1 src2 dest 00000 101010 SLT rd, rt, shamt
v2 000000 src1 src2 dest 00000 101011 SLTU rd, rt, shamt

SMIPS-17

Multiply/Divide Instructions
v3 000000 00000 00000 dest 00000 010000 MFHI rd
v3 000000 rs 00000 00000 00000 010001 MTHI rs
v3 000000 00000 00000 dest 00000 010010 MFLO rd
v3 000000 rs 00000 00000 00000 010011 MTLO rs
v3 000000 src1 src2 00000 00000 011000 MULT rs, rt
v3 000000 src1 src2 00000 00000 011001 MULTU rs, rt
v3 000000 src1 src2 00000 00000 011010 DIV rs, rt
v3 000000 src1 src2 00000 00000 011011 DIVU rs, rt

Jump and Branch Instructions
v2 000010 target J target
v2 000011 target JAL target
v2 000000 src 00000 00000 00000 001000 JR rs
v2 000000 src 00000 dest 00000 001001 JALR rd, rs
v2 000100 src1 src2 signed offset BEQ rs, rt, offset
v2 000101 src1 src2 signed offset BNE rs, rt, offset
v2 000110 src 00000 signed offset BLEZ rs, rt, offset
v2 000111 src 00000 signed offset BGTZ rs, rt, offset
v2 000001 src 00000 signed offset BLTZ rs, rt, offset
v2 000001 src 00001 signed offset BGEZ rs, rt, offset

System Coprocessor (COP0) Instructions
v2 010000 00000 dest cop0src 00000 000000 MFC0 rt, rd
v2 010000 00100 src cop0dest 00000 000000 MTC0 rt, rd
v3 010000 10000 00000 00000 00000 011000 ERET

Coprocessor 2 (COP2) Instructions
– 010010 00000 dest cop2src 00000 000000 MFC2 rt, rd
– 010010 00100 src cop2dest 00000 000000 MTC2 rt, rd
– 010010 00010 dest cop2src 00000 000000 CFC2 rt, rd
– 010010 00110 src cop2dest 00000 000000 CTC2 rt, rd
– 110010 base cop2dest signed offset LWC2 rt, offset(rs)
– 111010 base cop2src signed offset SWC2 rt, offset(rs)
– 010010 1 copfunc COP2 copfunc

Special Instructions
v3 000000 00000 00000 00000 00000 001100 SYSCALL
v3 000000 00000 00000 00000 00000 001101 BREAK
v3 000000 00000 00000 00000 00000 001111 SYNC

Bibliography

[1] Bluespec, Inc. BluespecTM SystemVerilog Version Reference Guide, 2010.

[2] Bluespec, Inc. BluespecTM SystemVerilog Version User Guide, 2010.

[3] Bluespec, Inc. High-level “plug-and-play” specification, modeling and synthesis of pipelined
architectures with Bluespec’s PAClib, 2010.

[4] N. Dave, M. Pellauer, S. Gerding, and Arvind. 802.11a Transmitter: A Case Study in Microar-
chitectural Exploration. In Proc. 6th ACM/IEEE Intl. Conf. on Formal Methods and Models
for Codesign (MEMOCODE), Napa Valley, CA, July 2006.

[5] J. L. Hennessy and D. Patterson. Computer Organization and Design: The Hardware/Software
Interface (Second Edition). Morgan Kaufmann, February 1997. ISBN 1558604286.

[6] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach (Fifth
Edition). Morgan Kaufman, September 2011.

[7] M. T. Inc. MIPS32 Architecture for Programmers. 2002.
http://www.mips.com/publications/processor architecture.html.

[8] G. Kane and J. Heinrich. MIPS RISC Architecture (2nd edition). Prentice Hall, September
1991. ISBN 0135904722.

[9] R. S. Nikhil and K. R. Czeck. BSV by Example. CreateSpace, December 2010. ISBN-10:
1456418467; ISBN-13: 978-1456418465; avail: Amazon.com.

[10] D. L. Rosenband. The Ephemeral History Register: Flexible Scheduling for Rule-Based Designs.
In Proc. MEMOCODE’04, June 2004.

[11] D. L. Rosenband. A Performance Driven Approach for Hardware Synthesis of
Guarded Atomic Actions. PhD thesis, Dept. of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, August 2005. Also: Memo-491,
http://csg.csail.mit.edu/pubs/publications.html.

[12] D. Sweetman. See MIPS Run. Morgan Kaufmann, April 1999. ISBN 1558604103.

BIB-1

	Introduction
	Combinational circuits
	A simple ``ripple-carry'' adder
	A 2-bit Ripple-Carry Adder

	Static Elaboration and Static Values
	Integer types, conversion, extension and truncation
	Arithmetic-Logic Units (ALUs)
	Shift operations
	Enumerated types for expressing ALU opcodes
	Combinational ALUs
	Multiplication

	Summary, and a word about efficient ALUs

	Sequential (Stateful) Circuits and Modules
	Registers
	Space and time
	D flip-flops
	Registers

	Sequential loops with registers
	Sequential version of the multiply operator
	Modules and Interfaces
	Polymorphic multiply module

	Register files
	Memories and BRAMs

	Pipelining Complex Combinational Circuits
	Introduction
	Pipeline registers and Inelastic Pipelines
	Inelastic Pipelines
	Stalling and Bubbles
	Expressing data validity using the Maybe type

	Elastic Pipelines with FIFOs between stages
	Final comments on Inelastic and Elastic Pipelines
	Variations on architecture for IFFT
	Combinational IFFT
	Pipelined IFFT
	Folded IFFT
	Super-folded IFFT
	Comparing all the architectural variants of IFFT

	Introduction to SMIPS: a basic implementation without pipelining
	Introduction to SMIPS
	Instruction Set Architectures, Architecturally Visible State, and Implementation State
	SMIPS processor architectural state
	SMIPS processor instruction formats

	Uniform interface for our processor implementations
	A simple single-cycle implementation of SMIPS v1
	Expressing our single-cycle CPU with BSV, versus prior methodologies
	Separating the Fetch and Execute actions
	Analysis

	SMIPS: Pipelined
	Hazards
	Modern processors are distributed systems

	Two-stage pipelined SMIPS (inelastic)
	Two-stage pipelined SMIPS (elastic)
	Epochs and epoch registers
	Elastic pipeline: two-rules, fully-decoupled, distributed

	Conclusion

	BSV Rule Semantics
	Introduction
	Actions and ActionValues
	Combining Actions

	Parallelism: semantics of a rule in isolation
	Per-rule method well-formedness constraints

	Logical semantics vs. implementation: sequential rule execution
	Concurrent rule execution, and scheduling rules into clocks
	Schedules, and compilation of schedules
	Examples
	Nuances due to conditionals
	Hardware schedule managers

	Conclusion

	Concurrent Components
	Introduction
	A motivating example: an up-down counter
	Intra-clock concurrency and semantics
	Concurrent Registers (CRegs)
	Implementing the counter with CRegs

	Concurrent FIFOs
	Multi-element concurrent FIFOs
	Semantics of single element concurrent FIFOs
	Implementing single element concurrent FIFOs using CRegs

	Data Hazards (Read-after-Write Hazards)
	Read-after-write (RAW) Hazards and Scoreboards
	Concurrency issues in the pipeline with register file and scoreboard
	Write-after-Write Hazards
	Deeper pipelines
	Conclusion

	Branch Prediction
	Introduction
	Static Branch Prediction
	Dynamic Branch Prediction
	A first attempt at a better Next-Address Predictor (NAP)
	An improved BTB-based Next-Address Predictor
	Implementing the Next-Address Predictor

	Incorporating the BTB-based predictor in the 2-stage pipeline
	Direction predictors
	Incorporating multiple predictors into the pipeline
	Extending our BSV pipeline code with multiple predictors

	Conclusion

	Exceptions
	Introduction
	Asynchronous Interrupts
	Interrupt Handlers

	Synchronous Interrupts
	Using synchronous exceptions to handle complex and infrequent instructions
	Incorporating exception handling into our single-cycle processor

	Incorporating exception handling into our pipelined processor
	BSV code for pipeline with exception handling

	Caches
	Introduction
	Cache organizations
	Replacement policies
	Blocking and Non-blocking caches

	A Blocking Cache Design
	Integrating caches into the processor pipeline
	A Non-blocking cache for the Instruction Memory (Read-Only)
	Completion Buffers

	Conclusion

	Virtual Memory
	Introduction
	Different kinds of addresses
	Paged Memory Systems
	Page Tables
	Address translation and protection using TLBs
	Variable-sized pages
	Handling TLB misses
	Handling Page Faults
	Recursive Page Faults
	Integating Virtual Memory mechanisms ino the processor pipeline
	Conclusion

	Future Topics
	Asynchronous Exceptions and Interrupts
	Out-of-order pipelines
	Protection and System Issues
	I and D Cache Coherence
	Multicore and Multicore cache coherence
	Simultaneous Multithreading
	Energy efficiency
	Hardware accelerators

	SMIPS Reference
	Basic Architecture
	System Control Coprocessor (CP0)
	Test Communication Registers
	Counter/Timer Registers
	Exception Processing Registers

	Addressing and Memory Protection
	Reset, Interrupt, and Exception Processing
	Reset
	Interrupts
	Synchronous Exceptions

	Instruction Semantics and Encodings
	Instruction Formats
	Instruction Categories
	SMIPS Variants
	Unimplemented Instructions

	Instruction listing for SMIPS

	Bibliography

