
BSV by Example

The next-generation language for electronic system design

Rishiyur S. Nikhil and Kathy R. Czeck

2

Copyright c© 2010 Bluespec, Inc. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means – electronic, mechanical,
photocopying, or otherwise – without the prior written permission of Bluespec, Inc.

Edition 1.0

ISBN: 978-1456418465

Bluespec is a registered trademark of Bluespec, Inc. The use in this publication of trade names,
trademarks, service marks, and similar terms, even if they are not identified as such, is not to be
taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While every precaution has been taken in the preparation of this book, Bluespec, Inc. and au-
thors assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Any questions may be directed to support@bluespec.com. Additional support resources are available
at http://www.bluespec.com/support/.

3

The authors thank all our colleagues and friends at Bluespec, MIT and Sandburst who contributed
to the creation of BSV, its tools, and to the expertise for their effective use. In this book, the authors
are merely channeling this vast body of shared knowledge.

4

Contents

Table of Contents . 4

1 Introduction 13

1.1 Design activities where BSV is used . 13

1.2 Key ideas in BSV . 14

1.2.1 Behavior . 14

1.2.2 Structure . 15

1.3 Why BSV? Can’t we do all this with existing languages (like C++)? 15

1.4 About this book . 19

2 Getting started with BSV 21

2.1 A simple example . 21

2.1.1 Comments . 22

2.1.2 Package . 22

2.1.3 (* synthesize *) . 22

2.1.4 Module definition . 22

2.1.5 Rule . 23

2.1.6 System tasks . 23

2.2 Building the design . 24

2.2.1 Bluespec Development Workstation (BDW) 24

2.2.2 Components of a BSV design . 24

2.2.3 Overview of the BSV build process . 25

2.2.4 Create a project file . 26

2.2.5 Compile . 27

5

6 CONTENTS

2.3 Multiple modules in a single package . 28

2.3.1 Interfaces . 29

2.4 Multiple packages in a single design . 31

3 Data types 33

3.1 Type . 33

3.2 Uppercase and lowercase in type and value identifiers 33

3.3 Typeclasses and overloading . 34

3.4 Pre-defined type classes . 35

3.5 Data type conversion functions . 35

3.6 Some common scalar types . 36

3.6.1 Bit#(n) . 36

3.6.2 Bool . 37

3.6.3 UInt#(n) . 37

3.6.4 Int#(n) . 37

3.7 Using abstract types instead of Bit . 37

3.8 Integers . 40

3.9 Strings . 42

4 Variables, assignments, and combinational circuits 43

4.1 Variable declaration and initialization . 43

4.1.1 Side-effect initialization . 44

4.1.2 Value initialization . 44

4.1.3 Value initialization from a Value method . 45

4.1.4 Initializing sub-interface components . 45

4.1.5 Additional examples . 46

4.2 Combinational circuits . 47

4.2.1 Error - no type declaration . 50

4.2.2 Error - no initialization . 50

CONTENTS 7

5 Rules, registers, and fifos 51

5.1 Defining and updating a register . 51

5.1.1 Registers . 52

5.1.2 Updating the register . 52

5.2 Rules and their semantics: atomicity and orderings 53

5.3 Composition of rules . 54

5.3.1 Attribute descending_urgency . 56

5.4 Multiple registers in a rigid synchronous pipeline . 57

5.5 Using register syntax shorthands . 59

5.6 Using valid bits . 60

5.7 Multiple FIFOs in an elastic asynchronous pipeline 61

6 Module hierarchy and interfaces 65

6.1 Module hierarchies . 65

6.1.1 Parameter . 67

6.1.2 Scope of methods . 68

6.1.3 Analyzing a design . 69

6.2 Implicit conditions of methods . 70

6.3 ActionValue methods . 71

6.3.1 The let statement . 72

6.3.2 The <- operator . 72

6.3.3 Defining the ActionValue Method . 72

6.4 ActionValue method with type error . 73

6.5 ActionValue method with error in rule condition . 74

6.6 Defining an Action function . 75

6.7 Nested interfaces . 76

6.8 Standard connectivity interfaces . 81

7 Scheduling 85

7.1 Scheduling error due to parallel composition . 86

7.2 Scheduling attributes . 87

7.2.1 Prioritization using descending urgency . 87

8 CONTENTS

7.2.2 Descending urgency vs. execution order . 89

7.2.3 mutually exclusive . 91

7.2.4 conflict free . 93

7.2.5 preempts . 94

7.2.6 fire when enabled, no implicit conditions . 96

7.3 always ready, always enabled . 99

7.4 -aggressive-conditions . 100

7.5 Separating an ActionValue method . 102

8 RWires and Wire types 107

8.1 RWire . 107

8.1.1 Up-down counter with simultaneous up/down commands 108

8.1.2 Attributes (*fire when enabled, no implicit conditions*) 111

8.1.3 Compiling the Example . 112

8.1.4 RWire with pattern-matching . 113

8.2 Wire . 114

8.3 DWire . 115

8.4 PulseWire . 116

8.5 BypassWire . 119

8.6 RWires and atomicity . 120

9 Polymorphism 123

9.1 Polymorphic function . 123

9.1.1 Common overloading provisos . 125

9.1.2 Size relationship provisos . 126

9.1.3 valueOf and SizeOf pseudo-functions . 126

9.2 Simple polymorphic module with provisos . 127

10 Advanced types and pattern-matching 133

10.1 User-defined types . 133

10.1.1 Type synonyms . 133

10.1.2 Enums . 134

10.1.3 Structs . 136

CONTENTS 9

10.1.4 Tagged unions . 137

10.1.5 Maybe type . 139

10.1.6 Case statements and pattern-matching on tagged unions 141

10.2 Simple Processor Model . 143

10.3 Structs of registers vs. register containing a struct 145

10.4 Tuples . 148

11 Static elaboration - For-loops/while-loops 151

11.1 Non-terminating for-loops and while-loops . 151

11.2 Static and dynamic conditionals . 153

12 Expressions 157

12.1 “Don’t care” expressions, 2-valued and 4-valued logic 158

12.2 Case expressions . 160

12.3 Function calls . 160

13 Vectors 163

13.1 Arrays and square-bracket notation . 164

13.2 Arrays vs. Vectors . 165

13.3 bit-vectors and square bracket notation . 167

13.4 Whole register update . 172

13.5 Vector of registers . 174

13.6 Register containing a vector vs. a vector of registers 175

13.7 Vector of module interfaces . 176

13.8 Static and dynamic indexing of vectors . 177

14 Finite State Machines (FSMs) 181

14.1 Building an FSM explicitly using rules . 181

14.2 One-hot FSM explicitly using rules . 183

14.3 StmtFSM . 185

14.3.1 A basic template . 186

14.3.2 AutoFSM . 187

14.3.3 StmtFSM example . 188

10 CONTENTS

15 Importing existing RTL into a BSV design 195

15.1 Using an existing interface . 196

15.1.1 Module header definition . 197

15.1.2 Parameters . 197

15.1.3 Clocks and Resets . 198

15.1.4 Methods . 199

15.2 Defining a new interface . 200

A Source Files 203

A.1 Getting started with BSV . 203

A.1.1 A simple example . 203

A.1.2 Testbench communicating with DUT . 204

A.1.3 Multiple packages in a single design . 205

A.2 Data types . 206

A.2.1 Using abstract types instead of Bit . 206

A.2.2 Integers . 208

A.2.3 Strings . 210

A.3 Variables, assignments, and combinational circuits 210

A.3.1 Variable declaration and initialization . 211

A.3.2 Combinational circuits . 212

A.4 Rules, registers, and FIFOs . 213

A.4.1 Defining and updating a Register . 213

A.4.2 Composition of rules . 214

A.4.3 Multiple registers in a rigid pipeline . 214

A.4.4 Using register syntax shorthand . 216

A.4.5 Using valid bits . 217

A.4.6 Asynchronous pipeline using FIFOs . 218

A.5 Module hierarchy and interfaces . 220

A.5.1 Module hierarchies . 220

A.5.2 Implicit conditions of methods . 221

A.5.3 ActionValue method . 222

A.5.4 ActionValue method with type error . 223

CONTENTS 11

A.5.5 ActionValue method with error in rule condition 224

A.5.6 Defining an Action function . 225

A.5.7 Nested interfaces . 226

A.5.8 Standard connectivity interfaces . 228

A.6 Scheduling . 230

A.6.1 Scheduling error due to parallel composition 230

A.6.2 Prioritization using descending urgency . 232

A.6.3 descending urgency vs. execution order . 233

A.6.4 mutually exclusive . 234

A.6.5 conflict free . 235

A.6.6 preempts . 236

A.6.7 fire when enabled, no implicit conditions . 238

A.6.8 always ready, always enabled . 239

A.6.9 aggressive conditions . 240

A.6.10 Separating ActionValue method . 241

A.7 RWires and Wire types . 243

A.7.1 Simple RWire example . 243

A.7.2 RWire with pattern matching . 246

A.7.3 Wire . 248

A.7.4 DWire . 251

A.7.5 PulseWire . 254

A.7.6 BypassWire . 256

A.7.7 RWires and atomicity . 259

A.8 Polymorphism . 261

A.8.1 Polymorphic function . 261

A.8.2 Simple polymorphic function with provisos 263

A.9 Advanced types and pattern-matching . 265

A.9.1 Enums . 265

A.9.2 Simple Processor Model . 267

A.9.3 Structs of registers vs. register containing a struct 271

A.9.4 Tuples . 272

12 CONTENTS

A.10 Static elaboration - for loops/while loops . 273

A.10.1 For-loops/While-loops . 273

A.10.2 Static and dynamic conditionals . 274

A.11 Expressions . 275

A.11.1 Don’t care expressions . 275

A.11.2 Case expressions . 278

A.11.3 Function calls . 279

A.12 Vectors . 280

A.12.1 Arrays and square-bracket notation . 280

A.12.2 Arrays vs. Vectors . 281

A.12.3 bit-vectors and square bracket notation . 282

A.12.4 Whole register update . 284

A.12.5 Register containing a vector vs. vector of registers 285

A.12.6 Vector of modules . 286

A.12.7 Static elaboration . 288

A.13 Finite State Machines . 290

A.13.1 Building a FSM explicitly using rules . 290

A.13.2 One-hot FSM explicitly using rules . 291

A.13.3 StmtFSM - Basic template . 293

A.13.4 AutoFSM . 293

A.13.5 StmtFSM example . 294

A.14 Importing existing RTL . 298

A.14.1 Verilog File . 299

A.14.2 Using an existing interface . 299

A.14.3 Defining a new interface . 300

Index . 302

Chapter 1

Introduction

BSV (Bluespec SystemVerilog) is a language used in the design of electronic systems (ASICs, FPGAs
and systems). BSV is used across the spectrum of applications—processors, memory subsystems,
interconnects, DMAs and data movers, multimedia and communication I/O devices, multimedia and
communication codecs and processors, signal processing accelerators, high-performance computing
accelerators, etc. BSV is also used across markets—from low-power, portable consumer items to
enterprise-class server-room systems.

Being both a very high-level language as well as fully synthesizable to hardware, it is used in many
design activities, as described below. This combination of high level and full synthesizability enables
many of these activities that were previously only done in software simulation now to be moved
easily to FPGA-based execution (whether the design is eventually bound for ASICs or FPGAs).
This can speed up execution by three to six orders of magnitude (1000x to 1,000,000x). Such
a dramatic speedup not only accelerates existing activities, but enables new activities that were
simply not feasible before (such as cycle-accurate multi-core processor architecture models running
real operating systems and real applications).

1.1 Design activities where BSV is used

Executable Specifications (synthesizable). For today’s complex systems, a specification written in
a human language (like English) is likely to be imprecise, incomplete or even infeasible and self-
contradictory in its requirements. A specification in BSV addresses these concerns, because of its
precise semantics and executability on real data. Fleshing out a spec in this way is also called spec
validation.

Virtual Platforms (synthesizable). Today’s chips are dominated by the volume and complexity of
the software that runs on them. It is no longer acceptable to have to wait for chips to be available
before developing software. Virtual Platforms enable software development and testing to begin as
early as day one. Virtual platforms written in BSV, being synthesizable, run on FPGAs at much
higher speeds and greater accuracies than traditional software virtual platforms, greatly increasing
software development productivity.

13

14 CHAPTER 1. INTRODUCTION

Architectural Modeling (synthesizable). Complex SoCs (Systems on a Chip) involve complex trade-
offs. What should be done in SW vs. in HW accelerators? How many processors vs. HW accelera-
tors? What micro-architecture for processors, interconnect, memory systems? These decisions will
affect chip area, speed, power consumption, cost, and time-to-market. Many of these decisions are
too complex to be taken analytically—they require actual execution on actual data. BSV is used
for synthesizable architecture models, exploration and validation at the system, subsystem, and the
IP block levels.

Design and Implementation. This is the classic design activity of IP blocks (Intellectual Property),
except that today these can be complex subsystems. BSV enables designing such components at a
much higher level of abstraction and with better maintainability.

Verification Environments (synthesizable). Every verification environment is a model of “the rest of
the system.” As such, they can be as complex as designs themselves, face similar speed-of-execution
issues, and face similar issues of reusability, maintainability and evolvability. BSV is used for writing
synthesizable transactors, testbenches and both system and reference models.

1.2 Key ideas in BSV

BSV borrows powerful ideas that have been developed over several decades in advanced formal
specification and programming languages. These can be classified into two groups—behavior and
structure.

1.2.1 Behavior

BSV’s behavioral model is popular among formal specification languages for complex concurrent
systems. We call them Atomic Rules and Interfaces, but in the literature they also go by various
names such as Term Rewriting Systems, Guarded Atomic Actions, and Rewrite Rules. Well-known
formal specification languages that use a similar model include Guarded Commands (Dijkstra);
TLA+ (Lamport); UNITY (Chandy and Mishra); and Z, B and EventB (Abrial).

The reasons BSV and all these formal specification languages choose this model are:

• Parallelism: The model of atomic rules is fundamentally parallel, unlike many other approaches
that graft a parallel extension on top of a sequential language (such as those based on C++).
This is ideally suited for the massive, fine-grain, heterogeneous parallelism that is everywhere
in complex hardware designs and distributed systems.

• Correctness: The atomicity of rules is a powerful tool in thinking about correct behavior
in the presence of complex parallelism. A key concept in correct systems is the invariant,
which represents a correctness condition that one expects to be maintained in a system (such
as, “A cache line can be in the DIRTY state in only one of the multiple caches”, or “The
counter in the DMA is equal to the number of bytes transferred”). Atomicity of rules allows
reasoning about invariants one rule at-at-time. Without atomicity, one has to worry about all
possible interleavings of parallel activities, an exercise that quickly becomes too complex both
for humans and for formal verification systems.

1.3. WHY BSV? CAN’T WE DO ALL THIS WITH EXISTING LANGUAGES (LIKE C++)? 15

The hardware designer sees profound practical consequences in expressing behavior using Atomic
Rules and Interfaces. Any interesting piece of hardware has control logic (multiplexers, enable sig-
nals, and so on). This control logic can become extremely complex. Further, control logic typically
spans module boundaries, and manifests itself at module boundaries in ad-hoc protocols and as-
sumptions on signalling. Without a rigorous semantics, designs tend to accumulate layer upon layer
of such assumptions, often poorly documented (if at all) and poorly communicated between the de-
signer of a module and the users of the module. This is what makes RTL design so brittle, because
even the smallest change can violate one of these myriad control assumptions, resulting in race-
conditions, dropped data, mis-sampled data, buffer overflows and underflows, and the like. Atomic
Rules and Interfaces are the solution—they provide a rigorous semantics and a much higher level
view of interactions between modules, and the complex control logic is automatically synthesized,
correct by construction. Even more important: when the source code is changed, a simple recompi-
lation will re-synthesize all this complex control logic, accommodating all the changes in a correct
manner. This allows the hardware designer to focus on overall architecture structure, and leave the
nitty-gritty detail of control logic to the compiler (which is normally designed and maintained by
hand by the RTL designer).

1.2.2 Structure

Modern high-level programming languages have developed some powerful abstraction mechanisms
for organizing and structuring large, complex, software systems. Unfortunately, until BSV, many
of these capabilities have largely passed hardware design languages by, in part under the perhaps
mistaken presumption that those abstraction mechanisms are “not relevant” for hardware design
languages.

BSV builds on, and borrows ideas from, two sources for its structural abstractions:

• SystemVerilog, for modules and module hierarchy; separation of interfaces from modules; syn-
tax for literals, scalars, expressions, blocks, loops; syntax for user-defined types (enums, structs,
tagged unions, arrays), and so on. All these will be very familiar to people who know Verilog
and SystemVerilog.

• Haskell, for more advanced types, parameterization and static elaboration. Haskell is a modern
“pure functional programming” language that is recently seeing a resurgence both because it
addresses software complexity and because it is a promising basis for attacking the “parallel
programming software crisis” that has been precipitated by the recent advent of multi-core and
multi-threaded processors. Haskell has many features that are well acknowledged to be more
powerful than those in languages like C++, Java and C#.

1.3 Why BSV? Can’t we do all this with existing languages
(like C++)?

[This section is for those particularly interested in this topic, and can be skipped without loss of
continuity.]

16 CHAPTER 1. INTRODUCTION

When someone comes to you with “a new language” it is often time to run the other way. Often, new
languages offer slightly different features, repackaging of existing features, and so on, most of which
perhaps could have been achieved with a suitable library or “style guide” for an existing language.
The advantages of sticking to an existing language are of course tremendous, given their maturity
and vast existing ecosystem of tools and expertise that one can draw upon.

Unless ... the new language offers such compelling value that it is worth the switch (and, we believe,
this is the case with BSV). This value must be at least an order of magnitude (10x) to be worth the
effort of changing horses.

In the software world, people switched from C to C++ because abstraction mechanisms such as
object-orientation, stronger type-checking, templates, and overloading could not simply be grafted
onto C via libraries or style guides. Others switched further to Java and C# because of automatic
storage management, still more expressive types, portability and greater simplicity. New scripting
languages (such as Tcl, Python and Ruby) emerged for more dynamic interactivity and behavior.
(Interestingly, Python also borrows many ideas from Haskell.)

Today, in the hardware design space, people use different languages for different design activities:

• Executable specs. These are still not the norm. Specs are still mostly written in human
languages (like English). Some analysis may be done in spreadsheets.

• Virtual Platforms. Today these are usually pure software simulators based on C++ and/or
SystemC.

• Architectural Modeling. This used to be done with various ad hoc tools, but recently there
is a trend towards the SystemC TLM 2.0 (Transaction Level Modeling) methodology. The
methodology encompasses various levels of timing accuracy.

• Design and Implementation. This is still mostly done with RTL (Verilog and VHDL) and
classical RTL synthesis. There are some small steps up in abstraction from Verilog to Sys-
temVerilog. In a few cases, people are using so-called High Level Synthesis (HLS) starting
from C++ source codes. In even fewer cases, people are using synthesis from SystemC (but
this is typically not HLS, as explained in more detail below).

• Verification Environments. From languages like e and Vera there is a move towards Sys-
temVerilog and methodologies like VMM and UVM. Others are beginning to use SystemC. All
of them exploit similar concepts, like object-orientation and constrained random testing.

In general, except for design and implementation, all the other activities are done purely in software,
because the languages used (full C++, SystemC, object-oriented capabilities of SystemVerilog) are
not synthesizable. This raises a serious problem—you can either get speed, or accuracy, but not
both.

For speed, one starts with the native speed of compiled C++. Software virtual platforms use so-
phisticated technology like just-in-time cross-compilation to deliver impressive execution speeds,
for example booting an entire guest operating system in seconds. TLM models avoid the over-
heads of event-driven simulation (by sticking to SC METHOD and avoiding SC THREAD and

1.3. WHY BSV? CAN’T WE DO ALL THIS WITH EXISTING LANGUAGES (LIKE C++)? 17

SC CTHREAD). If they must use events, they play tricks like “temporal decoupling” to amortize
the overhead.

While all these tricks are laudable (and perhaps adequate for some modeling purposes), unfor-
tunately performance drops steeply as one adds almost any architectural detail, such as actual
parallelism, interconnect contention, memory or I/O bottlenecks, cycle-accurate device models, and
so on. Performance also drops steeply when one adds any instrumentation at all (which is necessary
for performance modeling). Further, since the basic substrate is C++, it is extraordinarily difficult
to achieve any speed up by exploiting multi-core hosts.

In summary, as you add architectural detail (for accuracy), you lose speed. Development time
increases sharply, as programmers contort the code to apply tricks to restore speed.

One attempted solution is to use FPGA-based execution for the architecturally detailed compo-
nent(s) of the system model. This is still a problem because of the logistical difficulties of dealing
with multiple languages and paradigms for different components, because the software side may still
run too slowly, because bandwidth constraints in communicating between the software and FPGA
sides may anyway limit speed, and because of limited visibility into the FPGA-side components. Fur-
ther, conventional approaches have problems in creating the FPGA-side components (see synthesis
discussion below).

High-Level Synthesis (HLS) from C++ and SystemC is often held out by many in the industry as
a potential way forward. Unfortunately there are serious problems in using C++ and SystemC as a
starting point. A central issue is architecture, architecture, architecture.

It is well understood that the key to high-performance software is good algorithms. Further, good
algorithms are designed by people with training and experience, and not by tools (a compiler only
optimizes an algorithm we write, it doesn’t improve the algorithm itself). Similarly, the key to high-
performance hardware (measured as area, speed, power) is good architecture. Hence, it is crucial to
give designers the maximum power to express architecture; all the rest can be left to tools.

Unfortunately, HLS from C++ does exactly the opposite—it obscures architecture. These HLS tools
try to choose an architecture based on internal heuristics. Designers have indirect, second-order
controls on this activity, expressed as “constraints” such as bill-of-materials limits for hardware
resources and pragmas for loop transformations (unrolling, peeling, fusion, etc.). It is hard (and
often involves guesswork) to “steer” these tools towards a good architecture.

HLS from C++ has another serious limitation. It is fundamentally an exercise in “automatic paral-
lelization”, i.e., in automatically transforming a sequential program into a parallel implementation.
This problem has been well-studied since the days of the earliest vector supercomputers like the
CDC 6600 and Cray 1, and works (and even then, only moderately) for “loop-and-array” codes.
This is because the key technologies needed for automatic parallelization, namely dependence anal-
ysis, alias analysis, etc., on the CDFG (Control/Data Flow Graph) have been shown to be feasible
only for simple loops, often statically bounded, working on arrays with simple (affine, linear) com-
binations of loop indexes. Such loop-and-array computations of course exist in a few components
in an SoC, notably the signal-processing ones, but are absent in the majority of the SoC, which are
more “control-oriented” (processors, memory systems, interconnects, DMAs and data movers, I/O
peripherals, etc.). Even in the DSP space, note that modern DSP algorithms are also becoming
more control-oriented in order to become more adaptive to noise (for signal processing) and actual
content (for audio and video codecs).

18 CHAPTER 1. INTRODUCTION

Finally, HLS from C++ has yet another serious limitation. It is well known that, for the same com-
putation, one may choose different algorithms depending on the computation model and associated
cost model of the platform. This is why there are entire textbooks on parallel algorithms—they
would be unnecessary if sequential algorithms were adequate. Unfortunately, C++ has a fixed com-
putational model—the von Neumann model of sequential execution and large, flat (constant-cost)
memory. Consequently, algorithms written in C++ may not be the best choice for hardware imple-
mentation. Often, one must “reverse engineer” the mathematical function from a particular C++
algorithm before coming up with a good hardware architecture. Of course, no HLS tool is going to
do that for you.

HLS from SystemC is almost a misnomer. While it may incorporate HLS from C++ for the bodies
of some IP blocks as described in the previous paragraphs, the rest of the design (blocks that are not
“loop-and-array”, and system integration) are essentially expressed at the RTL level of abstraction
and uses classical RTL synthesis techniques.

With this discussion of the C++/SystemC/SystemVerilog state of the art behind us, we can describe
why BSV delivers the order of magnitude improvements in productivity and capability promised at
the beginning of this section.

First, unlike C++ and SystemC TLM, BSV is architecturally transparent. The designer, and not
the tool, explicitly and directly expresses architecture. BSV’s powerful types and static elabo-
ration mechanisms provide great power to express architectural structures very succinctly and
programmatically—but static elaboration is deterministic and predictable and there are no sur-
prises. As a result, HLS from BSV typically allows you to converge to a high-quality design much
faster than HLS from C++, where you have to try “steering” the tool towards a good architecture.

Second, unlike C++ and SystemVerilog, BSV has a superior behavioral semantics—Atomic Rules
and Interfaces—which is a higher-level abstraction for concurrency and is much better suited to the
task of describing the fine-grain, multi-rate, heterogeneous parallelism found in hardware systems.

Because of the above two properties, with BSV one can go from a truly abstract (mathematical)
description of an algorithm directly towards a good architectural implementation, without the detour
through C++ code that has at best obscured it and at worst chosen a poor concrete sequential
algorithm. And unlike HLS from C++, HLS from BSV can seamlessly encompass and interact with
complex control logic, interconnects, memory subsystems, and so on.

Third, BSV has much stronger parameterization, which directly affects everything: code size, code
structure, code reuse, and code correctness. All types in BSV are first-class, that is, one can write
functions taking any types as arguments and any types as results. Modules and functions can be
parameterized by other modules and functions; functions can generate Rules and Interfaces, and so
on. This results in an unprecedented level of static elaboration expressive power (Turing complete
“generate”).

Fourth, BSV has a much stronger data type system (including polymorphic types and user-defined
overloading) with much stronger type-checking. This gives more expressive power with greater safety.

Fifth, BSV also performs many other kinds of strong static checking. Chief amongst these is a
semantically well-founded notion of clock and reset domains. For example, accidentally crossing a
clock domain boundary without a synchronizer is a thing of the past.

Sixth, and finally, programs using all the above features are synthesizable—there is no retraction
into any weaker “synthesizable subset” as one sees in C++, SystemC and SystemVerilog.

1.4. ABOUT THIS BOOK 19

As a result, BSV also solves the “multitude of disparate languages” problem. A single, unified
language can be used for synthesizable executable specs, synthesizable (fast, scalable) virtual plat-
forms, synthesizable (fast, scalable) architecture models, synthesizable design and implementation,
and synthesizable test environments. All of these can be run on FPGA platforms, the modern way
to do extensive verification.

1.4 About this book

This book is intended to be a gentle introduction to BSV. Even though all the key ideas have been
tried and tested for decades in other specification and programming languages (as cited in previous
sections), they are often new to people in the hardware and hardware systems design community
and, like all things new, it takes some practice for them to feel natural.

For example, for most of us brought up on a strict diet of sequential programming languages (Fortan,
C, C++, Java, C#, Perl, Tcl, Python, even Matlab), the idea of describing behavior using Atomic
Rules and Interfaces initially seems strange. The assumption of the sequential von Neumann model
has been so implicitly and subconsciously wired into our way of thinking that anything else initially
seems strange. After a while, as one awakens to the sense of how natural Atomic Rules and Interfaces
are for describing hardware, one undergoes an epiphanous flip and begins to ask: “Why would one
ever describe hardware in any other way?”

Similarly, if one has never encountered polymorphic types, user-defined overloading, or object-
orientation, it takes a little getting used to, but after a while one wonders how one ever lived
without them! In this regard the C++ programmer has an advantage over the C and Verilog pro-
grammer, because C++ has these features, although not with synthesis, and not with type-checking
as strong as in BSV.

One of the subtle but insidious consequences of our traditional sequential languages is that we play
fast and loose with side-effects (state change), precisely because sequentiality makes it tractable
to reason about side-effects. But side-effects and parallelism are a potentially deadly combination,
unless carefully mediated by atomic transactions. BSV goes to extraordinary lengths to separate
“pure” expressions from “side-effecting” (state-changing) expressions, codifying the difference in the
data types and bringing the power of static type-checking to enforce this (see Action and Action-

Value types). This is again one of those features which initially seems strange; after it has saved
your design (by static type-checking!) a couple of times, you begin to wonder how you ever survived
without it!

Even the seasoned C++ programmer is often astonished by the power of functional programming in
BSV, where all types are first-class, and one can write arbitrary “generate” computations, passing
modules, functions, rules, interfaces freely as arguments and results. Even more astonishing, these
features can be used in synthesizable programs.

This book is not a language reference manual; for that, please see Bluespec’s BSV Reference Guide.
Nor is it about how to use the tools; for that, please see the User Guide. Nor is it particularly
about good hardware design (good architecture), which is a subject that people should learn no
matter what design language they use. The prototypical target audience for this book is the person
who says: “I have an idea for a good architecture that I can sketch out for you on the whiteboard;

20 CHAPTER 1. INTRODUCTION

now please give me a language where I can focus on expressing that idea precisely, concisely, safely,
synthesizably, and without getting lost in a million details.”

This book is also not about overall system design methodology. The discussion in this chapter
should give the reader a sense of our recommended design methodology, design by refinement. That
is, we start by writing executable specifications of systems, and we gradually and incrementally
add architectural detail until we have reached our performance targets (speed, area and power in
the chosen target technology). All this is done in a single language, BSV, so that there is an
enormous reuse of code during the refinement, particularly reuse of interfaces, testbenches, test
data, models, verification IP, and so on. Further, we execute repeatedly and frequently, from day
one, starting with the very earliest approximations of the executable spec, so that at all times we
have a calibration about feasibility, correctness, completeness and cost. However, this book does not
take you through this design-by-refinement process with a major design example (some examples
along with whitepapers are included in the Bluespec software distribution). Here, you will find
various sequences of small examples that demonstrate small incremental changes, giving a flavor of
refinement.

This book tries to take you into the BSV language one small step at a time. Each section includes a
complete, executable (and synthesizable) BSV program, and tries to focus on just one feature of the
language. Please study the actual code for the example; the text in the corresponding section only
highlights certain interesting features, and the actual example code often has more detail of interest.
A few examples span multiple sections, with each successive section showing a small but interesting
modification or alternative to the previous ones. The complete source codes are in the appendix of
the book, but are also available in machine-readable form. We strongly encourage you actually to
build and execute the examples and, even better, try some of your own modifications—there’s no
better way to learn than by doing.

Chapter 2

Getting started with BSV

2.1 A simple example

Source directory: getting_started/hello_world

Source listing: Appendix A.1.1

Let’s start with a very basic ”Hello World” example, just to go through the mechanics of building
and running a small BSV program.

// ==

/* Small Example Suite: Example 1a

Very basic ’Hello World’ example just to go through the

mechanics of actually building and running a small BSV program

(and not intended to teach anything about hardware!).

== */

package Tb;

(* synthesize *)

module mkTb (Empty);

rule greet;

$display ("Hello World!");

$finish (0);

endrule

endmodule: mkTb

endpackage: Tb

21

22 CHAPTER 2. GETTING STARTED WITH BSV

2.1.1 Comments

Single-line comments start with two slashes (//) and go to the end of the line. Multi-line comments
can be written with the slash-star opening bracket and the star-slash closing bracket (/* comment

here */).

2.1.2 Package

All your code must be organized into packages, which are like namespaces. The BSV compiler and
other tools assume that there is one package per file, and they use the package name to derive the
file name. The file name is <package name>.bsv, which in this case would be Tb.bsv (“Tb” for
“Testbench”). Package structure does not directly correlate with hardware structure. The hardware
structure is specified by the module hierarchy and constructs.

2.1.3 (* synthesize *)

Items contained within (* and *) are BSV attributes, used to guide the compiler in its decisions.
The (*synthesize*) attribute specifies that the module that follows is synthesized separately into a
hardware (Verilog) module. The top-level module of a design must be a synthesis boundary. Interior
modules can also represent synthesis boundaries. The design in this example has only one module.

You can also use the -g command-line flag when compiling to specify modules that are synthesis
boundaries, but we recommend using the (* synthesize *) attribute in the source text instead.

2.1.4 Module definition

The statement:

module mkTb (Empty);

defines a module named mkTb providing an Empty interface. By convention, we call our modules
“mkFoo”, for “make Foo”, to suggest that the module can be instantiated multiple times, possibly
with different parameters. Empty is a pre-defined interface with no methods. The keyword Empty is
not required, the statement could also be written as:

module mkTb();

BSV does not have input, output, and inout pins like Verilog and VHDL. Signals and buses are
driven in and out of modules with methods; these methods are grouped together into interfaces. An
Empty interface has no inputs or outputs.

Modules and interfaces form the heart of BSV. Modules and interfaces turn into actual hardware.
A module consists of three things: state, rules that operate on that state, and an interface to
the outside world (surrounding hierarchy). A module definition specifies a scheme that can be
instantiated multiple times.

2.1. A SIMPLE EXAMPLE 23

2.1.5 Rule

The statement:

rule greet;

$display ("Hello World!");

$finish (0);

endrule

defines a rule named greet with no explicit rule condition. (An explicit rule condition is a boolean
expression in parentheses after the rule name; when omitted, it defaults to True.)

Rules are used to describe how data is moved from one state to another, instead of the Verilog
method of using always blocks. Rules have two components:

• Rule conditions: Boolean expressions which determine when the rule is enabled.

• Rule body: a set of actions which describe state transitions

In this simple example, the name of the rule is greet and there are no explicit conditions on the
rule; the rule is always enabled. There are also no state transitions in the rule, just invocations of
the system functions $display and $finish.

A primary feature of rules in BSV is that they are atomic; each enabled rule can be considered
individually to understand how it maintains or transforms state. Rules are indivisible and a state
transition is described completely by the actions within the rule. Atomicity allows the functional
correctness of a design to be determined by looking at each of the rules in isolation, without con-
sidering the actions of other rules. This one-rule-at-a-time semantics greatly simplifies the process
of determining the functional correctness of a design. In the hardware implementation compiled by
the BSV compiler, multiple rules will execute concurrently. The compiler ensures the actual be-
havior is consistent with the logical behavior, thus preserving functional correctness while achieving
performance goals. Rules and rule scheduling are discussed in more detail in Section 5.2.

Each rule is terminated with an endrule, which can optionally include the name of the rule. We
could have written the endrule as:

endrule: greet

2.1.6 System tasks

BSV supports a number of Verilog’s system tasks and functions. In this example we have two system
tasks:

• $display invokes the system task to display a literal String (like “printf()” in C, it does
formatted output during simulation);

24 CHAPTER 2. GETTING STARTED WITH BSV

• $finish(0) finishes the simulation with an exit value of 0 from the simulation process (like
“exit()” in C, it terminates the simulation).

The module and package names also require “end” brackets, and as with the rule statement, the
repetition of the module and package names are optional.

2.2 Building the design

2.2.1 Bluespec Development Workstation (BDW)

The Bluespec Development Workstation (BDW) is an integrated graphical design environment for
creating, building, analyzing, and simulating BSV designs. The development workstation includes
all Bluespec tools and accesses third-party tools such as simulators, waveform viewers, and text
editors.

As we saw above, a BSV program consists of one or more outermost constructs called packages; all
BSV code must be inside packages and there is a one package per file. When using the workstation
you will have an additional file, a project file (projectname.bspec), which is a saved collection of
options and parameters. Only the workstation uses the project file; if you use BSV completely from
the Unix command line you need not have a project file.

In this guide we will assume you are using the Bluespec Development Workstation. For more details
on the workstation and complete commands and instructions on using the tools from the command
line, please refer to the Bluespec SystemVerilog User Guide.

2.2.2 Components of a BSV design

The following file types are generated when building a design with BSV. Not all file types will be
generated for all designs; some depend on the target simulation environment (Bluesim or Verilog).
Bluesim is a cycle simulator for BSV designs, included in your BSV release.

2.2. BUILDING THE DESIGN 25

File Types in a BSV Design

File Type Description Bluesim Verilog

.bsv BSV source File
√ √

.bspec Bluespec Development Workstation
project File

√ √

.bo,.ba Intermediate files not directly viewed by
the user

√ √

.v Generated Verilog file
√

The .h, and .cxx files are intermediate files not directly viewed by the user
.h C++ header files

√

.cxx Generated C++ source file
√

.o Compiled object files
√

.so Compiled shared object files
√

Note that the workstation and the compiler have various flags to direct the intermediate files into
various sub-directories to keep your project organized and uncluttered.

2.2.3 Overview of the BSV build process

Figure 2.1 illustrates the following steps in building a BSV design:

1. A designer writes a BSV program. It may optionally include Verilog, SystemVerilog, VHDL,
and C components.

2. The BSV program is compiled into a Verilog or Bluesim specification. This step has two
distinct stages:

(a) pre-elaboration - parsing and type checking

(b) post-elaboration - code generation

3. The compilation output is either linked into a simulation environment or processed by a syn-
thesis tool.

Once you’ve generated the Verilog or Bluesim implementation, the workstation provides the following
tools to help analyze your design:

• Interface with an external waveform viewer with additional Bluespec-provided annotations,
including structure and type definitions

• Schedule Analysis viewer providing multiple perspectives of a module’s schedule

• Scheduling graphs displaying schedules, conflicts, and dependencies among rules and methods.

26 CHAPTER 2. GETTING STARTED WITH BSV

Pre-elaboration

Post-elaboration

BSV
Compiler

.h .o
Bluesim

implementation

.v

Verilog

implementation

evaluate
high-level
description

.bo files

translate rule

description into

hardware

description

.ba
files

.bsv
High level description of
how to produce the rules

for a design

Module Browser
Schedule Analysis Window
Scheduling Graphs

Package Window
Type Browser

Bluespec
Development
Workstation

Window

Figure 2.1: BSV compilation stages

2.2.4 Create a project file

From a command prompt, execute the command bluespec to start the Bluespec Development
Workstation:

bluespec

The main window, shown in Figure 2.2, is the control center of the workstation. From this window
you can manage projects, set project options, and monitor status while working in the worksta-
tion. The window displays all commands executed in addition to all warnings, errors, and messages
generated by the BSV compiler and the workstation.

We’re going to create a new project for our example. Select New from the Project pull-down
menu. In the New Project dialog window select the directory containing the example file Tb.bsv

and enter a project name. Let’s call it Example. The project file will then be named Example.bspec.

After you press Save, the Project Options window will open so you can set the options and
parameters for the project. On the Files tab, enter the Top file (Tb.bsv) and Top module
(mkTb).

2.2. BUILDING THE DESIGN 27

Menu Bar

Tool Bar

Status/Log Window

Command Window

Figure 2.2: Main window components

Browse through the remaining tabs to familiarize yourself with the different options and note where
they are entered.

2.2.5 Compile

New Open Save Type
Check

Compile Link Simulate Compile
Link

Compile
Link

Simulate

Clean
Compile

Link
Simulate

Clean Stop

Figure 2.3: Workstation Toolbar

Building a project includes running the compiler and simulating designs. All build options are
available from the Build menu and the toolbar, shown in Figure 2.3.

Some options combine multiple build actions into single option or button, for example, Compile +
Link.

Compile the design by selecting Compile from the Build menu, or by using the Compile button
on the toolbar and make sure you have no errors in your file.

To simulate the design, run the compile, link, and simulate steps. You will see the ”Hello World!”
message in the workstation message window.

In this manual : Source code files (.bsv) and Bluespec Development Workstation project files
(.bspec) are provided for all examples in this manual. Open the project (.bspec) file to run

28 CHAPTER 2. GETTING STARTED WITH BSV

any of the examples. To run the provided Hello World example from workstation, open the file
hello_world.bspec from the directory getting_started/hello_world. The source code and di-
rectory location for all examples are in the Appendix A.

2.3 Multiple modules in a single package

Source directory: getting_started/mult_modules

Source listing: Appendix A.1.2

This next example looks at a design comprised of two modules, a small testbench module com-
municating with a design under test (DUT) module through its interface. To use the example files
provided, open the workstation project file getting_started/mult_modules/mult_modules.bspec.
You’ll notice that since both modules are still in the same package and the name of the top module
is still mkTb, the .bspec file looks the same as in our previous example.

This example defines two modules:

• mkModuleDeepThought which receives three input values in the interface, x, y, z, calculates
and returns, through the method the_answer, the sum of the values.

• mkTb the testbench which invokes a method in the interface on some input values and displays
the returned value.

The modules communicate through the interface Ifc_type.

2.3. MULTIPLE MODULES IN A SINGLE PACKAGE 29

package Tb;

(* synthesize *)

module mkTb (Empty);

Ifc_type ifc <- mkModuleDeepThought;

rule theUltimateAnswer;

$display ("Hello World! The answer is: %0d",ifc.the_answer (10, 15, 17));

$finish (0);

endrule

endmodule: mkTb

interface Ifc_type;

method int the_answer (int x, int y, int z);

endinterface: Ifc_type

(* synthesize *)

module mkModuleDeepThought (Ifc_type);

method int the_answer (int x, int y, int z);

return x + y + z;

endmethod

endmodule: mkModuleDeepThought

endpackage: Tb

2.3.1 Interfaces

Interfaces provide a means to group wires into bundles with specified uses, described by methods.
BSV does not have input, output, and inout pins like Verilog and VHDL. Signals and buses are
driven in and out of modules with methods. Most modules have several methods to drive all the
buses in and out of a module. These methods are grouped together into interfaces.

In SystemVerilog and BSV we separate the declaration of an interface from the definition of a module.
This allows us to define common interfaces that can be offered by multiple modules, without requiring
the repetition of the declaration in each of the implementation modules. All modules which share a
common interface have the same methods, and therefore the same number and types of inputs and
outputs.

It is important to distinguish between interface declarations and interface instances. A design may
contain one or more interface declarations, and each of these may have multiple instances. An
interface declaration can be thought of as declaring a new type similar to a struct type, where the
members are all method prototypes. The declaration states the new type, while the definition of how
the methods are implemented is contained within the module that contains the interface instance.

30 CHAPTER 2. GETTING STARTED WITH BSV

A method can be thought of like a function, i.e., it is a procedure that takes zero or more arguments
and returns a result. Thus, method declarations inside interface declarations look a lot like function
prototypes, the only difference being the use of the keyword method instead of the keyword function.
Each method represents one kind of transaction between a module and its clients. When translated
into RTL, each method becomes a bundle of wires. The definition of how a method is implemented
is contained in the interface definition within the module and may be different in each module where
the common interface is used. However the wires making up the interface, that is the inputs, outputs
and inouts, and the methods defined, will be the same in all instances.

Let’s look at the definition of interface Ifc_type. Interface names always start with an upper-case
letter, because they are a data type, in this case a user-defined data type. The interface declares a
value method named the_answer with three int arguments returning an int result. How the result
is calculated is left to the method definition.

interface Ifc_type;

method int the_answer (int x, int y, int z);

endinterface: Ifc_type

The module mkModuleDeepThought provides an interface of type Ifc_type, as shown in the module
definition statement:

module mkModuleDeepThought (Ifc_type);

To instantiate a module and obtain a handle on its interface, use a statement of the form:

Interface type identifier <- module name ;

In the testbench module (mkTb), an instance of the interface type Ifc_type named ifc is created
by instantiating a module which provides this interface:

Ifc_type ifc <- mkModuleDeepThought;

The fundamental difference between a method and a function is that a method also carries with
it implicit conditions, the handshaking signals and logic which are automatically generated by the
BSV compiler.

BSV classifies interface methods into three types:

• Value Methods: These are methods which return a value to the caller, and have no “actions”
(i.e., when these methods are called, there is no change of state, no side-effect).

• Action Methods: These are methods which cause actions (state changes) to occur. One may
consider these as input methods, since they typically take data into the module.

2.4. MULTIPLE PACKAGES IN A SINGLE DESIGN 31

• ActionValue Methods: These methods couple Action and Value methods, causing an action
(state change) to occur and they return a value to the caller.

The value method the_answer takes the integer arguments x, y, z and calculates the sum of the
arguments. Since it is a value method, we know that it does not change any state elements. The
definition of the method, that is the calculation of the return value based on the arguments, is
defined in the module mkModuleDeepThought.

method int the_answer (int x, int y, int z);

return x + y + z;

endmethod

2.4 Multiple packages in a single design

Source directory: getting_started/mult_packages

Source listing:Appendix A.1.3

This example separates the two module definitions in our previous example into separate packages:
Tb.bsv and DeepThought.bsv.

The only change required is add an import statement to the package Tb to import all declarations
from the package DeepThought:

import DeepThought::*;

The top file in the design is still Tb.bsv and the top module is still mkTb. To modify the current
example, you can create the new file DeepThought.bsv in the same directory as the file Tb.bsv.
From the Project Files window you can select File→New to create a new file from within the
workstation.

To run the example provided, open the project file:

getting_started/mult_modules/mult_modules.bspec

From the workstation you can review the source code, compile, and simulate the example.

32 CHAPTER 2. GETTING STARTED WITH BSV

Chapter 3

Data types

3.1 Type

Data types are an abstraction. Ultimately, all computation, whether in hardware or software, is done
on bits, but it is preferable to think in terms of the concepts like integers, floating point numbers,
fixed point numbers, Ethernet packets, video frames, and the like. Strong type-checking prevents
unintentional “misinterpretation” of bits, such as taking the square root of an Ethernet packet, or
the IP address of a vector of floating-point numbers.

A second and important reason for this abstraction is representation independence. For example,
the same abstract struct type can have many possible representations in bits (ordering of fields,
little- vs. big-endian, padding for byte and word alignment, and so on). Different representations
may be more appropriate depending on the application environment. By separating out the type
abstraction from its bit representation, we can easily change representations without modifying or
breaking the rest of the program.

Types play a central role in BSV. Every variable and every expression has a type and variables can
only be assigned values which have compatible types. The BSV compiler provides a strong, static
type-checking environment. Type checking, which occurs before program elaboration or execution,
ensures that object types are compatible and that conversion functions are valid for the context.

Data types in BSV are case sensitive. The first character of a type is always uppercase (there are
only two exceptions: the types int and bit, compatibility with Verilog). The first character of a
variable name is always lowercase. A common source of errors for beginners in BSV is to use an
uppercase name where BSV expects a lower case, and vice versa.

3.2 Uppercase and lowercase in type and value identifiers

In BSV, the case of the first letter of an identifier is significant, whether used to describe types
or values. The general principle is that an uppercase first letter introduces a constant, whereas a
lowercase first letter introduces a variable.

33

34 CHAPTER 3. DATA TYPES

A constant type is a particular type, such as Bool, Int, UInt, Server, Action, Module, Rule, and
so on. A type variable is used to represent a polymorphic type, similar to “generic” or “template”
types in other languages (see Section 9 for more on polymorphism).

A constant value is a particular symbolic value, such as True, False, the symbolic labels declared
in all enum types, the constructors associated with any struct or tagged union type, and so on. A
value variable is the familiar identifier bound to some particular value, such as x, foo, mkTb, mkDut,
and so on.

3.3 Typeclasses and overloading

[This section can be skimmed lightly on first reading. Overloading is used in a fairly lightweight
manner in subsequent sections, for which this section provides some intuition and context.]

BSV makes very effective use of systematic, user-extensible overloading. For example, instead of
having ad hoc definitions of how various data types are represented in bits, in BSV each such data
type has a pair of overloaded functions called pack and unpack that convert from the abstract view
of the type into bits and vice versa. Further, because overloading is user-extensible, the user can
specify the definitions of these functions precisely, and thus specify representations precisely.

In BSV, we say that there is a“typeclass”called Bits#(t,n), which can be regarded as a set of types.
Any type t in this typeclass has definitions for bit representation in n bits, i.e., it has definitions for
the overloaded functions:

function Bit#(n) pack (t x);

function t unpack (Bit#(n) b);

Each member type t in a typeclass is called an instance of the typeclass. The functions pack and
unpack are called overloaded because the same function names are used for different types, and the
compiler figures out the appropriate ones to use based on the actual types of their arguments and
results.

In most cases in the examples below, we will use a shortcut to define bit representations. Instead of
a full-blown instance declaration, you will often see the phrase “deriving (Bits)” appended to a
type definition, indicating to the compiler to pick the obvious, canonical bit representation. Thus,
we only write a full-blown instance declaration for Bits if we need a non-standard representation.

Thus, a typeclass is a construct which implements overloading across related data types. Overloading
is the ability to use a common function name or operator on a collection of types, with the specific
function or operator being selected by the compiler based on the types on which it is actually used
(this process is called “overloading resolution”). A typeclass may include multiple data types; all
data types within the typeclass share functions and operators, hence the function names within a
typeclass are overloaded across the various typeclass members.

Another example: the Ord typeclass defines the class of types for which an order is defined, allowing
comparison operations. The < function is meaningful on types that can be compared such as bits,
numeric types, or vectors. A complete definition of an instance of Ord requires defining how items
in the class are compared, either through defining the operator <= or the function compare. The
implementation of how you compare the various types may be different, but all the members of the

3.4. PRE-DEFINED TYPE CLASSES 35

Ord typeclass define and allow comparison. For example, if you had a MemRequest data type, you
could make it an instance of the Ord typeclass by defining the meaning of <= (perhaps defined to
mean a request priority).

A type can be declared to be an instance of a type class. The instance declaration must specify
the implementation of the overloaded identifiers and functions of the type class.

[C++ gurus: a BSV typeclass is like a “virtual class” in C++. The overloaded identifiers are the
“virtual members” of the class. A BSV typeclass instance is like a class inheriting from the virtual
class, and providing the definitions of the virtual members.]

3.4 Pre-defined type classes

BSV defines a common set of type classes. A data type may belong to zero or many type classes.
Users can also define their own type classes. The following type classes are pre-defined in BSV:

Provided Type Classes
Bits Types that can be converted to bit vectors and back.
Eq Types on which equality is defined.
Literal Types which can be created from integer literals.
RealLiteral Types which can be created from real literals.
Arith Types on which arithmetic operations are defined.
Ord Types on which comparison operations are defined.
Bounded Types with a finite range.
Bitwise Types on which bitwise operations are defined.
BitReduction Types on which bitwise operations on a single operand to produce

a single bit result are defined.
BitExtend Types on which extend operations are defined.

3.5 Data type conversion functions

To convert across types in BSV, the following overloaded functions will often suffice. During type
checking, the compiler resolves these functions to a particular type instance. Note that a design
containing excessive type conversions usually indicates a poor choice of types in the design. The
conversion utilities presented here do not incur logic overhead.

The most common overloaded functions are pack and unpack, used to convert to and from the
type Bit. For bit-extensions, We recommend you use extend instead of either the zeroExtend or
signExtend functions, as it is overloaded and will resolve to the appropriate extension function for
you automatically.

36 CHAPTER 3. DATA TYPES

Data Type Conversion Functions
Function Type Class Description

pack Bits Converts (packs) from types in the Bits class, including
Bool, Int, and UInt to Bit.

unpack Bits Converts (unpacks) from Bit to other types in Bits class,
including Bool, Int and UInt.

extend BitExtend Performs either a zeroExtend or a signExtend as appro-
priate, depending on the data type of the argument.

zeroExtend BitExtend Increases the bit width of an expression by padding the
most significant end with zeros. Normally used for un-
signed values.

signExtend BitExtend Increases the bit width of an expression by replicating the
most significant bit. Normally used for signed values.

truncate BitExtend Shortens the bit width to a particular width.
fromInteger Literal Converts from an Integer type to any type defined in the

Literal type class. Integers are most often used during
static elaboration.

fromReal RealLiteral Converts from a Real type to any type defined in the
RealLiteral type class.

valueOf Any numeric
type

Converts from a numeric type to an Integer. Nu-
meric types are the n used in types such as Bit#(n) and
Vector#(n, t).

3.6 Some common scalar types

The following pre-defined scalar types are all in the Bits typeclass. All hardware types (values
carried on wires, stored in registers, FIFOs or memories, etc.) must be in the Bits typeclass (but
note, arbitrary types can be used during static elaboration).

3.6.1 Bit#(n)

The most basic type is Bit#(n), a polymorphic data type defining a type consisting of n bits.
Verilog programmers will naturally want to only ever use Bit#(n) as this gives them the complete
bit selecting and operating freedom they are used to with Verilog. But Verilog also allows a lot of
dubious operations on data, for example, automatic truncation. And more importantly, a Bit#(n)

doesn’t really indicate anything about the semantics of the data.

In BSV, we want to take advantage of strong typing by using meaningful data types. This decreases
bugs and helps find bugs earlier in the design cycle, at compile time, rather than at debug or tapeout
time.

The familiar Verilog type bit is a synonym for Bit#(1).

3.7. USING ABSTRACT TYPES INSTEAD OF BIT 37

3.6.2 Bool

We use Bool as opposed to bit or Bit#(1) to define true/false logical operations. In BSV, all
“conditions” (in rules, methods, if statements, while statements, etc.) require Bool types.

typedef enum {False, True} Bool;

The implementation of a Bool is one bit. But, be aware, Bool is not considered type-equivalent to
Bit#(1). Use Bool for True or False values and Bit#(1) for variables with a value of 0 or 1. You
cannot automatically convert from a Bool to a Bit#(1). Bit-wise operations cannot be performed
on a Bool type.

The following functions are defined for Bool types and return a value of True or False.

• not or !: Returns True if x is false, returns False if x is true

• &&: Returns True if x and y are true, else returns False

• ||: Returns True if x or y are true, else returns False

3.6.3 UInt#(n)

UInt#(n) is an unsigned integer of defined bit length. So a UInt#(16) includes values 0 to ’hFFFF

unsigned. It can never be negative or less than zero. This is a common type to use for index counters,
etc. where you are counting things that will never be negative.

UInt#(n) has the logical bitwise operators defined, as well as zeroExtend to append zero bits to
the MSB, and truncate to remove bits from the MSB.

3.6.4 Int#(n)

Int#(n) is a signed integer of defined bit length used to represent and compare variables which are
interpreted as signed quantities. The familiar Verilog/C type int is a synonym for Int#(32).

Use signExtend to create larger integers by appending bits to the MSB by replicating the sign bit.
Use truncate to remove bits from the MSB.

3.7 Using abstract types instead of Bit

Source directory: data/bit_types

Source listing: Appendix A.2.1

This example looks at using the abstract types Bool, UInt#(n), and Int#(n) instead of Bit#(n).
Each rule examines a different type. The complete example, found in Appendix A.2.1, contains
multiple display statements to help you understand what is happening in the source code when you
simulate the design.

38 CHAPTER 3. DATA TYPES

package Tb;

(* synthesize *)

module mkTb (Empty);

Reg#(int) step <- mkReg(0);

Reg#(Int#(16)) int16 <- mkReg(’h800);

Reg#(UInt#(16)) uint16 <- mkReg(’h800);

Rule step0 examines the UInt data type.

rule step0 (step == 0);

// UInt#(16) foo = -1; //invalid value to initialize

UInt#(16) foo = ’h1fff; //valid value to initialize

Since a UInt#(n) is an unsigned int, you cannot initialize it with a negative number. The first line
in rule step0 is commented out in the code; uncomment it and you will get the error message:

Error: "Tb.bsv", line 40, column 19: (T0051)

Literal ‘-1’ is not a valid UInt#(16).

UInt#(n) does not allow access to individual bits, as such [] is not a legal construct for UInt#(n)
as it is for Bit#(n).

foo = foo & 5;

$display("foo[0] = %x", foo[0]); //invalid statement

foo = ’hffff;

$display("foo = %x", foo); //valid statement

// and it wraps just like you would expect it to

foo = foo + 1;

$display("foo = %x", foo);

Because this is an unsigned number, the value can never be less than zero. This display:

$display("fooneg = %x", foo < 0);

is displayed the same as:

3.7. USING ABSTRACT TYPES INSTEAD OF BIT 39

$display("fooneg = %x", 1’d0) ;

One way to get min and max values from UInts is to use unpack:

UInt#(16) maxUInt16 = unpack(’1); // all ones

UInt#(16) minUInt16 = unpack(0);

The next rule, step1, examines the Int#(n) data type. Int#(n) has similar restrictions as UInt#(n),
but it does include negative numbers. Again, the quick way to get min and max values is use unpack:

Int#(16) maxInt16 = unpack({1’b0,’1}); // ’h011111

Int#(16) minInt16 = unpack({1’b1,’0}); // ’h100000

As with UInt#(n), you cannot perform bit manipulation directly. The following statement will give
an error:

$display("error1 = %x", minInt16[4]);

Because the type Int#(n) (as well as the type UInt#(n) is in the Arith type class, you can perform
the operations +, -, /, *, %. But be careful when using multiplication and division functions as
they may create long timing paths.

$display("maxInt16/4 = %x", maxInt16 / 4);

int16 <= int16 / 4;

Rule step2 examines the exceptions to the rule that data types are always capitalized: int and bit.
int is a special case defined for Int#(32) while bit is predefined as Bit#(1).

Int#(32) bar = 10;

int foo = bar;

bit onebit = 1;

Bit#(1) anotherbit = onebit;

endrule

The final rule in this example, step3, examines the use of Bool.

40 CHAPTER 3. DATA TYPES

Bool b1 = True;

Bool b2 = True;

Bool b3 = b1 && b2;

Remember, the conditional in an if statements needs to be of type Bool, not bit.

// if (onebit) // uncomment this to see the type error

// $display("onebit is a 1");

if (b1)

$display("b1 is True");

If you are testing a bit value, you have to turn that bit into an expression returning a Bool type
in order to test:

bit onebit = 1;

if (onebit == 1)

$display("onebit is a 1");

3.8 Integers

Source directory: data/integers

Source listing: Appendix A.2.2

The Integer type represents mathematical integers. As in mathematics, they are unbounded (in
practice, they are bounded only by your computer’s memory size and your own patience!). Integer
is not part of the Bits typeclass and hence cannot be used for hardware values. However, it is
frequently used in BSV programs as part of static elaboration for loop iterators and array indexes;
all values are resolved at compile time. Integer is different from UInt#(n) and Int#(n), both of
which are bounded, belong to the Bits typeclass and are synthesizable into hardware representations.

For example, we can create an array of 4 elements, and use the Integer value to index the array
statically:

3.8. INTEGERS 41

Integer inx = 0;

Bool arr1[4];

arr1[inx] = True;

inx = inx + 1;

arr1[inx] = False;

inx = inx + 1;

arr1[inx] = True;

inx = inx + 1;

arr1[inx] = True;

You can also create a loop with the integer variable. In order to convert an Integer value to a sized
value, such as Int#(32), you need to use the fromInteger overloaded conversion function.

Int#(32) arr2[16];

for (Integer i=0; i<16; i=i+1)

arr2[i] = fromInteger(i);

An Integer value can be used in mathematical operations:

Integer foo = 10;

foo = foo + 1;

foo = foo * 5;

Bit#(16) var1 = fromInteger(foo);

Integer is in the Arith typeclass, so all arithmetic functions defined for the typeclass are defined
for Integer values. The following additional mathematical functions are also defined for Integer:

• div: Element x is divided by element y and the result is rounded toward negative infinity.
Division by 0 is undefined.

• mod: Element x is divided by element y using the div function and the remainder is returned as
an Integer value. div and mod satisfy the identity (div(x, y) ∗ y) + mod(x, y) == x. Division
by 0 is undefined.

• quot: Element x is divided by element y and the result is truncated (rounded towards 0).
Division by 0 is undefined.

• rem: Element x is divided by element y using the quot function and the remainder is returned
as an Integer value. quot and rem satisfy the identity (quot(x, y) ∗ y) + rem(x, y) == x.
Division by 0 is undefined.

42 CHAPTER 3. DATA TYPES

• exp The element base is raised to the pwr power and the exponential value exp is returned as
type Integer.

3.9 Strings

Source directory: data/strings

Source listing: Appendix A.2.3

BSV provides support for Strings. Remember that, by definition, the compiler is creating synthe-
sizable logic. So Strings are just ASCII characters joined into a list. They must have a fixed size.
String literals are enclosed into double quotes and must be contained on a single line of source code.

Special characters may be inserted in string literals, with the following backslash escape sequences:

\n newline
\t tab
\\ backslash
\" double quote
\v vertical tab
\f form feed
\a bell
\OOO exactly 3 octal digits (8-bit character code)
\xHH exactly 2 hexadecimal digits (8-bit character code)

We can define an Action function to pass a string to a function. This example shows setting a string
to a value and passing a string to a function. We can use + to concantenate strings.

function Action passString(String s);

return action

$display("passString => ", s);

endaction;

endfunction

rule init (step == 0);

...

passString("String passed to a function");

endrule

Chapter 4

Variables, assignments, and
combinational circuits

4.1 Variable declaration and initialization

Source directory: variable/declaration

Source listing: Appendix A.3.1

BSV defines two types of initializations:

• pure or value initializations using (=): the value on the right-hand side is bound to the variable
on the left-hand side.

• side-effecting initializations using (<-): the right-hand side is an expression that has a side
effect and also returns a value. The returned value is bound to the variable on the left-hand
side.

There are two common kinds of side effects:

– instantiating a module and returning its interface

– invoking an ActionValue and returning its value.

To demonstrate variable declaration and initialization syntax, we’ll be working with the example in
Appendix A.3.1. The syntax in this example is more important than the functionality.

Our example has a structure representing a 2-dimensional coordinate:

typedef struct { int x; int y; } Coord

deriving (Bits);

43

44 CHAPTER 4. VARIABLES, ASSIGNMENTS, AND COMBINATIONAL CIRCUITS

We’ll describe structs in more detail in Section 10.1.3, but will rely here on their familiarity from C.
The above defines a new type Coord with two int fields (members) called x and y. The “deriving
(Bits)” phrase instructs the compiler to pick a canonical representation, here the obvious 64-bit
value concatenating the two 32-bit fields.

4.1.1 Side-effect initialization

One type of side-effect initialization is instantiating a module and returning its interface. Consider
the following statement:

FIFO#(Coord) fi <- mkFIFO;

On the left-hand side we are specifying an interface type FIFO#(Coord) and a variable fi of that
type. On the right-hand side we invoke a module instantiation mkFIFO. The FIFO interface returned
by the module instantiation is bound to the variable fi.

When a module instantiation, such as the expression mkFIFO is used on the right-hand side of an
<- statement, it instantiates the module and returns a value of the interface type, in this case
FIFO#(Coord). This represents a fifo containing elements of type Coord.

The reason for thinking of such an invocation of mkFIFO as a side-effect is that each that each time
it is invoked in this way, it creates a new FIFO instance different from the earlier instantiations.

4.1.2 Value initialization

A value initialization assigns the value on the right-hand side to a variable on the left-hand side. It
cannot be used to update a register or other state element. Consider the statement:

Coord delta1 = Coord { x: 10, y: 20 };

On the left-hand side we specify a variable named delta1 of type Coord. Note that the variable
name is lower case, the type name is uppercase. The right-hand side is a so-called struct expression
(see Section 10.1.3) that evaluates to a struct value of type Coord. This value is assigned to the
variable named delta1.

We could also use the let shorthand, leaving it up to the compiler to infer the type of delta2,
which must be the same type as the expression on the right-hand side, Coord.

let delta2 = Coord { x: 5, y: 8 };

This shorthand is especially useful when the type is more complicated, but should be used with care
since it reduces readability. In this example the right-hand side is a Coord struct expression; the
type is obvious to the reader.

4.1. VARIABLE DECLARATION AND INITIALIZATION 45

4.1.3 Value initialization from a Value method

Remember from above, the variable fi is of the type FIFO#(Coord). Consider the following state-
ment:

Coord c = fi.first();

On the left-hand side we specify a type Coord and a variable c of that type. The right-hand side
invokes the value method fi.first() whose result is of type Coord and is assigned to c. Note that
fi.first() is a value method, not an ActionValue method. Therefore it has no side-effect, which is
why it is used in an = statement, and not a <- statement. There is no change of state with a value
method.

This line could have been written using the let statement and the compiler would have automatically
set the type of c to Coord:

let c = fi.first();

4.1.4 Initializing sub-interface components

The mkTransformer module in our example provides a Server#(Coord, Coord) interface.

module mkTransformer (Server#(Coord, Coord));

As defined in the package ClientServer1, a Server#() interface has two subinterfaces, request
and response:

interface Server#(type req_type, type resp_type);

interface Put#(req_type) request;

interface Get#(resp_type) response;

endinterface: Server

There is a special syntax for initializing sub-interface components. request is the name of a sub-
interface of the overall Server#() type for the module. This sub-interface is of the type Put#().
The statement:

interface request = toPut (fi);

has the same type (Put#()) on both sides of the =. There is no change of state or instantiation of a
module, so the operator used is =.

1 The ClientServer package is described in more detail in Section 6.8

46 CHAPTER 4. VARIABLES, ASSIGNMENTS, AND COMBINATIONAL CIRCUITS

4.1.5 Additional examples

The statement:

Reg#(int) cycle <- mkReg (0);

specifies a type Reg#(int) and a variable cycle of that type, and we initialize it by invoking the side-
effect of instantiating the module using mkReg(0) and binding the resulting interface to the variable
cycle. We use the <- assignment operator for instantiating modules. We’ll discuss registers in more
detail in Section 5.1.

The statement:

Server#(Coord, Coord) s <- mkTransformer;

specifies a type Server#(Coord, Coord) and a variable s of that type, and we initialize it by
invoking the side-effect of instantiating the module using mkTransformer and binding the resulting
interface to the variable s.

In the statement:

let c = Coord { x: rx, y: ry };

we use the let shorthand, leaving it up to the compiler to infer that c has the type Coord, based
on the expression on the right-hand side.

In the statement:

let c <- s.response.get ();

we’ve used let in a <- statement. The right-hand side expression s.response.get() has the type
ActionValue#(Coord). By using it in a <- statement we invoke the ActionValue’s side effect, and
the returned value of type Coord is bound to the variable c. By using let, we allow the compiler to
infer the type of c, which is Coord.

To illustrate the difference between “an operation with a side-effect” and “invoking an operation with
a side-effect”, the following statement:

Server#(Coord, Coord) s <- mkTransformer;

could also have been written as:

4.2. COMBINATIONAL CIRCUITS 47

Module #(Server#(Coord, Coord)) m = mkTransformer;

Server#(Coord, Coord) s <- m;

In the first line, we are not invoking the operation mkTransformer; we are simply binding the
operation itself to the variable m. Observe the type of m carefully, because it reflects this. Its
type is Module #(Server #(Coord, Coord)), not Server #(Coord, Coord). The second line, by
using <-, actually invokes the operation bound to m, which executes the side-effect (instantiating the
module), and returns the interface, which is bound to s, whose type is Server #(Coord, Coord).

Similarly, the following:

Coord c <- s.response.get ();

could also be written as:

ActionValue #(Coord) g = s.response.get;

Coord c <- g ();

illustrating the difference between assigning an ActionValue versus invoking an ActionValue and
assigning its result.

The C/C++ analogy would be the difference between merely assigning a function pointer versus
actually invoking the function referenced by a function pointer (by appending “()” after the pointer)
and assigning the result of the function call. This begs the question: If C/C++ does it just using
function-call notation and the same assignment symbol, why does BSV need two separate assignment
symbols for this? The answer is that C/C++ does not make any attempt to distinguish between
functions that have side-effects and functions that don’t (that are “pure”). This may be fine in
C/C++’s context of sequential von Neumann computing, but it is the root of much evil in parallel
computing, and in hardware design we have nothing if not an extreme case of parallel computing.
BSV’s type system and notation is carefully designed to clearly identify and contain side-effects into
well-defined contexts, and is the source of its robustness as we scale to larger and larger hardware
designs.

4.2 Combinational circuits

Source directory: variable/combcircuits

Source listing: Appendix A.3.2

In BSV, expressions representing hardware values are really just combinational circuits. Expressions
are built from constants, variables, operators and function applications. A variable is just a name
for a value. Unlike languages like C/C++/C#/Java, in BSV a variable does not represent a chunk
of storage in a computer’s memory. In hardware terms, this is equivalent to saying that a sequence
of variable assignments is an incremental way to specify a combinational circuit.

48 CHAPTER 4. VARIABLES, ASSIGNMENTS, AND COMBINATIONAL CIRCUITS

In a combinational circuit, values are carried on wires. One way of thinking about this is to consider
the variable as a name for the wire. In BSV, variables are never storage elements or containers.

Every variable and expression in BSV has a type. The BSV compiler checks that constructs in the
language are applied correctly according to types.

Let’s look at the variable assignment semantics in the following example:

module mkTb (Empty);

Reg#(int) cycle <- mkReg (0);

rule count_cycles;

cycle <= cycle + 1;

if (cycle > 7) $finish(0);

endrule

int x = 10;

rule r;

int a = x;

a = a * a;

a = a - 5;

if (pack(cycle)[0] == 0) a = a + 1;

else a = a + 2;

if (pack(cycle)[1:0] == 3) a = a + 3;

for (int k = 20; k < 24; k = k + 1)

a = a + k;

$display ("%0d: rule r, a = %0d", cycle, a);

endrule

endmodule: mkTb

Variables, like x and a in this example, never represent storage, and assignment statements with =

never represent updating of storage. Variables are simply names for the values (output of combi-
national circuits) represented by the expressions on the right-hand sides of assignment statements.
For example:

a = a * a;

Suppose a on the right-hand side represents the output of some combinational circuit, CC. In this
case, a represents the value of x, the trivial combinational circuit whose output is the constant 10.

4.2. COMBINATIONAL CIRCUITS 49

This statement says that in the sequel, i.e. in the text following the statement within the current
scope, a represents the output of a new combinational circuit, namely the output of a multiplier
both of whose inputs are fed by CC. In other words, this statement incrementally describes a new
combinational circuit from existing combinational circuits.

Consider the following statement in rule r:

if (pack(cycle)[0] == 0) a = a + 1;

else a = a + 2;

Let a before this statement represent the output of a combinational circuit CC1. This statement
says that in the sequel, a will describe the output of a multiplexer whose inputs are fed from two
combinational circuits, CC1+1 and CC1+2 and whose selector is fed from a combinational circuit that
tests the zero’th bit of cycle for equality to zero. Consider the following statement:

if (pack(cycle)[1:0] == 3) a = a + 3;

Let a before this statement represent a combinational circuit CC2. This statement says that in the
sequel, a will describe the output of a multiplexer whose inputs are fed from two combinational
circuits, CC2+3 and CC2, and whose selector is fed from a combinational circuit that test the lower-
order bits of cycle for equality to 3.

The loop described in the statement:

for (int k = 20; k < 24; k = k + 1)

a = a + k;

is unrolled and is the same as the sequence obtained by copying the loop body:

a = a + 20;

a = a + 21;

a = a + 22;

a = a + 23;

In the sequel, a represents the output of a chain of four adders that add 20, 21, 22, and 23, respec-
tively, to the previous combinational circuit.

If we compile and execute the complete example, found in Appendix A.3.2, we see the following
output:

0: rule r, a = 182

1: rule r, a = 183

2: rule r, a = 182

50 CHAPTER 4. VARIABLES, ASSIGNMENTS, AND COMBINATIONAL CIRCUITS

3: rule r, a = 186

4: rule r, a = 182

5: rule r, a = 183

6: rule r, a = 182

7: rule r, a = 186

8: rule r, a = 182

which is consistent with our interpretation of variables and assignments.

[Compiler gurus: BSV’s interpretation of variables and assignments is in essense Static Single-
Assignment form (SSA), commonly used as an intermediate form in many compilers. Conceptually,
repeated assignments of a variable represent a renaming of the variable and its subsequent uses to a
fresh variable.]

4.2.1 Error - no type declaration

If we change the int declaration for a:

a = x; // was: int a = x;

when we compile, we get the following error message:

Error: "Tb.bsv", line 33, column 17: (P0039)

Assignment of ’a’ without declaration, or non-local assignment in possibly

wrong context (e.g. declared at evaluation time, maybe updated at runtime,

perhaps you meant "<=" instead, etc.)

The compiler is complaining that we are assigning a value to a without any declaration. Every
variable must first be declared, either with a type or by using let, before it can be used.

4.2.2 Error - no initialization

If we comment out the initialization of a:

int a; // was: int a = x;

a = a * a; //line 34

when we compile we get the following error message:

Error: "Tb.bsv", line 34, column 11: (P0040)

Use of ’a’ without assignment

The variable on the right-hand side is now meaningless. Since a has not been initialized or assigned,
it does not represent any combinational circuit, and so the expression a*a is meaningless.

Chapter 5

Rules, registers, and fifos

5.1 Defining and updating a register

Source directory: rulesregs/register

Source listing: Appendix A.4.1

In this section we discuss the most basic state element, the register, and how to use registers to store
values. We’ll also examine rules and how they are used to describe state transitions.

This example defines a register containing int values; the name of the register is x:

package Tb;

(* synthesize *)

module mkTb (Empty);

Reg#(int) x <- mkReg (23);

rule countup (x < 30);

int y = x + 1;

x <= x + 1;

$display ("x = %0d, y = %0d", x, y);

endrule

rule done (x >= 30);

$finish (0);

endrule

endmodule: mkTb

endpackage: Tb

51

52 CHAPTER 5. RULES, REGISTERS, AND FIFOS

5.1.1 Registers

All state instances in BSV are specified explicitly using module instantiation. The most elementary
module available in BSV is the register, which has a Reg interface. One way to instantiate a register
is with the mkReg module, whose single parameter is the initial value of the register. The statement:

Reg#(int) x <- mkReg (23);

uses the module mkReg to instantiate a register (a sub-module) with an initial (reset) value of 23.
The instantiation returns or provides or yields an interface of type Reg#(int) which we bind to
the variable x. In other words, x is bound to an interface containing the methods _read() and
_write(), which constitute a register interface. Further, this definition states that only values of
type int can be read from or written to x.

The register interface is defined as follows:

interface Reg#(type a);

method Action _write (a x);

method a _read;

endinterface: Reg

Since registers are so common, BSV provides simplified notations for reading and writing registers.
For writes, instead of using the register _write method explicitly, use the non-blocking assignment
notation. For reads, instead of using the register _read method explicitly, just mention the register
interface in an expression.

The non-blocking assignment (<=) is a shorthand notation for a _write method, used for dynamic
assignment of a value to a register. The following example demonstrates the shorthand for both a
register read and write.

x <= x+1; // same as x._write(x._read + 1);

5.1.2 Updating the register

Rule execution is logically instantaneous. All state read by a rule, including a register read, is
logically what was in effect just before the rule. All state updated in a rule, including a register
write, is logically visible only after the rule executes.

rule countup (x < 30);

int y = x + 1;

x <= x + 1;

$display ("x = %0d, y = %0d", x, y);

endrule

5.2. RULES AND THEIR SEMANTICS: ATOMICITY AND ORDERINGS 53

This rule can fire or execute only when x < 30. When the example is run, the $display statement
will show different values for x and y. As discussed in Section 4.2, y is just a name for the output
of the combinational circuit represented by the expression x + 1, and that is what is displayed as
its value. But state element updates are visible only after the rule is executed. The assignment x

<= x + 1 is a shorthand for the Action x._write(x._read + 1). The effect of an Action is only
visible after the rule executes. Thus, the value of x read by the $display statement is still the old
value of x, before the register is written. More generally, the textual order of Actions in a rule is
irrelevant—all of their effects happen simultaneously (and atomically) and are visible only after the
rule’s execution.

5.2 Rules and their semantics: atomicity and orderings

BSV does not have always blocks like Verilog. Instead, rules are used to describe all behavior (how
state evolves over time). Rules are made up of two components:

• Rule Condition: a boolean expression which determines if the rule body is allowed to execute
(“fire”)

• Rule Body: a set of actions which describe the state updates that occur when the rule fires

As in many languages, there is a logical view or semantic view of BSV behavior which is distinct
from the implementation. The former is how designers/programmers think about their source code.
The latter is the output of the compiler (in our case, Verilog or Bluesim) and, ideally, should not be
of concern to someone trying to explain or understand a BSV program.

First, we think of a rule’s execution as logically instantaneous, complete, and ordered with respect
to the execution of all other rules. By “instantaneous” we mean, conceptually, that all the actions in
a rule body occur at a single, common instant—there is no sequencing of actions within a rule. By
“complete” we mean that, when fired, the entire rule body executes; there is no concept of “partial”
execution of a rule body. By “ordered” we mean that each rule execution conceptually occurs either
before or after every other rule execution, never simultaneously.

With these properties we also say that each rule is atomic with respect to all other rules, or that each
rule is an atomic transaction. Atomic transactions date back at least to the 1970s and are, to this
day, by far the most effective tool known to Computer Science for describing complex concurrent
processes operating on shared data. The reason is that their properties (particularly ordering)
greatly simplify reasoning about the correctness of a parallel program, because one does not have
to worry about potential interleavings of the actions of multiple rules. It is precisely such unwanted
interleavings that cause deadly “race conditions” that are the bane of most parallel programming
not based on atomic transactions (see the excellent article The Problem with Threads by Prof. Ed
Lee in IEEE Computer 39:5, May 2006, pp. 33-42 that describes these issues in great detail).

In BSV, the logical sequence of rule executions are further grouped into sub-sequences called“clocks”.
There is no a priori limit on how many rules can fire within a clock. However, instead of allowing
arbitrary sub-sequences of rules within a clock, we impose some constraints based on pragmatic
hardware considerations. These constraints are:

54 CHAPTER 5. RULES, REGISTERS, AND FIFOS

• Each rule fires at most once within a clock.

• Certain pairs of rules, which we will call conflicting, cannot both fire in the same clock.

Conflicts arise due to hardware considerations. For example, in hardware each state element can
change state only once per clock. Thus, we cannot have a rule sub-sequence within a clock where one
rule’s state update is read by a later rule in the same clock. We call this a “rule ordering conflict”.
Similarly, certain hardware resource constraints, such as the fact that a hardware wire can only be
driven with one value in each clock, will preclude some pairs of rules from executing together in a
clock because they both need that resource. We call this a “rule resource conflict”.

The BSV compiler produces hardware that respects the logical semantics and also the constraints
due to conflicts. To achieve this, it synthesizes a combinational hardware scheduler that controls
rule execution accordingly. Since rule conditions are expressions of type Bool, BSV’s type system
guarantees that they cannot have any side-effects, and so the hardware scheduler is combinational,
i.e., its decisions about firing rules involve no state changes.

Note that the scheduler logic produced by the BSV compiler is not“extra” logic due to rule semantics.
Logic to manage concurrent access to shared state exists in any hardware design, whether created
by drawing schematics or writing Verilog/VHDL by hand. We are here only giving a vocabulary
and semantic framework within which to describe such necessary logic. The user should not fear
that there is some extra “overhead” due to working with rules.

One might imagine that rule ordering conflicts will prevent one rule from communicating with
another rule within the same clock, since the former’s state update is visible to the latter only in
the next clock. However, later in Section 8 on RWires we shall see how it is possible for one rule to
communicate with another within the same clock.

The basic semantics of rule atomicity (instantaneous, complete and ordered) are enough to answer
most questions about functional correctness. Until this point one can consider the semantics to be
“untimed”. The further considerations of grouping into clocks, and conflicts, are typically needed to
answer questions about performance (latency, bandwidth, and so on).

5.3 Composition of rules

Source directory: rulesregs/rules

Source listing: Appendix A.4.2

This example looks at when rules might conflict - that is rules that can or can’t be composed in
parallel. In this section we’ll be discussing the following four int registers:

Reg#(int) x1 <- mkReg (10);

Reg#(int) y1 <- mkReg (100);

Reg#(int) x2 <- mkReg (10);

Reg#(int) y2 <- mkReg (100);

5.3. COMPOSITION OF RULES 55

D Q +1

D Q

y1

x1

+1

Figure 5.1: Single Rule Swapping Values

Our first example looks at a single rule swapping values:

rule r1;

$display ("swap");

x1 <= y1 + 1;

y1 <= x1 + 1;

endrule

The body of this rule contains two register-write Actions. These actions occur simultaneously and
instantaneously. The values of x1 and y1 are read before the rule-firing instant, and write of the the
new (+1) values takes effect after the rule-firing instant. After the rule executes, x1 has 1+ the old
value of y1, and y1 has 1+ the old value of x1. It’s effectively a swap of x1 and y1, along with some
incrementing. This is called parallel composition; two Actions are composed in parallel to form a
more complex Action. It is implemented with the natural hardware structure, shown in Figure 5.1:

• Q output of reg y1 goes through a +1 adder into D input of reg x1.

• Q output of reg x1 goes through a +1 adder into D input of reg y1.

The next example shows two rules which conflict— they can’t execute in the same clock cycle:

rule r2a;

$display ("r2a");

x2 <= y2 + 1;

endrule

rule r2b;

$display ("r2b");

y2 <= x2 + 1;

endrule

56 CHAPTER 5. RULES, REGISTERS, AND FIFOS

In the logical semantics, either r2a executes before r2b or vice versa. Thus, from the initial state
(x=10, y=100), we could have two different scenarios:

• if we executed r2a followed by r2b, the final state would be (x2=101, y2=102).

• if we executed r2b followed by r2a, the final state would be (x2=12, y2=11).

These are both legal final states of the rules in the logical semantics.

The hardware of Fig. 5.1 would not be a legal implementation of these logical semantics, since
the final state after a clock would be (101, 11), which is not one of the two legal final states. In
particular, the reads and writes in the logical semantics are reordered in the hardware in such a way
as to produce different results.

Thus, we say that these two rules conflict. In fact, when we compile, we get an urgency warning
message from the compiler:

Warning: "Tb.bsv", line 16, column 8: (G0010)

Rule "r2b" was treated as more urgent than "r2a". Conflicts:

"r2b" cannot fire before "r2a": calls to y2.write vs. y2.read

"r2a" cannot fire before "r2b": calls to x2.write vs. x2.read

Warning: "Tb.bsv", line 30, column 9: (G0021)

According to the generated schedule, rule "r2a" can never fire.

This warning is telling us that both rules cannot fire in the same clock because they conflict. Thus,
in each clock, one rule has to be chosen; since the user has not specified this choice, the compiler
arbitrarily picked rule r2b over r2a. Further, since both rules are enabled on every clock, and r2b

is always preferred over r2a, the rule r2a can never fire. The next example demonstrates how to
use scheduling attributes to specify which rule the compiler should choose in case of conflict.

5.3.1 Attribute descending_urgency

Scheduling attributes are used to control decisions made by the compiler. This attribute tells the
compiler which rule is more urgent, that is which rule to schedule first when two rules conflict. Try
adding this line before the rules:

(* descending_urgency = "r2a, r2b" *)

Now you’ll see that the more urgent warning goes away, because now you have specified an urgency.
The second warning (can never fire) will still be present, but it will now tell you that rule r2b can
never fire, since the urgency specified in the attribute (r2a over r2b) is the opposite of what the
compiler previously picked.

5.4. MULTIPLE REGISTERS IN A RIGID SYNCHRONOUS PIPELINE 57

5.4 Multiple registers in a rigid synchronous pipeline

Source directory: rulesregs/reg_pipeline

Source listing: Appendix A.4.3

Now we’ll look at a more complex example with multiple registers: a rigid synchronous pipeline.
The example contains two modules: mkTb, the testbench module, and mkPipe, the pipeline module.
Let’s look at the testbench module first.

The testbench module instantiates a register with an initial value of ’h10, then instantiates the
mkPipe module binding its interface to variable named pipe of type Pipe_ifc:

(* synthesize *)

module mkTb (Empty);

Reg#(int) x <- mkReg (’h10);

Pipe_ifc pipe <- mkPipe;

There are two rules in the testbench: fill and drain. The rule fill, which has no explicit rule
condition, sends the value of x into the pipe and then increments it by ’h10.

rule fill;

pipe.send (x);

x <= x + ’h10;

endrule

The rule drain, which also has no explicit condition, receives the value y from the pipe and displays
it. The program stops when y > ’h80.

rule drain;

let y = pipe.receive();

$display (" y = %0h", y);

if (y > ’h80) $finish(0);

endrule

endmodule

The first line in the above rule declares a local variable y and initializes it to the result of the
statement pipe.receive(). The line could also have been written:

int y = pipe.receive();

58 CHAPTER 5. RULES, REGISTERS, AND FIFOS

explicitly declaring y by giving its type, int. When we use let instead, the compiler infers the type
for y, which must be int because that is the type of the right-hand side.

Now let’s examine the module mkPipe, providing the Pipe_ifc interface with send (write) and
receive (read) methods.

interface Pipe_ifc;

method Action send (int a);

method int receive ();

endinterface

The pipeline module instantiates 4 int registers. mkRegU makes a register uninitialized, i.e., without
specifying a reset value. The BSV compiler typically uses ’haaaaaaaa as the initial value for such
registers (because of the 101010... pattern).

(* synthesize *)

module mkPipe (Pipe_ifc);

Reg#(int) x1 <- mkRegU;

Reg#(int) x2 <- mkRegU;

Reg#(int) x3 <- mkRegU;

Reg#(int) x4 <- mkRegU;

The rule r1 makes it a rigid synchronous pipeline, a rigid shift register. On each rule firing, each
register is incremented and shifted into the next register. These shifts all happen simultaneously.

rule r1;

x2 <= x1 + 1;

x3 <= x2 + 1;

x4 <= x3 + 1;

endrule

This is a parallel composition of three Actions into a single composite Action which forms the body
of the rule.

Whenever the parent module (mkTb) invokes send, the int argument is stored in x1:

method Action send (int a);

x1 <= a;

endmethod

Whenever the parent module invokes receive, the contents of x4 are returned:

5.5. USING REGISTER SYNTAX SHORTHANDS 59

method int receive ();

return x4;

endmethod

The full code is found in A.4.3. When you execute the program, you’ll see the pipeline shift register
behavior. In the first few clocks, before the pipeline fills up, you’ll see that the values being shifted
and the value returned are the default reset values in the registers.

5.5 Using register syntax shorthands

Source directory: rulesregs/reg_shorthand

Source listing: Appendix A.4.4

In this section we’ll modify the previous example to use register shorthands. Therefore, instead of
the mkPipe module providing the Pipe_ifc interface, it will provide a Reg#(int) interface. When
we instantiate the mkPipe module, we bind its interface to a variable named pipe of type Reg#(int)
(instead of type Pipe_ifc in the previous example).

Reg#(int) pipe <- mkPipe;

Registers have a special notation for the _read and _write() methods. Instead of explicitly using
the methods, you can use the traditional non-blocking assignment notation (<=) for writes. For
reads, you just mention the register interface in an expression.

Let’s look at how we could replace the send and receive methods with register writes and reads in
the mkTb module. To write the value of x to the pipe, we use the shorthand for pipe._write(x):

pipe <= x; // was pipe.send(x)

To read a value out of pipe, we use the shorthand for let y = pipe._read();:

let y = pipe; // was let y = pipe.receive();

Instead of providing the Pipe_ifc interface, the mkPipe module provides a standard register inter-
face:

module mkPipe (Reg#(int));

60 CHAPTER 5. RULES, REGISTERS, AND FIFOS

The standard register interface provides the _write and _read methods instead of the send and
receive methods in the previous example:

method Action _write (int a); // was method Action send (int a);

method int _read (); // was method int receive ();

5.6 Using valid bits

Source directory: rulesregs/validbits

Source listing: Appendix A.4.5

Let’s expand the previous example, adding Valid bits to deal with pipeline bubbles. The testbench
module, mkTb is not changed at all; all changes are in the mkPipe module.

In the mkPipe module, we instantiate 4 validn registers in addition to the xn registers:

Reg#(Bool) valid1 <- mkReg(False); Reg#(int) x1 <- mkRegU;

Reg#(Bool) valid2 <- mkReg(False); Reg#(int) x2 <- mkRegU;

Reg#(Bool) valid3 <- mkReg(False); Reg#(int) x3 <- mkRegU;

Reg#(Bool) valid4 <- mkReg(False); Reg#(int) x4 <- mkRegU;

where valid1 is a register holding a boolean value indicating whether x1 is valid. When you shift
the value in the pipeline, shift the valid bit along with it:

valid2 <= valid1; x2 <= x1 + 1;

The function display_Valid_value displays Invalid or the valid value.

function Action display_Valid_Value (Bool valid, int value);

if (valid) $write (" %0h", value);

else $write (" Invalid");

endfunction

The function type is Action; hence it can be invoked in the body of a rule. The _write and _read

methods are written to take into account the valid bits:

method Action _write (int a);

valid1 <= True;

x1 <= a;

endmethod

method int _read () if (valid4);

return x4;

endmethod

5.7. MULTIPLE FIFOS IN AN ELASTIC ASYNCHRONOUS PIPELINE 61

Because of the rule condition if (valid4), the _read method can only be called when valid4 is
True.

Execute and observe the pipeline behavior. Further, note that until the 4-deep pipeline gets filled
and produces a valid value from the register, no y value will be displayed by mkTb because the
_read() method is not enabled until that time, therefore the drain rule cannot not fire until that
time.

5.7 Multiple FIFOs in an elastic asynchronous pipeline

Source directory: rulesregs/fifo_pipeline

Source listing: Appendix A.4.6

This example takes the synchronous pipeline example presented in Section 5.4 and replaces the
registers with FIFOs. To use the Bluespec-provided FIFO interface and module definitions, you
must first import the FIFO package:

import FIFO::*;

Once again, there is no change to the mkTb module. In this example the mkPipe module provides a
modified Pipe_ifc interface, in which the receive method is now an ActionValue method (instead
of a Value method). An ActionValue method combines Value and Action methods, returning a
value (in this case an int value) and performing an Action. Because of the latter, it can only be
called in Action contexts, namely in the bodies of rules (or from within other Action or ActionValue
methods).

interface Pipe_ifc;

method Action send (int x);

method ActionValue#(int) receive;

endinterface

Instead of instantiating 4 registers, we instantiate 4 FIFOs (all initially empty) and bind the interfaces
to f1...f4:

FIFO#(int) f1 <- mkFIFO;

FIFO#(int) f2 <- mkFIFO;

FIFO#(int) f3 <- mkFIFO;

FIFO#(int) f4 <- mkFIFO;

The rule r1 from the earlier example is replaced by the rules r2, r3, and r4 to read the FIFO values
and move them through the pipeline.

62 CHAPTER 5. RULES, REGISTERS, AND FIFOS

rule r2;

let v1 = f1.first;

f1.deq;

$display (" v1 = %0h", v1);

f2.enq (v1+1);

endrule

rule r3;

let v2 = f2.first;

f2.deq;

$display (" v2 = %0h", v2);

f3.enq (v2+1);

endrule

rule r4;

let v3 = f3.first;

f3.deq;

$display (" v3 = %0h", v3);

f4.enq (v3+1);

endrule

The rules r2, r3, and r4 may or may not fire together. Each rule fires whenever its input FIFO
has data available (implicit condition of first and deq) and its output FIFO has space available
(implicit condition of enq).

The Action method send enqueues a value a into FIFO f1. This method is only enabled if f1 has
space available. Thus the implicit condition of f1.enq becomes the implicit condition of this send

method and becomes part of the enabling condition of the rule fill in the testbench, i.e., that rule
cannot fire unless the implicit conditions of f1.enq are met.

method Action send (int a);

f1.enq (a);

endmethod

The ActionValue method receive reads the first int element v4 of FIFO f4, dequeues FIFO f4 and
returns v4. This method is only enabled when f4 has data available (implicit condition of first

and deq). Thus the implicit conditions of f4.first and f4.deq become the implicit condition of
the receive method, which in turn becomes part of the enabling condition of rule drain in the
testbench. That is, the rule drain cannot fire until all these conditions are true.

5.7. MULTIPLE FIFOS IN AN ELASTIC ASYNCHRONOUS PIPELINE 63

method ActionValue#(int) receive ();

let v4 = f4.first;

$display (" v4 = %0h", v4);

f4.deq;

return v4;

endmethod

When executed, you can observe the pipeline behavior. However, the outputs from the $displays

in different rules that execute in the same cycle may be unpredictable.

64 CHAPTER 5. RULES, REGISTERS, AND FIFOS

Chapter 6

Module hierarchy and interfaces

6.1 Module hierarchies

Source directory: modules/mod_hierarchy

Source listing: Appendix A.5.1

Modules and interfaces are the way we organize large, complex systems into smaller, manageable
components. Modules and interfaces turn into actual hardware. Modules can instantiate other
modules, resulting in a module hierarchy. Logically, the hierarchy forms a tree structure. A module
consists mainly of three things: zero or more sub-modules, rules that operate on the sub-modules,
and the module’s interface to the outside world (the surrounding hierarchy).

Every module provides an interface, though this may be the Empty interface. An interface for a
module m mediates between m and other, external modules that use the interface to interact with
the facilities of m. We often refer to these other modules as clients of m.

A module’s BSV interface is an abstraction of its Verilog port list. An interface provides a means
to group wires into bundles with specified uses, described by methods.

By separating out the interface declaration from module declarations, we express the idea of a com-
mon interface that may be provided by several modules, without having to repeat that declaration
in each of the implementation modules.

An interface declaration specifies the methods provided by every module that provides the interface,
but does not specify the methods’ implementation. The implementation of the interface methods
can be different in each module that provides that interface. The definition of the interface and its
methods is contained in the providing module.

It is important to distinguish between a module definition and a module instantiation. A module
definition can be regarded as specifying a scheme that can be instantiated multiple times. For
example, we may have a single module definition for a FIFO, and a particular design may instantiate
it multiple times for all the FIFOs it contains. For this reason, we follow a convention where our

65

66 CHAPTER 6. MODULE HIERARCHY AND INTERFACES

modules have names like “mkFoo”, with the “mk” prefix suggesting the work “make”, because the
module definition can be used to make multiple module instances.

When instantiated, the current example produces the module hierarchy shown in Figure 6.1. The
figure on the right shows the interface provided by each instantiated module.

Figure 6.1: Module Hierarchy

Every module uses the interface(s) just below it in the hierarchy. Every module provides an interface
to the module above it in the hierarchy. For example, in the hierarchy in Figure 6.1, the following
interfaces are used and provided:

• Module m1a provides interface M1_ifc

• Module m2 provides interface M2_ifc

• Module m3 uses interface M2_ifc

• Module m1b provides interface M1_ifc

The top-level module mkTb, instantiates an instance m3 of the module mkM3:

package Tb;

(* synthesize *)

module mkTb (Empty);

Empty m3 <- mkM3;

endmodule

The module mkM3 instantiates an instance of mkM1 and mkM2:

6.1. MODULE HIERARCHIES 67

(* synthesize *)

module mkM3 (Empty);

Reg#(int) x <- mkReg (10);

M1_ifc m1b <- mkM1 (20);

M2_ifc m2 <- mkM2 (30);

...

endmodule

The module mkM2, instantiates another instance of mkM1:

module mkM2 #(parameter int init_val) (M2_ifc);

M1_ifc m1a <- mkM1 (init_val + 10);

6.1.1 Parameter

The statement:

module mkM3(Empty);

...

M1_ifc m1b <- mkM1 (20);

instantiates module mkM1 inside the module M3 with the static elaboration parameter 20; the interface
provided by the instantiation is bound to the variable named m1b of type M1_ifc.

A module definition can include a parameter for the module. If the parameter keyword is used, then
the parameter becomes a Verilog parameter and not a Verilog port (input wire). In our example,
the definition of module mkM2 includes the parameter init_val:

module mkM2 #(parameter int init_val) (M2_ifc);

Wherever mkM2 is instantiated, the actual parameter must be a static (compile-time) value.

The statement:

M1_ifc m1a <- mkM1 (init_val + 10);

instantiates the module mkM1 inside the module M2, passing it a parameter that is mkM2’s parameter
+ 10.

68 CHAPTER 6. MODULE HIERARCHY AND INTERFACES

6.1.2 Scope of methods

The statement:

$display ("x = %0d, m1b/x = %0d, m2/x = %0d, m2/m1a/x = %0d",

x, m1b.read_local_x, m2.read_local_x, m2.read_sub_x);

displays the value of x in each module instance, using method invocations to access x in the sub-
modules.

Note that there are 4 registers called x, one at each level of the module hierarchy (x, m1b.x, m2.x,

m2.m1.x) even though there are only three textural instances of mkReg:

Reg#(int) x <- mkReg (init_val);

Because the module mkM1 is instantiated twice, we get 4 registers after static elaboration.

Modules mkM1 and mkM2 each have their own definition of the method read_local_x. These methods
both return a value of x as well.

interface M2_ifc;

method int read_local_x ();

method int read_sub_x ();

endinterface

module mkM2 #(parameter int init_val) (M2_ifc);

M1_ifc m1a <- mkM1 (init_val + 10);

Reg#(int) x <- mkReg (init_val);

method int read_local_x ();

return x;

endmethod

6.1. MODULE HIERARCHIES 69

interface M1_ifc;

method int read_local_x ();

endinterface

(* synthesize *)

module mkM1 #(parameter int init_val) (M1_ifc);

Reg#(int) x <- mkReg (init_val);

method int read_local_x ();

return x;

endmethod

endmodule: mkM1

There are 2 definitions of methods called read_local_x, but three invocations:

• m3 invoking m1b.read local x

• m3 invoking m2.read local x

– m2 invoking m1a.read local x

BSV uses standard programming language scope rules to resolve identifiers, so there is no ambiguity
about the different uses of x or read_local_x.

6.1.3 Analyzing a design

The design browsers within the Bluespec Development Workstation provide many views to facilitate
your understanding and analysis of a design. The following table summarizes the windows and
browsers in the workstation. Which browser you use for a given task depends on the information
you want to see and the state of the design.

70 CHAPTER 6. MODULE HIERARCHY AND INTERFACES

Bluespec Development Workstation Windows
Window Function Required

Files

Main Window Central control window. Manage projects, set project
options, build projects, and monitor status.

.bspec

Project Files Window View, edit and compile files in the project. .bsv

Package Window Pre-elaboration viewer for the design. Load packages
into the workstation and browse their contents. Pro-
vides a high-level view of the types, interfaces, func-
tions and modules defined in the package.

.bo

Type Browser Primary means for viewing information about types
and interfaces. Displays the full structure hierarchy
and all the concrete types derived from resolution of
polymorphic types.

.bo

Module Browser Post-elaboration module viewer, including rules and
method calls. Displays the design hierarchy and an
overview of the contents of each module. Provides an
interface to the waveform viewer.

.ba

Schedule Analysis Window
View schedule information including warnings,
method calls, and conflicts between rules for a mod-
ule.

.ba

Scheduling Graphs Graphical view of schedules, conflicts, and dependen-
cies.

.ba .dot

To view the module hierarchy for the example in this section, open the file
modules/mod_hierarchy/mod_hierarchy.bspec. Compile the design, open the Module Browser,
and Load Top Module to display the module hierarchy. Once you’ve simulated the design, from
this window you can link to an external waveform viewer, using the instantiated module hierarchy
and type definitions along with waveform dump files to display Bluespec type data along with the
waveforms.

To view waveforms, you must generate a waveform dump file, either VCD or FSDB, during simula-
tion. You can generate a VCD file from either Bluesim or any of the supported Verilog simulators.
When simulating with Bluesim, use the -V flag. For Verilog simulators using the Bluespec-provided
main.v file, specify the +bscvcd flag during simulation. Simulation flags are entered in the options
field of the Project Options→Link/Simulate window.

More information on the development workstation and Bluesim modes is described in the Bluespec
SystemVerilog User Guide.

6.2 Implicit conditions of methods

Source directory: modules/implicit_cond

Source listing: Appendix A.5.2

This example contains two methods which are very similar:

6.3. ACTIONVALUE METHODS 71

interface Dut_ifc;

method int f1 ();

method int f2 ();

endinterface

(* synthesize *)

module mkDut (Dut_ifc);

...

method int f1 ();

return x;

endmethod

method int f2 () if (is_even(x));

return x;

endmethod

endmodule

The only difference between the two methods is that f2 has an implicit condition; f2 can only
be invoked when x is even. The implicit condition may be a boolean expression or it may be a
pattern-match, but cannot include updating of state elements. A method can only fire when the
implicit condition is True or matches the pattern. Expressions in the implicit condition can use any
of the variables in scope surrounding the method definition, i.e., visible in the module body, but they
cannot use the formal parameters of the module itself. If the implicit condition is a pattern-match,
any variables bound in the pattern are available in the method body. Omitting the implicit condition
is equivalent to saying if (True).

The testbench executes two rules which look very similar, almost identical, the difference in execution
being the implicit condition on f2.

rule r1;

let x1 = dut.f1;

...

rule r2;

let x2 = dut.f2;

...

When executed, one can observe that rule r1 fires on every clock and rule r2 fires on every other
clock because of the implicit condition on method f2.

6.3 ActionValue methods

Source directory: modules/actionvalue

72 CHAPTER 6. MODULE HIERARCHY AND INTERFACES

Source listing: Appendix A.5.3

An ActionValue statement performs an Action (update of state element) and returns a value. In
this section we’re going to look at the statement:

int w <- dut.avmeth(10);

This statement invokes the avmeth ActionValue method with an argument 10, causing an action
inside the module. The method returns a value which is assigned to the local variable w of type int.

6.3.1 The let statement

This statement could also have been written with a let:

let w <- dut.avmeth(10);

The let statement is a shorthand way to declare and initialize a variable in a single statement. A
variable which has not been declared can be assigned an initial value and the compiler will infer the
type of the variable from the expression on the right hand side of the expression.

If the expression on the right hand side is the value returned by an ActionValue method, use the <-

assignment operator. For Value methods, use the = assignment operator.

6.3.2 The <- operator

Technically, the type of the expression dut.avmeth(10) is ActionValue#(int), not int. If we had
used = instead of <-, then the compiler would produce a type error, since it is an attempt to assign a
value of type ActionValue#(int) to a variable of type int. Section 6.4 demonstrates what happens
when you use the wrong operator.

When using <-, the right-hand side must be an expression of type ActionValue#(t) for some type
t. The statement causes the Action to be performed, and assigns the returned value to the variable
on the left-hand side, which must be of type t.

6.3.3 Defining the ActionValue Method

The statement:

interface Dut_ifc;

method ActionValue#(int) avmeth (int v);

endinterface

6.4. ACTIONVALUE METHOD WITH TYPE ERROR 73

declares avmeth to be an ActionValue method with an argument of type int that returns a value of
type int. The declaration is found in the interface definition. The body of the method, describing
how to accomplish the method, is defined in the module:

module mkDut (Dut_ifc);

Reg#(int) x <- mkReg (0);

method ActionValue#(int) avmeth (int v);

x <= x + v;

return x;

endmethod

endmodule

The definition indicates that the method performs an action (incrementing register x by the value
of v) and returns a value (the old value of x). When executed we can see that on each clock the
current value of the register is printed, and it is updated by 10.

6.4 ActionValue method with type error

Source directory: modules/action_value_type_error

Source listing: Appendix A.5.4

This example is identical to Section 6.3, except for the deliberate error:

module mkTb (Empty);

Dut_ifc dut <- mkDut;

rule r1;

int w = dut.avmeth(10); // DELIBERATE ERROR

$display ("w = %0d", w);

if (w > 50) $finish (0);

endrule

endmodule

The right-hand side expression, dut.avmeth(10) has a type of ActionValue#(int). This statement
attempts to bind this to a variable of type int, using an = operator instead of the <- operator,
provoking the following type error:

Error: "Tb.bsv", line 20, column 15: (T0080)

Type error at the use of the following function:

74 CHAPTER 6. MODULE HIERARCHY AND INTERFACES

dut.avmeth

The expected return type of the function:

Int#(32)

The return type according to the use:

ActionValue#(Int#(32))

6.5 ActionValue method with error in rule condition

Source directory: modules/action_value_rule_error

Source listing: Appendix A.5.5

Rules and method definitions can have conditions. A rule condition may be either a boolean expres-
sion or a pattern-match. The condition can use any identifiers from the scope surrounding the rule,
i.e. visible in the module body. If the rule condition is a pattern-match, any variables bound in the
pattern are available in the rule body. Most importantly, expressions in the rule conditions cannot
have side effects. In general, any Action or ActionValue expression represents a side effect, that is,
a potential change of state. Rule conditions and method implicit conditions can never contain an
Action or an ActionValue method.

This example, has the deliberate error of defining a rule condition that contains an ActionValue:

module mkTb (Empty);

Dut_ifc dut <- mkDut;

rule r1 (dut.avmeth (10) > 0); // DELIBERATE ERROR

int w = dut.avmeth(10);

$display ("w = %0d", w);

if (w > 50) $finish (0);

endrule

endmodule

An attempt to compile this will provoke the following type-checking error:

Error: "Tb.bsv", line 19, column 29: (T0031)

The provisos for this expression could not be resolved because there are no

instances of the form:

Ord#(ActionValue#(Int#(32)))

This error may seem a bit cryptic at first, but let’s look at it in more detail. The expression
dut.avmeth (10) > 0 is trying to use the greater than operator (>) to compare two values. In gen-
eral, > is defined only on types in the Ord typeclass. Here it is complaining that ActionValue#(int)

6.6. DEFINING AN ACTION FUNCTION 75

is not in the Ord typeclass, and hence can’t apply the > operator to such an expression. Note: int

is synonymous with Int#(32), so ActionValue#(int) is the same as ActionValue#(Int#(32)).

As described in Section 3.3, overloading is the ability to use a common function name or operator
on a collection of types. For example, the < function is meaningful on types that can be compared
such as bits, numeric types, or vectors. The implementation of how you compare the various types
is different, but all the members of the Ord typeclass allow the comparison. In this example, we have
an ActionValue, which is not a type that can be compared with anything. An ActionValue type is
not a member of the Ord typeclass.

6.6 Defining an Action function

Source directory: modules/action_function

Source listing: Appendix A.5.6

Previously we’ve discussed Action methods, which are defined as part of an interface. In this section,
we’re going to examine Action functions, which are not part of an interface definition. Any expression
that is intended to act on the state of the circuit (at circuit execution time) is an action and has
type Action. Actions are combined by using action blocks, with a action-endaction structure.

We’re going to write an Action function that represents the incrementing of x by a value dx, and
the incrementing of y by a value dy. Rules represent atomic transactions. Rule bodies specify the
collection of Actions that are performed atomically when the rule executes. This function constructs
and returns an Action, using the action-endaction block that can be used in a rule body, in the
same way that an Action method constructs an Action that can be used in a rule body. However,
unlike an Action method, an Action function is not part of an interface, does not explicitly specify
any condition, and is just considered an abbreviation of the Actions in the function body. In short,
functions allow you to construct parameterized Actions.

module mkTb (Empty);

Reg#(int) x <- mkReg (0);

Reg#(int) y <- mkReg (0);

function Action incr_both (int dx, int dy);

return

action

x <= x + dx;

y <= y + dy;

endaction;

endfunction

This function is defined inside the module as a local function. It is not visible at all outside this
module. Functions can also be defined at the top level, inside other functions, and, in general, in

76 CHAPTER 6. MODULE HIERARCHY AND INTERFACES

any scope. Normal scoping rules apply. For example, the use of x and y inside the function body
refer to the registers x and y in the function’s surrounding scope, namely in the module Tb.

The incr_both function is invoked in both rule r1 and rule r2.

rule r1 (x <= y);

incr_both (5, 1);

$display ("(x, y) = (%0d, %0d); r1 fires", x, y);

if (x > 30) $finish (0);

endrule

rule r2 (x > y);

incr_both (1, 4);

$display ("(x, y) = (%0d, %0d): r2 fires", x, y);

endrule

The semantics are directly equivalent to inlining the function where it is invoked, and binding the
function arguments correctly: (5,1) to (dx,dy) in the rule r1 and (1,4) to (dx,dy) in the rule r2.

6.7 Nested interfaces

Source directory: modules/nested_ifc

Source listing: Appendix A.5.7

Interfaces can be defined hierarchically; that is an interface can be defined in terms of other interfaces
or subinterfaces. This can be a valuable design technique, especially when you define reusable
subinterfaces.

A common paradigm between two blocks is a get/put; one side gets or retrieves an item from an
interface, the other side puts or gives an item to an interface. These gets and puts can be combined
to define clients and servers.

Let’s define two interfaces: a Client_int interface, which gets requests and puts responses, and
a Server_int interface which puts requests and gets responses. Instead of defining methods in
these interfaces directly, we are going to define them hierarchically. First we’ll declare the interfaces
Get_int and Put_int, because these interfaces capture a common, reusable paradigm. We’ll then use
the Get_int and Put_int interfaces as subinterfaces of the Client_int and Server_int interfaces.

The Put_int interface has a put Action method which gives an item of type int to an interface.

interface Put_int;

method Action put (int x);

endinterface

6.7. NESTED INTERFACES 77

The Get_int interface has a get ActionValue method, similar to a dequeue, which retrieves an item
for the interface and removes it at the same time.

interface Get_int;

method ActionValue#(int) get ();

endinterface

We can combine these interfaces to declare the client and server interfaces. The Client_int has a
subinterface to get requests and another subinterface to put responses. Conversely, the Server_int

has a subinterface to put requests and another subinterface to get responses.

interface Client_int;

interface Get_int get_request;

interface Put_int put_response;

endinterface: Client_int

interface Server_int;

interface Put_int put_request;

interface Get_int get_response;

endinterface: Server_int

Now let’s look at how we can use these interfaces in an working design. In this example we have a
stimulus generator (mkStimulusGen) providing a Client_int interface, a DUT (mkDut) providing a
Server_int interface, and a top level module (mkTb) connecting them together.

The top-level module instantiates the two submodules (the stimulus generator and the DUT) and
connects the flow of requests from the stimulus generator to the DUT and the flow of responses from
the DUT to the generator using two rules.

78 CHAPTER 6. MODULE HIERARCHY AND INTERFACES

module mkTb (Empty);

Client_int stimulus_gen <- mkStimulusGen;

Server_int dut <- mkDut;

// Connect flow of requests from stimulus generator to DUT

rule connect_reqs;

let req <- stimulus_gen.get_request.get();

dut.put_request.put (req);

endrule

// Connect flow of responses from DUT back to stimulus generator

rule connect_resps;

let resp <- dut.get_response.get();

stimulus_gen.put_response.put (resp);

endrule

endmodule: mkTb

Let’s examine the rule connect_reqs to see how the nested interfaces are used to connect the request
from the client to the request of the server. We know that stimulus_gen has the type Client_int,
which has two subinterfaces: get_request and put_response. The first statement assigns the
value returned by the method get from the get_request interface to the variable req. The second
statement, selects the subinterface put_request from the Server_int interface (since dut has type
Server_int), and selects the put method. It will put the value received from the get.

The rule connect_resps similarly connects the response from the DUT back to the stimulus gener-
ator. The first statement gets the response and puts and in the second statement that value is put
to the stimulus generator.

The definitions of the interface methods are defined within the modules; the Client_int methods
are defined in the module mkStimulusGen and the Server_int methods are defined in the module
mkDut. Interfaces define a common set of wires and methods; how these methods are implemented
are defined within the module providing the interface. Different modules can have different method
definitions for a common interface.

First let’s look at the mkDut module which provides a Server_int interface.

6.7. NESTED INTERFACES 79

module mkDut (Server_int);

FIFO#(int) f_in <- mkFIFO; // to buffer incoming requests

FIFO#(int) f_out <- mkFIFO; // to buffer outgoing responses

rule compute;

let x = f_in.first; f_in.deq;

let y = x+1; // Some ’server’ computation (here: +1)

if (x == 20) y = y + 1; // Modeling an ’occasional bug’

f_out.enq (y);

endrule

interface Put_int put_request;

method Action put (int x);

f_in.enq (x);

endmethod

endinterface

interface Get_int get_response;

method ActionValue#(int) get ();

f_out.deq; return f_out.first;

endmethod

endinterface

endmodule: mkDut

Let’s look how the Server_int get and put methods are defined. There are two ways of defining the
methods in the interface: directly and by assignment. Here we define the method in the put_request
subinterface using the direct syntax. Whenever the put method inside this subinterface is called, it
enqueues the argument onto the FIFO f_in.

The get_response interface subinterface also uses the direct definition syntax. When the get

method is called, it dequeues the value from f_out and returns the first value from f_out.

Now let’s examine the mkStimulusGen module.

80 CHAPTER 6. MODULE HIERARCHY AND INTERFACES

module mkStimulusGen (Client_int);

Reg#(int) x <- mkReg (0); // Seed for stimulus

FIFO#(int) f_out <- mkFIFO; // To buffer outgoing requests

FIFO#(int) f_in <- mkFIFO; // To buffer incoming responses

FIFO#(int) f_expected <- mkFIFO; // To buffer expected responses

rule gen_stimulus;

f_out.enq (x);

x <= x + 10;

f_expected.enq (x+1); // mimic functionality of the Dut ’server’

endrule

rule check_results;

let y = f_in.first; f_in.deq;

...

endrule

In this module we use the define the put_response subinterface directly and the get_request

subinterface by assignment.

interface get_request = interface Get_int;

method ActionValue#(int) get ();

f_out.deq; return f_out.first;

endmethod

endinterface;

interface Put_int put_response;

method Action put (int y) = f_in.enq (y);

endinterface

The entire interface...endinterface phrase after the = is an interface expression, that is, an
expression whose value is an interface. This value is assigned to the get_request interface variable
on the left-hand side. Why is this useful? First, it allows for flexible parameterized static elaboration.
For example, we could include an if...else statement:

interface _get_request = if (...static_parameter...)

interface Get_int endinterface

else

interface Get_int ... <def> ... endinterface

or even

6.8. STANDARD CONNECTIVITY INTERFACES 81

interface _get_request = ... function returning an interface ...

The following exercises will help you understand interfaces and subinterfaces in more detail.

1. Examine the Verilog generated for these modules and understand the correspondence between
the BSV interface and method definitions and the Verilog module port lists.

2. In mkTb, we have two rules: connect_reqs and connect_resps, one for each direction. What
happens if we combine them into a single rule?

3. Execute the program and note the cycles in which the rules fire. For the FIFO f_expected,
replace the mkFIFO constructor with mkSizedFIFO(10). Observe again the cycles in which
rules fire. Why are they different? Hint: the mkFIFO constructor creates a default-sized
FIFO (usually 2 elements), whereas the mkSizedFIFO(10) constructor creates a FIFO with 10
elements. Instead of 10, how small can the FIFO be without changing behavior?

4. In the rule check_results, what would happen if we forgot to write the statement
f_expected.deq?

6.8 Standard connectivity interfaces

Source directory: modules/connect_ifc

Source listing: Appendix A.5.8

The example in the previous section had interfaces for getting an item and putting an item and a top-
level module connecting them. These types of interfaces are often called Transaction Level Modeling
or TLM for short. This pattern is so common in system design that BSV provides parameterized
library interfaces, modules, and functions for this purpose. This example implements the previous
example using library elements instead of defining them from scratch. It reflects a common paradigm
in BSV coding, using BSV’s powerful library elements to quickly put together models and designs.

When using elements from the BSV library, you need to import the packages containing the compo-
nents you need. We’re going to import the BSV libraries for FIFOs, Get and Put interfaces, Client
and Server interfaces, and mkConnection modules.

import FIFO::*;

import GetPut::*;

import ClientServer::*;

import Connectable::*;

The mkTb module in this example will use the BSV-defined Client and Server interfaces, replacing
the Client_int and Server_int interfaces in the previous example.

82 CHAPTER 6. MODULE HIERARCHY AND INTERFACES

module mkTb (Empty);

Client#(int,int) stimulus_gen <- mkStimulusGen;

Server#(int,int) dut <- mkDut;

The type Client#(req_t, resp_t) is a client interface yielding requests of type req_t via a Get

subinterface and accepting responses of type resp_t via a Put subinterface.

interface Client#(type req_type, type resp_type);

interface Get#(req_type) request;

interface Put#(resp_type) response;

endinterface: Client

The type Server#(req_t, resp_t) is a server interface accepting requests of type req_t via a Put

subinterface and yielding responses of type resp_t via a Get interface.

interface Server#(type req_type, type resp_type);

interface Put#(req_type) request;

interface Get#(resp_type) response;

endinterface: Server

The package Connectable defines an overloaded module called mkConnection, which is used to
connect a client to a server.

mkConnection (stimulus_gen, dut);

This connects a Client to a Server in both directions. Technically, it instantiates a module that takes
these two interfaces as parameters. The module implements the functionality of the rules from the
previous example:

• a rule to get a request from the client and put() it into the server (connect_reqs)

• a rule to get a response from the server and put() it into the client (connect_resps).

You may ask, if mkConnection is instantiating a module, then what is its interface? mkConnection

has been defined with an Empty interface, so technically, the statement could have been written in
full as follows:

Empty e <- mkConnection (stimulus_gen, dut);

Since there is no subsequent use for the Empty interface e, we are allowed to write this in the shorter
form shown in the actual code.

The mkTb module is simplified from the previous example, using mkConnection instead of the rules
connect_reqs and connect_resps:

6.8. STANDARD CONNECTIVITY INTERFACES 83

module mkTb (Empty);

Client#(int,int) stimulus_gen <- mkStimulusGen;

Server#(int,int) dut <- mkDut;

mkConnection (stimulus_gen, dut);

endmodule: mkTb

The state and rules of mkDut are the same as in the previous example, but here we are defining the
subinterfaces request and response using the assignment syntax.

module mkDut (Server#(int,int));

...

interface request = toPut (f_in);

interface response = toGet (f_out);

The function toPut() is a library function which we sometimes call an interface transformer ; it
takes a FIFO interface argument (here, f_in) and returns a Put interface result. Similarly, toGet()
is a library interface transformer that transforms from a FIFO to a Get. There is nothing magical
about these interface transformers; they are ordinary BSV functions that you could write yourself.

fifosToClient@fifosToClient In fact, here is another example of such an interface transformer,
fifosToClient. This function, written for this example, combines the two interface transformers.

function Client#(req_t, resp_t) fifosToClient (FIFO#(req_t) f_reqs,

FIFO#(resp_t) f_resps);

return interface Client

interface Get request = toGet (f_reqs);

interface Put response = toPut (f_resps);

endinterface;

endfunction: fifosToClient

The fifostoClient transformer makes the interface definition even more succinct, a one-liner, used
in the mkStimulusGen module.

module mkStimulusGen (Client#(int,int));

...

return fifosToClient (f_out, f_in);

We could have defined the interface in mkStimulusGen using two lines, like this:

84 CHAPTER 6. MODULE HIERARCHY AND INTERFACES

interface request = toGet (f_out);

interface response = toPut (f_in);

Instead, we directly build the entire interface, which includes the two subinterfaces, by calling the
interface transformer, fifosToClient(). This is just a function that takes two FIFO interfaces and
returns a Client interface that gets requests from the first FIFO and puts responses into the second
FIFO. In addition, note that it is polymorphic (described in more detail in Section 9). That is, it
works for any request type req_t and any response type resp_t.

Using polymorphism, parameterization, and higher-order programming, BSV allows you to define
very powerful and highly reusable components, including types, interfaces, modules, and functions.

Chapter 7

Scheduling

As described in Section 5.2, state updates are defined within rules. While each rule execution
is logically atomic, and ordered with respect to all other rule executions, the actual behavior in
hardware is that multiple rules are scheduled concurrently. The BSV design is mapped by the
compiler into parallel clocked synchronous hardware. The mapping permits multiple rules to be
executed in each clock cycle.

The BSV compiler includes a dynamic scheduler that allows many rules to fire in parallel in each
clock. The compiler performs a detailed and sophisticated analysis of the rules and their interactions
and maps the design into very efficient, highly parallel, clocked synchronous hardware. The designer
can use the simple reference (one-at-a time) semantics to reason about correctness properties and be
confident that the synthesized parallel hardware will preserve those properties. BSV also provides
scheduling attributes to allow the designer to guide the compiler in implementing the mapping.

While respecting the constraints of atomicity and rule conflicts, there are still many choices in which
subsets of rules can fire in each clock cycle. A central principle is that BSV’s scheduling is “greedy”:

• Every rule enabled during a clock cycle will fire unless it is prevented by a conflict. Rules that
may not fire due to conflicts are reported as warnings during compilation (unless overridden
by an explicit user-supplied scheduling attribute).

Conflicts are discussed in more detail in Section 5.2. Two or more rules conflict either because
they are competing for a limited resource or because the result of their simultaneous hardware
execution would be inconsistent with any sequential (atomic) rule execution. In the absence of a
user annotation (attribute), the compiler will arbitrarily choose which rule to prioritize, but will
also issue an informational warning1. This guarantees the designer is aware of the ambiguity in the
design and can correct it. It might be corrected by changing the rules (rearranging their predicates
so they are never simultaneously applicable, for example) or by adding an urgency attribute which

1The compiler’s choice, while arbitrary, is deterministic. Given the same source and compiler version, the same
schedule (and, hence, the same hardware) will be produced. However, because it is an arbitrary choice, it can be
sensitive to otherwise irrelevant details of the program and is not guaranteed to remain the same if the source or
compiler version changes.

85

86 CHAPTER 7. SCHEDULING

tells the compiler which rule to prefer. When there are no scheduling warnings, it is guaranteed that
the compiler is making no arbitrary choices about which rules to execute.

Another scheduling principle is that a rule will fire at most once during a particular clock cycle.
This ensures that continuously enabled rules (like a counter increment rule) will only be executed
at most one time during a clock cycle.

Together, these two principles allow a designer to understand precisely which rules fire during each
cycle, and why; this, in turn, allows him to reason about performance.

7.1 Scheduling error due to parallel composition

Source directory: schedule/parallel_error

Source listing: Appendix A.6.1

This example consists of two modules: mkTb1 and mkTb. In both modules, a FIFO is instantiated,
mkTb1 tries to invoke the enq method twice from the same rule (resulting in an error), while mkTb

invokes the enqs from separate rules.

In mkTb1, the enq rule tries to enq from the same FIFO twice, from within the same rule:

mkTb1 (Empty);

FIFO#(int) f <- mkFIFO; // Instantiate a FIFO

...

rule enq (state < 7);

f.enq(state);

f.enq(state+1);

$display("FIFO enq: %d, %d", state, state+1);

endrule

Since the enq method of a FIFO can only be invoked once per clock, the two enq methods conflict;
they are not “parallel composable”. The compilation fails with the error:

Error: "Tb.bsv", line 36, column 9: (G0004)

Rule ‘RL_enq’ uses methods that conflict in parallel:

f.enq(...)

and

f.enq(...)

For the complete expressions use the flag ‘-show-range-conflict’.

Alternatively, if you comment out the mkTb1 module, you will note that mkTb is a similar module,
but it invokes the two enq methods from two separate rules:

7.2. SCHEDULING ATTRIBUTES 87

module mkTb (Empty);

FIFO#(int) f <- mkFIFO; // Instantiate a FIFO

...

rule enq1 (state < 7);

f.enq(state);

$display("FIFO enq: %d", state);

endrule

rule enq2 (state > 4);

f.enq(state+1);

$display("FIFO enq: %d", state+1);

endrule

These two rules conflict for some cycles, since they both invoke f.enq the compiler cannot schedule
them to fire in parallel. However, this will not cause a compilation error, instead the compiler will
issue the warning:

Warning: "Tb.bsv", line 48, column 8: (G0010)

Rule "enq2" was treated as more urgent than "enq1". Conflicts:

"enq2" cannot fire before "enq1": calls to f.enq vs. f.enq

"enq1" cannot fire before "enq2": calls to f.enq vs. f.enq

Note that when executing, enq1 can only fire when enq2 is not enabled by the rule condition (state
<=4). When the rule conditions have both rules enabled (state 5 and 6), only enq2 fires.

7.2 Scheduling attributes

Scheduling attributes are used to express performance requirements. When the compiler maps rules
into clocks, scheduling attributes guide or constrain its choices in order to produce a schedule that
will meet performance goals.

Scheduling attributes are most often attached to rules or rule expressions, but some can also be
added to module definitions. The attributes are only applied when the module is synthesized.

7.2.1 Prioritization using descending urgency

Source directory: schedule/desc_urgency

Source listing: Appendix A.6.2

When the compiler maps rules into clocks the order in which rule conditions are considered can
impact the subset chosen. For example, suppose rules r1 and r2 conflict, and both their condi-
tions are true so both can execute. If r1 is considered first and selected,it will disqualify r2 from
consideration, and vice versa.

88 CHAPTER 7. SCHEDULING

The descending_urgency attribute allows the designer to specify that one rule is more urgent than
another, so that it is always considered for scheduling before the other. The relationship is transitive,
i.e. if rule r1 is more urgent that rule r2 and rule r2 is more urgent than rule r3, then r1 is more
urgent than r3. If the urgency attributes are contradictory (resulting in an urgency cycle), the
compiler will report an error.

The argument of the descending_urgency attribute is a string containing a comma-separated list
of rule names. Example:

(* descending_urgency = "r1, r2, r3" *)

The descending_urgency attribute can be placed in one of three syntactic positions:

• It can be placed just before the module keyword in a module definition, in which case it can
refer directly to any of the rules inside the module.

• It can be placed just before the rule keyword in a rule definition, in which case it can refer
directly to the rule or any other rules at the same level.

• It can be placed just before the rules keyword in a rules expression, in which case it can refer
directly to any of the rules in the expression.

In the previous example, the compiler issued a warning when mkTb is compiled, stating that enq2

was treated as more urgent than enq1.

Adding the descending_urgency attribute will guide the compiler as to which rule it should treat
as more urgent and give higher priority when both rules can fire.

(* descending_urgency = "enq1, enq2"*)

rule enq1 (state < 7);

f.enq(state);

$display("FIFO enq1: %d", state);

endrule

rule enq2 (state > 4);

f.enq(state+1);

$display("FIFO enq2: %d", state+1);

endrule

With this example, the compiler will schedule rule enq1 to fire when both rules can fire (when state
= 5 or 6).

7.2. SCHEDULING ATTRIBUTES 89

7.2.2 Descending urgency vs. execution order

Source directory: schedule/exec_order

Source listing: Appendix A.6.3

We often use the terms execution order, earliness, and TRS order (from Term Rewriting Systems)
synonymously. All these refer to the logical order in which rules execute within a clock cycle such
that all methods are called in an order consistent with their scheduling constraints.

The details of the testbench in this example are not important. The focus is on the module mkGadget
and the schedule of its rules. The module has two FIFOs: infifo and outfifo:

module mkGadget (Server#(int,int));

int bubble_value = 42;

FIFO#(int) infifo <- mkFIFO;

FIFO#(int) outfifo <- mkFIFO;

There are three rules defined in the module:

(* descending_urgency="enqueue_item, enqueue_bubble" *)

rule enqueue_item;

outfifo.enq(infifo.first);

infifo.deq;

bubble_cycles <= 0;

endrule

rule inc_bubble_cycles;

bubble_cycles <= bubble_cycles + 1;

endrule

rule enqueue_bubble;

outfifo.enq(bubble_value);

max_bubble_cycles <= max(max_bubble_cycles, bubble_cycles);

endrule

The rules enqueue something on the outfifo whenever it isn’t full. They enqueue an item from
the infifo whenever one is available (first rule), else they enqueue a “bubble_value” (third rule).
Meanwhile, the rules also measure max_bubble_cycles, the longest continuous stretch of consecutive
bubbles.

With the descending_urgency attribute, the user has specified that the rule enqueue_item is more
urgent than the rule enqueue_bubble, that is, if it is possible to enqueue an item, it is more urgent
to do that, than enqueue a bubble.

However, note that:

90 CHAPTER 7. SCHEDULING

rule enqueue_item writes register bubble_cycles

rule inc_bubble_cycles reads & writes register bubble_cycles

rule enqueue_bubble reads register bubble_cycles

By normal ordering of register read and write methods, this implies that the earliness ordering (TRS
ordering) of these rules must be:

enqueue_bubble, inc_bubble_cycles, enqueue_item

Thus, observe that in this example the urgency ordering is different from the earliness ordering.

Compile the example using the workstation. Verify that the flag -sched-dot is specified in the
Compile options field on the Compile tab (in the Project Options window). This flag tells the
compiler to generate .dot files containing graph files for each synthesized module.

Let’s look at the schedule in the workstation. We’re going to view the Execution Order graph (a.k.a.
earliness) in the Schedule Analysis window.

1. Compile the example

2. Open the Schedule Analysis window (Window→Schedule Analysis)

3. Load the module mkGadget (Module→Load)

4. Display the Execution Order graph (Scheduling Graphs→Execution Order)2

As you can see in the graph in Figure 7.1, the execution order of the rules is:

1. enqueue_bubble

2. inc_bubble_cycles

3. enqueue_item

Specifically, note that the earliness ordering of enqueue_bubble and enqueue_item is opposed to
their urgency ordering.

In summary:

• Urgency is a user-specified priority indicating in what order of importance rule must be con-
sidered for firing. This concerns rule conditions only, not rule bodies.

• Earliness is the logical sequencing of rules within a clock that is induced by the scheduling
constraints on the methods they use (such as a read from a register must be earlier than a
write to that register). This concerns both rule conditions and rule bodies.

2The package graphviz, including the Tcl extensions must be installed to view the scheduling graphs in the
workstation. To view the scheduling graphs without the workstation you can use any 3rd-party package capable of
displaying .dot files.

7.2. SCHEDULING ATTRIBUTES 91

Figure 7.1: Execution Order Graph

7.2.3 mutually exclusive

Source directory: schedule/mutually_exclusive

Source listing: Appendix A.6.4

The compiler’s scheduling phase always attempts to deduce when two rules are mutually exclu-
sive, i.e., prove that their conditions cannot simultaneously be true. However, the compiler may
be unable to prove this, either because the scheduler effort limit is exceeded or because the mutual
exclusion depends on information the scheduler does not know. The attribute mutually_exclusive

allows the designer to assert to the scheduler that two rule conditions are mutually exclusive.
The attribute mutually_exclusive may occur in the same syntactic positions as the attribute
descending_urgency, and takes a similar argument, a string containing a comma-separated list of
rule names. Example:

(* mutually_exclusive = "r1, r2, r3" *)

This asserts that every pair of rules in the list are mutually exclusive.

The mutually_exclusive assertion is sometimes called a “trust me” assertion, because the user
is claiming a property that the compiler may be unable to prove on its own. However, the BSV
compiler will generate code that will check and generate a runtime error if the two rules are ever
enabled simultaneously in the same clock cycle during simulation. This allows you to find out when
your use of the mutually_exclusive attribute is incorrect.

Let’s look at an example. We have a 3-bit register named x which always has one bit set.

Reg#(Bit#(3)) x <- mkReg (1);

92 CHAPTER 7. SCHEDULING

In rule rx we rotate the bits:

rule rx;

cycle <= cycle + 1;

x <= { x[1:0], x[2] }; // rotate the bits

$display ("%0d: Rule rx", cycle);

endrule

Hence, x always has exactly one bit set, bit 0, or 1, or 2. Thus the rules, ry0, ry1, and ry2 always
have mutually exclusive conditions. But this proof is too difficult for the compiler.

rule ry0 (x[0] == 1);

y <= y + 1;

$display ("%0d: Rule ry0", cycle);

endrule

rule ry1 (x[1] == 1);

y <= y + 2;

$display ("%0d: Rule ry1", cycle);

endrule

rule ry2 (x[2] == 1);

y <= y + 3;

$display ("%0d: Rule ry2", cycle);

endrule

Because the compiler does not know that the rules ry0, ry1 and ry2 are mutually exclusive, and
each rule reads and writes register y, the compiler assumes a conflict between each pair of rules.
Thus, it reports this during compilation and generates generates priority logic that suppresses the
other rules when one of them is enabled.

With the mutually_exclusive attribute, however, the compiler assumes mutual exclusion of the
rule conditions and does not generate priority logic.

When you compile the program without the mutually_exclusive attribute, the compiler generates
the following warning messages, along with priority logic in the Verilog:

Warning: "Tb.bsv", line 15, column 8: (G0010)

Rule "ry0" was treated as more urgent than "ry1". Conflicts:

"ry0" cannot fire before "ry1": calls to y.write vs. y.read

"ry1" cannot fire before "ry0": calls to y.write vs. y.read

Warning: "Tb.bsv", line 15, column 8: (G0010)

Rule "ry1" was treated as more urgent than "ry2". Conflicts:

"ry1" cannot fire before "ry2": calls to y.write vs. y.read

"ry2" cannot fire before "ry1": calls to y.write vs. y.read

7.2. SCHEDULING ATTRIBUTES 93

If you compile with the mutually_exclusive attribute, there is no conflict warning message and no
priority logic generated.

Note: we get the same functional behavior with or without the assertion, since just one of those
three rules is enabled at a time anyway. The difference is just in the quality of the Verilog—one has
priority logic (more expensive) and the other does not.

7.2.4 conflict free

Source directory: schedule/conflict_free

Source listing: Appendix A.6.5

Like the mutually_exclusive rule attribute, the conflict_free rule attribute is a way to overrule
the scheduler’s deduction about the relationship between two rules. However, unlike rules that are
annotated mutually_exclusive, rules that are conflict_free may fire in the same clock cycle.
The conflict_free attribute asserts that the annotated rules will not make method calls that are
inconsistent with the generated schedule when they execute.

The conflict_free attribute may occur in the same syntactic positions as the descending_urgency
attribute and takes a similar argument, a string containing a comma-separated list of rule names.
Example:

(* conflict_free = "r1, r2, r3" *)

This asserts that every pair of rules in the list are conflict free.

For example, two rules may both conditionally enqueue data into a FIFO with a single enqueue
port. Ordinarily, the scheduler would conclude that the two rules conflict since they are competing
for a single method. However, if they are annotated as conflict_free the designer is asserting that
when one rule is enqueuing into the FIFO, the other will not be, so the conflict is not real. With the
annotation, the schedule will be generated as if no conflicts exist, and code will be inserted into the
resulting model to check if conflicting methods are actually called by the conflict-free rules during
simulation.

It is important to understand the conflict_free attribute’s capabilities and limitations. The
attribute works with more than method calls that totally conflict (like the single enqueue port).
During simulation, it will check and report any method calls amongst conflict_free rules that are
inconsistent with the generated schedule (including registers being read after they have been written
and wires being written after they are read). On the other hand, the conflict_free attribute does
not overrule the scheduler’s deductions with respect to resource usage (like uses of a multi-ported
register file).

Let’s consider an example similar to the mutually_exclusive example in the previous section. In
this case the rules ry0, ry1, and ry2 are enabled on every cycle, but they access the shared resource
y on mutually exclusive conditions.

94 CHAPTER 7. SCHEDULING

rule ry0;

if (x[0] == 1) y <= y + 1;

endrule

rule ry1;

if (x[1] == 1) y <= y + 2;

endrule

rule ry2;

if (x[2] == 1) y <= y + 3;

endrule

There is no conflict in the access to y, but the compiler does not know that. Thus it reports the
conflict during compilation and generates priority logic that suppresses the other rules when one of
them is enabled.

With the conflict_free attribute, the compiler assumes that the conflicting resource will never be
accessed simultaneously, and does not generate priority logic. It does generate simulation code to
ensure that the resource is never actually accessed simultaneously.

When you compile the example without the attribute, the compiler generates the following warning
message along with priority logic:

Warning: "Tb.bsv", line 15, column 8: (G0010)

Rule "ry0" was treated as more urgent than "ry1". Conflicts:

"ry0" cannot fire before "ry1": calls to y.write vs. y.read

"ry1" cannot fire before "ry0": calls to y.write vs. y.read

Warning: "Tb.bsv", line 15, column 8: (G0010)

Rule "ry1" was treated as more urgent than "ry2". Conflicts:

"ry1" cannot fire before "ry2": calls to y.write vs. y.read

"ry2" cannot fire before "ry1": calls to y.write vs. y.read

Warning: "Tb.bsv", line 38, column 9: (G0021)

According to the generated schedule, rule "ry1" can never fire.

Warning: "Tb.bsv", line 43, column 9: (G0021)

According to the generated schedule, rule "ry2" can never fire.

If you compile with the conflict_free attribute, there are no conflicts warning messages and no
priority logic generated.

7.2.5 preempts

Source directory: schedule/preempts

Source listing: Appendix A.6.6

7.2. SCHEDULING ATTRIBUTES 95

The designer can also prevent a rule (or a set of rules) from firing whenever another rule fires. The
preempts attribute accepts two elements as arguments. Each element must either be a rule name
or a list of rule names. A list of rule names is enclosed in parentheses and separated by commas).
In each cycle, if any of the rule names specified in the first list can be executed and are scheduled
to fire, then none of the rules specified in the second list will be allowed to fire.

The preempts attribute is similar to the descending_urgency attribute and may occur in the
same syntactic positions. The preempts attribute is equivalent to forcing a conflict and adding
descending_urgency. With descending_urgency, if two rules do not conflict, then can still fire
together. With preempts, since the first rule considered preempts the other if it fires, they can never
fire together. If r1 preempts r2, the compiler forces a conflict and gives r1 priority. If r1 is able to
fire, but is not scheduled to fire, then r2 can still fire.

If r1 will fire, r2 will not:

(* preempts = "r1, r2" *)

If either r1 or r2 (or both) will fire, r3 will not:

(* preempts = "(r1, r2), r3" *)

If the rule r1 in the sub-module the_bar will fire, then neither r2 nor r3 will fire:

(* preempts = "(the_bar.r1, (r2, r3)" *)

In this example we have a module mkGadget:

module mkGadget (Server#(int,int));

FIFO#(int) infifo <- mkFIFO;

FIFO#(int) outfifo <- mkFIFO;

Reg#(int) idle_cycles <- mkReg(0);

The rule enqueue_item transfers an item from infifo to outfifo whenever possible:

rule enqueue_item;

outfifo.enq(infifo.first);

infifo.deq;

endrule

The rule count_idle_cycles counts the idle cycles:

96 CHAPTER 7. SCHEDULING

rule count_idle_cycles;

idle_cycles <= idle_cycles + 1;

$display ("Idle cycle %0d", idle_cycles + 1);

endrule

Note that the two rules enqueue_item and count_idle_cycles do not conflict in any way. Thus,
left to itself, count_idle_cycles would count every cycle. However, the line:

(* preempts="enqueue_item, count_idle_cycles" *)

ensures that count_idle_cycles only fires when enqueue_item does not fire, and thus it only counts
cycles when no item is transferred between the queues.

In fact, if we compile the example in the development workstation, and open the Schedule Analysis
window, we can view information about the rules. Load the mkGadget module (Module→Load)
and select the Rule Order tab. Select RL count idle cycles, to see the following information
about the rule:

RL_count_idle_cycles

Predicate

True

Methods called in predicate

Methods called in body

idle_cycles.read

idle_cycles.write

Blocking rules

RL_enqueue_item

7.2.6 fire when enabled, no implicit conditions

Source directory: schedule/fire_when_enabled

Source listing: Appendix A.6.7

The fire_when_enabled and no_implicit_conditions attributes immediately precede a rule (just
before the rule keyword) and govern the rule. They can only be attached to rule definitions, not
module definitions like the scheduling attributes discussed earlier in this section.

The fire_when_enabled attribute asserts that this rule must fire whenever its predicate and its
implicit conditions are true, i.e., when the rule conditions are true, the attribute checks that there
are no scheduling conflicts with other rules that will prevent it from firing.

7.2. SCHEDULING ATTRIBUTES 97

A rule may be inhibited from firing even if all its implicit and explicit conditions are true because it
conflicts with some other rule which has higher priority. Further, during program development, as we
add rules incrementally, this situation may change. The fire_when_enabled attribute is a useful
compiler-checked assertion that ensures that a rule is not inhibited by other rules. It essentially
asserts that the CAN FIRE signal of a rule is the same as its WILL FIRE, i.e., that if it can fire, it
won’t be inhibited by conflicts with any other rule.

The no_implicit_conditions attribute asserts that the implicit conditions of all interface methods
called within the rule must always be true; only the explicit rule predicate controls whether the rule
can fire or not.

A rule may call many methods, but unless we examine the implementations of those methods, we
could not be sure whether those methods can be disabled or not by implicit conditions. Further,
at different times during the design, the modules behind those method calls may be substituted,
i.e., the method implementations can change. The no_implicit_conditions attribute is a useful
compile-checked assertion that the method-calls in a rule are never disabled by implicit conditions

Both attributes are statically verified by the compiler and the compiler will report an error if neces-
sary.

This example demonstrates the fire_when_enabled and no_implicit_condition attributes. In
this example we have a register x, and a Put#(int) interface named dut.

module mkTb (Empty);

Reg#(int) cycle <- mkReg (0);

Reg#(int) x <- mkReg (0);

Put#(int) dut <- mkDut ();

Rule f1 has the attribute no_implicit_conditions, which asserts that the rule cannot be prevented
from firing because some method called in the rule has an implicit condition.

(* fire_when_enabled, no_implicit_conditions *)

rule r1 (pack (cycle)[2:0] != 7);

dut.put (x);

x <= x + 1;

endrule

rule r2;

x <= x + 2;

endrule

However, the rule calls dut.put() and we can see that in mkDut, the put() method has an implicit
condition:

98 CHAPTER 7. SCHEDULING

module mkDut (Put#(int));

Reg#(int) y <- mkReg (0);

method Action put (int z) if (y > 0);

y <= z;

endmethod

endmodule

Thus the assertion is false. When we compile, we get the following scheduling error message:

Error: "Tb.bsv", line 38, column 9: (G0005)

The assertion ‘no_implicit_conditions’ failed for rule ‘r1’

We can get beyond this by commenting out the implicit condition:

method Action put (int z); // if (y > 0);

and recompiling. Now we get the following error message:

Error: "Tb.bsv", line 38, column 9: (G0005)

The assertion ‘fire_when_enabled’ failed for rule ‘RL_r1’

because it is blocked by rule

RL_r2

in the scheduler

esposito: [RL_r2 -> [], RL_r1 -> [RL_r2], RL_count_cycles -> []]

Even if the rule r1’s explicit condition (’pack(cycle)[2:0] != 7’) were true, the rule is still
prevented from firing because:

• It conflicts with rule r2 (both r1 and r2 read and write register x)

• The descending_urgency attribute gives priority to r2 over r1

Thus, the fire_when_enabled assertion is false and we get the error message.

If we change the rule priorities as follows:

(* descending_urgency = "r1, r2" *)

it will compile successfully, because r1 can indeed execute whenever its conditions are true.

7.3. ALWAYS READY, ALWAYS ENABLED 99

7.3 always ready, always enabled

Source directory: schedule/always_ready

Source listing: Appendix A.6.8

The method attributes always_enabled and always_ready assert some control properties of the
annotated methods, and also remove the ports that thereby become unnecessary. These attributes
are applied to synthesized modules, methods, interfaces, and subinterfaces at the top level only. If
the module is not synthesized, the attribute is ignored. The compiler verifies that the attributes are
correctly applied.

The attribute always_enabled can be applied to Action and ActionValue methods (value methods
don’t have enable signals). It asserts that the environment will invoke these methods on every clock.
Thus, the normal enable signal in the generated Verilog is not necessary, and will be omitted. The
compiler verifies this assertion, i.e., it verifies that the rule or other method from which this method
is invoked fires on every cycle. If not, it emits a compile-time error.

The attribute always_ready can be applied to any method. It asserts that the condition on the
method is always true. Thus, the normal ready signal in the generated Verilog is not necessary, and
will be omitted. The compiler verifies this assertion, i.e., it attempts to prove that the method’s
condition is true. If not, it emits a compile-time error.

Note that always_enabled implies always_ready, since a rule calling a method that is not ready
cannot be enabled.

The current example implements a parameterized model of a pipelined, synchronous ROM with
3-cycle latency. It accepts an address and delivers data on every cycle. If an address arrives on cycle
J, the data is delivered on cycle J+3. Note: there is no handshaking, no flow control; addr and data

are transferred on every clock (hence the sync in the name). The source includes three files: Tb.bsv,
PipelinedSyncROM_model.bsv, and mem_init.datat.

The module mkPipelinedSyncROM_model is parameterized, and so it cannot be synthesized into a
separate Verilog module. The first few lines of the testbench package

import PipelinedSyncROM_model::*;

typedef UInt#(16) Addr;

typedef UInt#(24) Data;

(* synthesize *)

(* always_ready = "request, response" *)

(* always_enabled = "request" *)

module mkPipelinedSyncROM_model_specific (PipelinedSyncROM#(Addr,Data));

makes a specific instance of the module, fixing the parameters; this specific instance can be synthe-
sized into a separate Verilog module. The attributes:

100 CHAPTER 7. SCHEDULING

(* always_ready = "request, response" *)

(* always_enabled = "request" *)

specify that both request and response methods are always ready, and that the request Action
method is always enabled. The compiler will check that these assertions are indeed true, and then,
in the generated Verilog, omit the usual READY and ENABLE signals.

The model can be compiled and run with both Bluesim and Verilog sim. Generate Verilog and
observe the file mkPipelinedSyncROM_model_specific.v. When you examine the module header,
you will see that there are no READY or ENABLE signals in the port list, as shown below.

module mkPipelinedSyncROM_model_specific(CLK,

RST_N,

request_a,

response);

After you compile and observe the results, remove the always_ready and always_enabled at-
tributes, recompile to Verilog and observe that in the Verilog ports we now have the READY and
ENABLE signals for the methods.

7.4 -aggressive-conditions

Source directory: schedule/aggressive_conditions

Source listing: Appendix A.6.9 When a rule contains an if-statement, the implicit conditions in
the branches must be propagated to the rule predicate. This can be done conservatively, by sim-
ply placing the implicit conditions for every branch in the predicate. Or it can be done more
aggressively, by linking each implicit condition with its associated branch condition. The flag
-aggressive-conditions turns on this feature, directing the compiler to attempt to link the con-
ditions with the associated branches.

Let’s look at an example in which we have two FIFOs, f0 and f1, each of depth 3.

FIFO#(int) f0 <- mkSizedFIFO (3);

FIFO#(int) f1 <- mkSizedFIFO (3);

Rule rA tries to enqueue the cycle count into FIFO f0 on even cycles and into FIFO f1 on odd
cycles. Rule rb simply drains FIFO f0.

7.4. -AGGRESSIVE-CONDITIONS 101

rule rA;

if (pack (cycle)[0] == 0) begin

f0.enq (cycle);

$display ("%0d: Enqueuing %d into fifo f0", cycle, cycle);

end

else begin

f1.enq (cycle);

$display ("%0d: Enqueuing %d into fifo f1", cycle, cycle);

end

endrule

rule rB;

f0.deq ();

endrule

Since FIFO f1 is not drained, it will become full after 3 enqueues, after which the f1.enq() method
will be disabled. So, clearly, rule rA cannot do anything on odd cycles. The question is, can rule rA

fire on even cycles, since in those cases it is not trying to enqueue on f1. The answer is no if we do
not use the compiler’s -aggressive-conditions flag, and yes if we do.

Open the project in the development workstation and look at the compile options. Let’s first compile
without the -aggressive-conditions flag. After compiling, open the Schedule Analysis window
and load the top module. Look the Rule Order tab for rule RL_rA. You’ll see that the predicate
for the rule is:

f1.i_notFull && f0.i_notFull

Thus, the rule will not fire whenever f1 is full, regardless of whether it wants to enqueue on f1 or
not. Indeed, when we simulate the program, we see that the rule stops firing after the three enqueues
on f1:

0: Enqueuing 0 into fifo f0

1: Enqueuing 1 into fifo f1

2: Enqueuing 2 into fifo f0

3: Enqueuing 3 into fifo f1

4: Enqueuing 4 into fifo f0

5: Enqueuing 5 into fifo f1

Now let’s try it with the -aggressive-conditions flag. Open the Project Options window and
go to the Compile tab. In the Compile options field, add the flag -aggressive-conditions.
Clean, recompile, link, and simulate (this is a single option on the Build menu and the toolbar).
Now looking at the Rule Order tab for RL_rA, we see the predicate for the rule is:

cycle[0]

? f1.i_notFull

: f0.i_notFull

102 CHAPTER 7. SCHEDULING

You can see that the rule predicate is more aggressive, more fine-grained in checking whether the
rule can fire or not. It only checks whether f1 is full if it needs to enqueue on f1 and only checks
whether f0 is full if it needs to enqueue on f0.

Thus, the rule can continue to fire on even cycles, when it is not attempting to enqueue on f1. When
we run the program, we see that the rule continues firing. Until cycle 5, it enqueues on every cycle,
alternating three items on f0 and f1. After that, it only enqueues f0 on even cycles.

0: Enqueuing 0 into fifo f0

1: Enqueuing 1 into fifo f1

2: Enqueuing 2 into fifo f0

3: Enqueuing 3 into fifo f1

4: Enqueuing 4 into fifo f0

5: Enqueuing 5 into fifo f1

6: Enqueuing 6 into fifo f0

8: Enqueuing 8 into fifo f0

10: Enqueuing 10 into fifo f0

12: Enqueuing 12 into fifo f0

14: Enqueuing 14 into fifo f0

16: Enqueuing 16 into fifo f0

Why not always use aggressive-conditions? Propagating branch conditions to rule predicates can
add logic to your design. Also, aggressive conditions can increase compile time because the compiler’s
analysis of rule conditions must now work with more complex boolean expressions. Nevertheless, it
is nowadays common practice to use aggressive-conditions routinely, and only switch it off if
necessary for the above reasons.

Note that using aggressive-conditions is equivalent to splitting the rule into two separate rules
and lifting the if’s condition into the rule condition:

rule rA_T (pack (cycle)[0] == 0);

f0.enq (cycle);

$display ("%0d: Enqueuing %d into fifo f0", cycle, cycle);

endrule

rule rA_F; (! (pack (cycle)[0] == 0));

f1.enq (cycle);

$display ("%0d: Enqueuing %d into fifo f1", cycle, cycle);

endrule

Sometimes, splitting a rule syntactically like this makes the code more readable.

7.5 Separating an ActionValue method

Source directory: schedule/separate_av

7.5. SEPARATING AN ACTIONVALUE METHOD 103

Source listing: Appendix A.6.10

An ActionValue method combines an Action method and returns a value, combining the two types
of methods (Action and value) into a single method. In this example, we are going to look at the
difference between combining an Action and returning a value in a single ActionValue method vs.
separating the Action into an Action method and returning the value in a value method.

We’ll see that splitting an ActionValue method into an Action method and a value method can change
the atomicity properties. In particular, whereas the ActionValue method is necessarily atomic, the
separate Action and value methods can now be called from separate rules, and those rules can now
have other intervening rules.

Let’s examine the following interface definition:

interface Foo_ifc;

method ActionValue#(int) avx ();

method int vy ();

method Action ay ();

And we have two registers that we are examining, x and y:

Reg#(int) x <- mkReg (0);

Reg#(int) y <- mkReg (0);

In module mkFoo, the rules incx and incy are identical, on registers x and y respectively:

rule incx;

x <= x + 1;

$display ("%0d: rule incx; new x = %0d", cycle, x+1);

endrule

rule incy;

y <= y + 1;

$display ("%0d: rule incy; new y = %0d", cycle, y+1);

endrule

The three methods in the module perform the following actions:

• The method avx returns the old value of x and sets x to 42.

• The method vy just returns the old value of y.

• The method ay just sets y to 42.

104 CHAPTER 7. SCHEDULING

method ActionValue#(int) avx ();

$display ("%0d: method avx; setting x to 42; returning old x = %0d",

cycle, x);

x <= 42;

return x;

endmethod

method int vy ();

return y;

endmethod

method Action ay ();

$display ("%0d: method ay; setting y to 42", cycle);

y <= 42;

endmethod

The rules in the top-level module mkTb call each of the methods:

• rule rAVX calls the ActionValue method avx

• rule rAY calls the Action method ay

• rule rVY calls the value method vy

rule rAVX;

let x <- foo.avx ();

$display ("%0d: rule rAVX, x = %0d", cycle, x);

endrule

rule rAY;

$display ("%0d: rule rAY", cycle);

foo.ay ();

endrule

rule rVY;

let y = foo.vy ();

$display ("%0d: rule rVY, y = %0d", cycle, y);

endrule

When we compile and run, we see output like this:

0: rule rVY, y = 0

0: rule incy; new y = 1

0: rule rAY

7.5. SEPARATING AN ACTIONVALUE METHOD 105

0: method ay; setting y to 42

0: method avx; setting x to 42; returning old x = 0

0: rule rAVX, x = 0

1: rule rVY, y = 42

1: rule incy; new y = 43

1: rule rAY

1: method ay; setting y to 42

1: method avx; setting x to 42; returning old x = 42

1: rule rAVX, x = 42

Note that in each cycle, with respect to the split methods, the rules rVY, incy, and rule rAY execute,
in that order. On the other hand, looking at the combined method, rule rAVX fires, but not rule
incx.

The explanation has to do with atomicity. The combined method avx both reads and writes register
x, as does rule incx. Thus, the combined method conflicts with the rule and these two can never
execute simultaneously in the same cycle. We can see which rules have blocking rules, and what
they are on the Rule Order tab of the Schedule Analysis window.

On the other hand, in the split method, method vy only reads y; rule incy both reads and writes
y, and method ay only writes y. Thus it is possible to schedule these in that order: vy before incy

before ay. We see this in the Execution Order graph from the Schedule Analysis window, as
shown in Figure 7.2.

Figure 7.2: Execution Order Graph

106 CHAPTER 7. SCHEDULING

Chapter 8

RWires and Wire types

A Wire is a primitive stateless module whose purpose is to allow data transfer between methods and
rules without the cycle latency of a register. That is, a value can be written and read out in the same
cycle; the value is not stored across clock cycles. Wires are used to pass data between rules within
the same clock cycle. Wires in BSV are integrated into rule semantics, just like registers—wires are
modules with interface methods, and the interface methods have schedules.

Before reading this section, it is important to be clear about the logical execution order of rules, as
described in 5.2, and the BSV compiler’s scheduling principle of firing a rule at most once within a
clock cycle, as described in 7.

All wire types in BSV are built using the basic RWire type. But before we discuss the differences
between RWire and its derived types (Wire, DWire, PulseWire, BypassWire), we need to understand
the basic features of RWires, and hence, all wires.

• Wires truly become wires in hardware; they only carry values within a clock cycle, and they
do not hold any state between cycles.

• A wire can be written at most once in a cycle.

• A wire’s schedule requires that in a given cycle it is written before it is read, as opposed to a
register that is read before it is written:

Wire: write before read
Register: read before write

That is, any rule which writes to a wire must be scheduled earlier than any other rule which
reads from the wire.

8.1 RWire

The RWire interface is defined (in the BSV library) as follows:

107

108 CHAPTER 8. RWIRES AND WIRE TYPES

interface RWire#(type element_type) ;

method Action wset (element_type datain) ;

method Maybe#(element_type) wget;

endinterface: RWire

The wset method writes to an RWire. The wget method reads the RWire, but instead of just
returning a raw value, it is accompanied by a ’valid’ bit. This combination of a value with a valid
bit is a common paradigm in hardware design, and in BSV it is typically expressed using a Maybe

type, which discussed in more detail in Section 10.1.5.

In a given cycle, if wset(v) is being invoked by a rule A, then wget returns, to its invoking rule B,
“valid” along with v. If no rule A is currently invoking wset, then wget returns “invalid” to rule B.
Thus,

• By testing the valid bit, rule B can “know” whether or not there is a rule A driving the RWire,
and

• if so, rule B can also receive the value v communicated by rule A.

The valid test can be performed using the library function isValid(mv). The value carried on an
RWire mv can be extracted using the function fromMaybe(default_value, mv). If mv is valid, the
function returns the associated value carried by the Maybe; if it is invalid, it returns default value.

In the example below, we supply ? as the default value, which represents a don’t care value.

Maybe#(int) mbi = rw_incr.wget();

int di = fromMaybe (?, mbi);

The methods of an RWire are always ready. Note that if there is no rule B performing the wget

while a rule A is performing a wset(v), then the communicated value v is “dropped on the floor”,
i.e., it is not observed by any rule.

8.1.1 Up-down counter with simultaneous up/down commands

Source directory: rwire/simplerwire

Source listing: Appendix A.7.1

Through the next few sections we are going to examine an up-down counter that can have simulta-
neous up and down commands (Action methods). Each example implements two different versions
of the counter where the second version uses a form of Wire. In this first example, we use an RWire.

First we instantiate two up-down counters. They both provide the same interface type, Counter.

8.1. RWIRE 109

interface Counter;

method int read(); // Read the counter’s value

method Action increment (int di); // Step the counter up by di

method Action decrement (int dd); // Step the counter down by dd

endinterface: Counter

module mkTb (Empty);

Counter c1 <- mkCounter_v1; // Instantiate a version 1 counter

Counter c2 <- mkCounter_v2; // Instantiate a version 2 counter

They are called from the testbench, mkTb, in identical ways from apparently identical rules. For
both counters, the rules increment by 5 in states 0..6, decrement by 2 in states 4..10. The interesting
states are 4, 5 and 6 where both increment and decrement rules are potentially attempted.

rule incr1 (state < 7); //increment counter1

c1.increment (5);

endrule

rule decr1 (state > 3); //decrement counter1

c1.decrement (2);

endrule

rule incr2 (state < 7); //increment counter2

c2.increment (5);

endrule

rule decr2 (state > 3); //decrement counter2

c2.decrement (2);

endrule

Version 1 of the counter is straightforward. It has no independently running rules. The increment

and decrement methods perform their required actions directly. But note that, because they both
read and write value1, the methods conflict. They cannot both execute in the same clock. Specifi-
cally, the rules incr1 and decr1 in mkTb cannot both fire in the same clock.

110 CHAPTER 8. RWIRES AND WIRE TYPES

module mkCounter_v1 (Counter); // Version 1 of the counter

...

method Action increment (int di);

value1 <= value1 + di;

endmethod

method Action decrement (int dd);

value1 <= value1 - dd;

endmethod

endmodule: mkCounter_v1

Version 2 of the counter uses RWires:

module mkCounter_v2 (Counter);

Reg#(int) value2 <- mkReg(0); // holding the counter’s value

RWire#(int) rw_incr <- mkRWire(); // Signal invoking increment

RWire#(int) rw_decr <- mkRWire(); // Signal invoking decrement

These two RWires communicate from the increment and decrement methods to the doit rule. Both
of them, if driven, carry an int value. We will discuss the doit rule after discussing the interface
methods.

Whenever the increment method is invoked, it drives the RWire rw_incr carrying the value di.
Specifically, whenever the rule that invokes increment fires (incr2), the RWire is driven.

method Action increment (int di);

rw_incr.wset (di);

endmethod

Similarly, whenever the decrement method is invoked (from rule decr2), it drives the RWire
rw_decr.

method Action decrement (int dd);

rw_decr.wset (dd);

endmethod

These two methods do not conflict because they are just driving different RWires. Hence, these two
methods, increment and decrement, can be invoked in the same clock cycle, and the rules incr2

and decr2 in mkTB can fire in the same clock cycle.

The rule doit below does all the work. Each .wget() method reads an RWire.

8.1. RWIRE 111

(* fire_when_enabled, no_implicit_conditions *)

rule doit;

Maybe#(int) mbi = rw_incr.wget();

Maybe#(int) mbd = rw_decr.wget();

int di = fromMaybe (?, mbi);

int dd = fromMaybe (?, mbd);

In the current clock, if an RWire is not being driven (by .wset, then .wget() returns Invalid. If
the RWire is being driven with a value v, the .wget() returns Valid along with v.

The if-then-else structure tests all four combinations of whether the two RWire-reads are Invalid

or Valid, that is, it test whether the methods increment and decrement are being invoked in the
current clock cycle (neither, one of them, or both) and performs the appropriate action.

if ((! isValid (mbi)) && (! isValid (mbd)))

noAction;

else if (isValid (mbi) && (! isValid (mbd)))

value2 <= value2 + di;

else if ((! isValid (mbi)) && isValid (mbd))

value2 <= value2 - dd;

else (isValid (mbi) && isValid (mbd))

value2 <= value2 + di - dd;

endrule

noAction is a special null Action (skip, do nothing). Thus, the rule doit performs the appropriate
updates to the counter depending on which methods are being invoked.

8.1.2 Attributes (*fire when enabled, no implicit conditions*)

You may have noticed the attributes fire_when_enabled and no_implicit_conditions on the rule
doit. These are intended to further guarantee safety. Even though the program will work without
these attributes, we are relying on certain scheduling properties of the rule, and it is better to make
this explicit so that:

• the compiler will ensure the scheduling properties are as expected

• it is obvious to anyone reading the program what the scheduling intentions are

For example, what will happen if the increment method is invoked in a particular cycle, and
somehow the rule doit doesn’t fire? The increment command and value will be missed (the value
is “dropped on the floor”). To guarantee that this does not happen, we need to ensure that the rule
always fires.

112 CHAPTER 8. RWIRES AND WIRE TYPES

The fire_when_enabled attribute asserts that whenever the rule’s conditions are true, the rule fires.
A rule’s condition is normally necessary, but not sufficient, for the rule to fire, because conflicts with
other rules may prevent it from firing even when its condition is true. This assertion strengthens
it, saying that the rule’s conditions are indeed sufficient. This assertion is proved by the compiler,
raising a compile-time error if false.

The no_implicit_conditions attribute asserts that none of the methods invoked in the rule has a
condition that could be false. Since this rule also has no explicit conditions, this means that there are
no firing conditions for the rule. This assertion is also proved by the compiler, raising a compile-time
error if false.

Together these assertions ensure that this rule fires on every clock. The rule has no conditions,
explicit or implicit, and is not prevented from firing due to conflicts with any other rule. This
guarantees that neither the increment value nor the decrement value will be dropped on the floor.

8.1.3 Compiling the Example

When we compile, we see the following warning from the compiler:

Warning: "Tb.bsv", line 18, column 8: (G0010)

Rule "decr1" was treated as more urgent than "incr1". Conflicts:

"decr1" cannot fire before "incr1": calls to c1.decrement vs. c1.increment

"incr1" cannot fire before "decr1": calls to c1.increment vs. c1.decrement

The compiler is stating that since c1.increment and c1.decrement conflict (they cannot be invoked
in the same cycle), it cannot allow rules incr1 and incr2 to fire in the same cycle. In the absence
of any other guidance, it picks decr1 over incr1. Thus in cycles 0-3, when only �incr1 can fire, it
will fire. In cycles 4-6 when both rules are enabled, it will only allow decr1 to fire; in cycles 7-10
when only decr1 can fire, it will fire.

In the second counter, c2, there is no such warning about rules incr2 and decr2 because, as we
have seen, they can fire together. So for counter c2, in cycles 4-6, both rules incr2 and decr2 will
fire.

When we execute the code, the displayed outputs indeed show this behavior.

Counter 1 Counter 2
Enabled Fire Enabled Fire

Cycles incr1 decr1 incr1 decr1 incr1 decr1 incr1 decr1

0-3 D D D D

4-6 D D D D D D D

7-10 D D D D

8.1. RWIRE 113

8.1.4 RWire with pattern-matching

Source directory: rwire/pattern_matching

Source listing: Appendix A.7.2

Most of this example is identical to the previous one, except for the style in which we have written
the body of the rule doit. This version uses a case statement with pattern-matching instead of the
if/then/else statement. Pattern-matching is discussed in more detail in Section 10.1.6.

Instead of this:

(* fire_when_enabled, no_implicit_conditions *)

rule doit;

Maybe#(int) mbi = rw_incr.wget();

Maybe#(int) mbd = rw_decr.wget();

int di = fromMaybe (?, mbi);

int dd = fromMaybe (?, mbd);

if ((! isValid (mbi)) && (! isValid (mbd)))

noAction;

else if (isValid (mbi) && (! isValid (mbd)))

value2 <= value2 + di;

else if ((! isValid (mbi)) && isValid (mbd))

value2 <= value2 - dd;

else // (isValid (mbi) && isValid (mbd))

value2 <= value2 + di - dd;

endrule

we now write this:

(* fire_when_enabled, no_implicit_conditions *)

rule doit;

case (tuple2 (rw_incr.wget(), rw_decr.wget())) matches

{ tagged Invalid, tagged Invalid } : noAction;

{ tagged Valid .di, tagged Invalid } : value <= value + di;

{ tagged Invalid, tagged Valid .dd } : value <= value - dd;

{ tagged Valid .di, tagged Valid .dd } : value <= value + di - dd;

endcase

endrule

The expression tuple2(..., ...) evaluates to a two-tuple or a pair. Think of it as a struct with
two fields that are filled in with the values of the two expressions. In this case, the tuple contains
the values of the RWires: rw_incr.wget() and rw_decr.wget().

The case(e) matches...endcase construct is called a pattern-matching case (because of the pres-
ence of the keyword matches). It selects the first case that matches the pattern of the expression e.

114 CHAPTER 8. RWIRES AND WIRE TYPES

In this example, the four lines enumerate the four combinations of whether the two RWire reads are
Invalid or Valid, that is whether the methods increment and decrement are being invoked in the
current clock cycle (neither, increment, decrement, or both). 2-tuples are matched with patterns
like {pat2, pat2}, where pat1 and pat2 are themselves patterns matching the first and second
components of the 2-tuple, respectively. A pattern like tagged Valid .di will only match a valid
RWire value and allows us to use the name di in the arm of the case statement. Thus, for example,
the second line of the case statement can be read as follows:

If the value of rw_incr.wget() is valid and carries a value di (which must be of type
int), and the value of rw_decr.wget is invalid, then increment value by di.

Note that with this pattern-matching notation, when the value is Invalid, it is impossible to acci-
dently read the remaining 32 bits (which are garbage). Thus, pattern-matching notation not only
enhances readability (and hence maintainability), but also safety (correctness).

When we execute the code, the displayed outputs show the same behavior as the previous example.

8.2 Wire

Source directory: rwire/wire

Source listing: Appendix A.7.3

Let’s take the previous example and rewrite module mkCounter_v2 to use the Wire#() data type
instead of RWire#().

Wire is an RWire that is designed to be interchangeable with a Reg. The Wire interface is a synonym
for the Reg interface; you can replace a Reg with a Wire without changing the syntax.

typedef Reg#(type element_type) Wire#(type element_type);

The Wire#() interface and module are similar to RWire#(), but the valid bit is hidden from the user
and the validity of the read is considered an implicit condition. The Wire interface works like the
Reg interface, so mentioning the name of the wire gets (reads) its contents whenever they’re valid,
and using “<=” writes the wire. So instead of writing a value using wset(), we use the same notation
as a register write, namely the non-blocking assignment operator <=. Instead of reading a Maybe#()

value, we use the same notation as a register read; either we just mention the name of the Wire to
read it implicitly or we can use the method _read explicitly.

The key point is that the information carried on the Valid bit of a Maybe#() type in an RWire is
instead carried here as an implicit condition of the _read() method. That is, the _read() method
is only enabled if the _write() (assignment) is happening earlier in the same clock cycle.

We declare our Wires as follows:

8.3. DWIRE 115

// Signal that increment method is being invoked

Wire#(int) w_incr <- mkWire();

// Signal that decrement method is being invoked

Wire#(int) w_decr <- mkWire();

The increment() and decrement() methods are changed to use register-write notation:

method Action increment (int di);

w_incr <= di;

endmethod

method Action decrement (int dd);

w_decr <= dd;

endmethod

The following rules capture the desired behavior:

(* descending_urgency = "r_incr_and_decr, r_incr_only, r_decr_only" *)

rule r_incr_and_decr;

value2 <= value2 + w_incr - w_decr;

endrule

rule r_incr_only;

value2 <= value2 + w_incr;

endrule

rule r_decr_only;

value2 <= value2 - w_decr;

endrule

Because of the implicit conditions on w_incr and w_decr, the first rule can only fire if both Wires
are being assigned. Similarly, the second rule can only fire if w_incr is being assigned, and the third
rule can only fire if w_decr is being assigned.

Note that all three rules are enabled if both w_incr and w_decr are being assigned. The attribute
descending_urgency ensures that in this case the first rule is given priority over the other two.

When we execute the code, the displayed outputs indeed show the same behavior as the previous
two examples.

8.3 DWire

Source directory: rwire/dwire

116 CHAPTER 8. RWIRES AND WIRE TYPES

Source listing: Appendix A.7.4

Now let’s look at the counter example rewriting module mkCounter_v2 to use a mkDWire constructor
instead of mkWire.

The mkDWire constructor also creates a module with a Wire#() interface (which is a synonym for
the Reg#() interface). However, when using a DWire, the _read method is always enabled, and
therefore has no implicit conditions. When using the DWire construct, if the Wire is assigned earlier
in the current clock cycle, the _read method returns the value assigned. However, if the Wire is
not assigned, the _read method returns a default value, which is provided as a parameter to the
mkDWire() module constructor.

We declare the wires as follows:

// Signal that increment method is being invoked

Wire#(int) w_incr <- mkDWire (0);

// Signal that decrement method is being invoked

Wire#(int) w_decr <- mkDWire (0);

Notice that the default value on both wires is 0. Now we need only one rule to capture the desired
behavior:

(* fire_when_enabled, no_implicit_conditions *)

rule r_incr_and_decr;

value2 <= value2 + w_incr - w_decr;

endrule

This rule will fire on every clock (the fire_when_enabled and no_implicit_conditions attributes
guarantee that). Whenever the increment() method is invoked, w_incr will carry the increment
value, else it will carry 0. Whenever the decrement() method is invoked, it will carry the decrement
value, else it will carry 0. Thus, on every clock, we add and subtract the appropriate value from
value2.

Once again, when we execute the code, the displayed outputs show the same behavior as the previous
examples.

8.4 PulseWire

Source directory: rwire/pulsewire

Source listing: Appendix A.7.5

In this variant of the counter example, the decrements are always by 1 instead of an arbitrary integer.
Now the decrement method has no argument:

8.4. PULSEWIRE 117

rule decr1 (state > 3);

// Decrement always by 1, so method has no argument

c1.decrement ();

endrule

interface Counter;

...

// Step the counter down by 1

method Action decrement ();

endinterface: Counter

In module mkCounter_v2 in the earlier RWire example (Section 8.1.4), we used an RWire rw_decr to
carry a value from the decrement method to the doit rule. We could continue to do this, redefining
the decrement method to always pass the int (32 bit wide) constant 1, instead of an argument:

method Action decrement ();

rw_decr.wset (1);

endmethod

Alternatively, we could modify the RWire declaration so that it carries a value that is zero bits wide:

module mkCounter_v2 (Counter);

...

RWire#(Int#(0)) rw_decr <- mkRWire();

Then, in the decrement method we could use a don’t care value for this 0-bit integer argument of
wset:

method Action decrement ();

rw_decr.wset (?); // ’Don’t care’ value for the wset argument

endmethod

And in the pattern-match in rule doit, we could use a wildcard symbol * in the patterns to match
the value of rw_decr.wget, since we are just checking that it is Valid, but not the value of the data:

rule doit;

case (tuple2 (rw_incr.wget(), rw_decr.wget())) matches

{ tagged Invalid, tagged Invalid } : noAction;

{ tagged Valid .di, tagged Invalid } : value2 <= value2 + di;

{ tagged Invalid, tagged Valid .* } : value2 <= value2 - 1;

{ tagged Valid .di, tagged Valid .* } : value2 <= value2 + di - 1;

endcase

endrule

118 CHAPTER 8. RWIRES AND WIRE TYPES

But all these solutions with RWire seem like overkill. Instead, we could use a PulseWire. A PulseWire
is an RWire without any data. It is useful within rules and action methods to signal other methods
or rules in the same clock cycle.

The PulseWire interface is defined as:

interface PulseWire;

method Action send();

method Bool _read();

endinterface

The send() method is essentially the RWire’s wset(), except it has no argument. The Valid/Invalid
status is returned as the Bool value of the _read method. Because the method is called _read, just
like in the Reg#() interface, we automatically reuse BSV’s syntactic shorthand where the _read()

method call is implicitly inserted by the compiler; we don’t have to say _read explicitly.

PulseWires directly express the idea that there is no value carried along with the Valid/Invalid bit;
the only thing of importance here is the Valid/Invalid bit itself.

First, we declare the PulseWire:

module mkCounter_v2 (Counter);

...

// Signal that decrement method is being invoked

PulseWire pw_decr <- mkPulseWire();

In the decrement method, we just send the signal:

method Action decrement ();

pw_decr.send ();

endmethod

And in the doit rule we implicitly _read() the PulseWire and matching it against the constants
True and False:

rule doit;

case (tuple2 (rw_incr.wget(), pw_decr)) matches

{ tagged Invalid, False } : noAction;

{ tagged Valid .di, False } : value2 <= value2 + di;

{ tagged Invalid, True } : value2 <= value2 - 1;

{ tagged Valid .di, True } : value2 <= value2 + di - 1;

endcase

endrule

8.5. BYPASSWIRE 119

8.5 BypassWire

Source directory: rwire/bypasswire

Source listing: Appendix A.7.6

The final type of Wire that we want to examine in called a BypassWire. A BypassWire is an
implementation of the Wire interface where the _write method is always_enabled. The compiler
will issue a warning if the method does not appear to be called every clock cycle. The advantage of
this tradeoff is that the _read method of this interface does not carry any implicit conditions, so it
can satisfy a no_implicit_conditions assertion or an always_ready method.

This example is identical to the DWire example in Section 8.3, except that in module mkCounter_v2

we use the mkBypassWire constructor instead of the mkDWire constructor for the increment signal.
We have also modified the testbench mkTb to invoke the increment method on every clock, instead
of just on clocks 0 to 6.

In the module mkCounter_v2, we create the w_incr wire module to signal that increment method
is being invoked:

Wire#(int) w_incr <- mkBypassWire();

We have a single rule that can always fire, because neither w_incr (ByPassWire) nor w_decr (DWire)
have implicit conditions on their _read methods:

(* fire_when_enabled, no_implicit_conditions *)

rule r_incr_and_decr;

value2 <= value2 + w_incr - w_decr;

endrule

The increment method:

method Action increment (int di);

w_incr <= di;

endmethod

must now be called on every clock, since it is assigning to a BypassWire, which assumes the assign-
ment is always enabled. The attribute:

always_enabled = "increment"

just above the module mkCounter_v2 header asserts this property and is thus verified by the com-
piler.

Accordingly, in the testbench the incr1 rule (and similarly the incr2 rule) now invoke the increment
method in all states:

120 CHAPTER 8. RWIRES AND WIRE TYPES

rule incr1;

c1.increment (5);

endrule

8.6 RWires and atomicity

Source directory: rwire/rwire_atomicity

Source listing: Appendix A.7.7

You must be careful when using RWires. When you split actions across multiple rules, you cannot
assume that they are still atomic. This is of course true in any rule-splitting, whether involving
RWires or not, but we discuss this topic here because RWires are typically used to split rules.

In this example we’re going to look at a module mkPipelineFIFO which implements a 1-element
FIFO. As with any FIFO, one can enqueue data when empty. When full, one can not only dequeue
the old data, but in the same cycle one can also enqueue new data (hence the pipeline in the name
because it behaves like an interlocked pipeline register).

As in the up/down counter examples, we can use RWires when two methods have to read and write
common state (the full bit), if those methods are to run simultaneously in the same clock.

module mkPipelineFIFO (FIFO#(int));

Reg#(Bool) full <- mkReg (False);

Reg#(int) data <- mkRegU;

RWire#(int) rw_enq <- mkRWire; // enq method signal

PulseWire pw_deq <- mkPulseWire; // deq method signal

Bool enq_ok = ((! full) || pw_deq);

Bool deq_ok = full;

Each method sets an RWire and then a common rule (rule_update_final) does the actual work.

rule rule_update_final (isValid(rw_enq.wget) || pw_deq);

full <= isValid(rw_enq.wget);

data <= fromMaybe (?, rw_enq.wget);

endrule

Looking at the methods in mkPipelineFIFO, both enq() and deq() read the full register (as part
of enq_ok and deq_ok). The clear() method writes the full register. So the clear() method
must be scheduled after the enq() and the deq() methods.

8.6. RWIRES AND ATOMICITY 121

method Action enq(v) if (enq_ok);

rw_enq.wset(v);

endmethod

method Action deq() if (deq_ok);

pw_deq.send ();

endmethod

method first() if (full);

return data;

endmethod

method Action clear();

full <= False;

endmethod

endmodule: mkPipelineFIFO

endpackage: Tb

In module mkTb, we instantiate such a FIFO and enqueue and dequeue some data on every cycle.
Additionally, in cycle 2, we also invoke the clear method to forcibly empty the FIFO. In fact, in
cycle 2, all four methods, enq(), first(), deq(), and clear(), are invoked. As we saw before,
clear is scheduled last. In which case, we would expect that at the end of cycle 2, the FIFO is left
empty (cleared).

module mkTb (Empty);

...

rule e;

let x = state * 10;

f.enq (x);

endrule

rule d;

let y = f.first ();

f.deq ();

endrule

// Also clear the FIFO in state 2

rule clear_counter (state == 2);

f.clear ();

$display ("State %0d: Clearing", state);

endrule

But a transcript of the run shows:

122 CHAPTER 8. RWIRES AND WIRE TYPES

State Action
State 0 Enqueue 0
State 1 Dequeue 0
State 1 Enqueue 10
State 2 Dequeue 10
State 2 Enqueue 20
State 2 Clearing
State 3 Dequeue 20
State 3 Enqueue 30
... ...

In state 3 we successfully dequeue 20, which indicates that the FIFO did not get cleared at all. The
value 20 actually got enqueued in state 2!

This looks like a bug. The schedule says enq(20) precedes clear(), but after this the FIFO contains
20 and is not cleared.

The resolution of this paradox is that we mistakenly imagined that the entire enqueue operation
was atomic. However, the enqueue operation is now split into two different rules, one which calls
the enq() method, and later the rule_update_final rule. So the logical enqueue operation is no
longer a single atomic action. What happened here is that the clear() method got scheduled in
between the those two rules. In fact, during compilation, we are told about this:

Warning: "Tb.bsv", line 64, column 8: (G0036)

Rule "clear" will appear to fire before "rule_update_final" when both fire

in the same clock cycle, affecting:

calls to full.write vs. full.write

Thus, even though the enq() method preceded the clear() method, the final enqueue action came
later, and we see its effects.

Bottom line: when you split actions across multiple rules communicating using RWires, you cannot
assume they are atomic. Be careful when using RWires.

Chapter 9

Polymorphism

In BSV, extreme re-use is possible via polymorphic functions and modules. A polymorphic function
is a function that can operate on more than one type of data. A classic example in higher level
languages is to calculate the length of a list. The function can operate on many types of lists;
the data in the list can be anything, char, int, float, complex, struct, etc. The number of items is
returned regardless of the data types of the elements in the list.

We use polymorphic modules and functions often in BSV, because they allow us to isolate the
problem we are trying to solve and then to reuse that code for as wide a selection of data types as
possible. The BSV library packages define many polymorphic modules and functions, such as the
Client, Server and FIFO interfaces in the previous example.

There may be restrictions on the data types that a given polymorphic module or function can work
with. For instance, the addition operator + works on the data types for which addition makes sense:
Int, UInt, and Bit, but not Bool or structures or other data types that don’t explicitly define
addition. The requirements of the type of data a module or function can work with are specified via
provisos.

When a module or function is processed by the compiler, it generates a signature which contains its
inputs, outputs, and valid data types. Provisos place constraints on the data types that can match
that signature.

In the next few examples we’ll create some polymorphic functions. Since modules are just a special
kind of function, the same ideas apply directly to modules as well.

9.1 Polymorphic function

Source directory: polymorphism/function

Source listing: Appendix A.8.1

Part of the definition of a function is the type of the value returned by the function. We can use
a variable for the name of type returned, instead of stating a specific type. This variable’s name is

123

124 CHAPTER 9. POLYMORPHISM

used only for the function itself. Since it is a variable (even though the value of the variable is a
type) it must start with a lower case letter. Often, we name it tsomething, the t indicating that it
is representing a type variable.

The following function does nothing but pass its argument (of type td) through:

function td nop(td i); return i; endfunction

When writing polymorphic functions, we often need to tell the compiler something about the data
we are using. This restricts the types that can be used with the function. We use provisos to describe
the types of data which the function can use.

In the example below, we are writing a function named equal to compare two items. In this case we
have used the overloaded equality operator (==) on the data items. The items are of the same type,
represented by the type variable td. Since we’ve used the equality function, the type represented by
td must be in the Eq type class. We specify this requirement by adding the provisos Eq#(td). This
says that only data types that have the == function defined can use our newly defined function.

function Bool equal(td i, td j)

provisos(Eq#(td));

return (i == j);

endfunction

In this next function, add2x, we use the overloaded addition (+) operator, an arithmetic function
defined in the Arith typeclass. Therefore td must be a type in the Arith typeclass. The other
overloaded arithmetic operators (*, /, -) use the same Arith proviso, since they are also defined
by the Arith typeclass. Specifying the proviso prevents the user from calling the function with an
inapplicable data type, for example, a Bool which doesn’t have + defined (it doesn’t make sense to
add two Bools).

function td add2x(td i, td j)

provisos(Arith#(td));

return (i + 2*j);

endfunction

Some functions require more than one proviso. In this next function, i2xj, we are using both
arithmetic and equality operators, so we need both the Arith and Eq provisos.

function Bool i2xj(td i, td j)

provisos(Arith#(td), Eq#(td));

return ((i - 2*j) == 0);

endfunction

9.1. POLYMORPHIC FUNCTION 125

Probably the most common proviso is Bits#(type, sz). This proviso makes sure that the data
type is in the Bits type class, ensuring that the overloaded functions pack and unpack are defined
for the data type. This effectively allows you to perform any bit manipulation you require, because
the data type has pack and unpack as a means of converting a type to bits and back. You must be
careful doing this as you strip away the real type information.

In the next function, isBlock, we want to do a logical AND to see if a number is divisible by 4. The
function uses pack to convert the data type to the bits data type, which has & and == defined. The
Bits proviso ensures that pack is defined.

function Bool isBlock(td i)

provisos(Bits#(td,szTD));

return (pack(i) & 3) == 0;

endfunction

We also want to prevent anyone from using this function with a type that is less than 2 bits wide
(otherwise the &3 won’t make sense). We can use the size variable szTD generated by Bits. szTD

is a local variable, valid only within the function. The proviso Add#(x,y,z) says that x + y must
equal z. The common trick is that the proviso 2+ unused = szTD means that szTD >=2 since sizes
must be greater than or equal to 0. We add this additional proviso to ensure that the data type is
at least 2 bits wide.

function Bool isBlock2(td i)

provisos(Bits#(td,szTD),

Add#(2,unused,szTD)); // 2 + unused == szTD

return (pack(i) & 3) == 0;

endfunction

This next function, isMod3, checks to see that the value passed in is divisible by 3. Since we aren’t
packing or unpacking, we don’t need the Bits proviso. But we are specifying that the value should
be greater than 4 bits. Use the Add#() with the SizeOf#() pseudo function to get the bit width of
a type.

function Bool isMod3(td i)

provisos(Arith#(td),

Eq#(td),

Add#(4,unused,SizeOf#(td)));

return (i % 3) == 0;

endfunction

9.1.1 Common overloading provisos

The following table lists the commonly used type class provisos, along with the functions defined by
the type class enforced by the proviso.

126 CHAPTER 9. POLYMORPHISM

Common Overloading Provisos
Proviso Type class Overloaded operators defined on type t

Bits#(t,n) Bits pack/unpack to convert to/from Bit#(n)

Eq#(t) Eq == and !=

Arith#(t) Arith +, -, *, negate, /, %

Literal#(t) Literal fromInteger() to convert an integer literal to type t. and
inLiteralRange to determine if an Integer is in the range
of the target type t

Ord#(t) Ord order-comparison operators <.<=, >, >=

Bounded#(t) Bounded minBound and maxBound

Bitwise#(t) Bitwise functions which compare two operands bit by bit to calcu-
late a result

BitReduction#(t) BitReduction functions which take a sized type and reduce to one ele-
ment.

BitExtend#(t) BitExtend extend, zeroExtend, signExtend, and truncate

9.1.2 Size relationship provisos

These classes are used in provisos to express constraints between the sizes of types.

Class Proviso Description

Add Add#(n1,n2,n3) Assert n1 + n2 = n3
Mul Mul#(n1,n2,n3) Assert n1 ∗ n2 = n3
Div Div#(n1,n2,n3) Assert ceiling n1/n2 = n3
Max Max#(n1,n2,n3) Assert max(n1, n2) = n3
Min Min#(n1,n2,n3) Assert min(n1, n2) = n3
Log Log#(n1,n2) Assert ceiling log2(n1) = n2.

Examples of Provisos using size relationships:
instance Bits #(Vector#(vsize, element_type), tsize)

provisos (Bits#(element_type, sizea),

Mul#(vsize, sizea, tsize)); // vsize * sizea = tsize

function Vector#(vsize1, element_type)

cons (element_type elem, Vector#(vsize, element_type) vect)

provisos (Add#(1, vsize, vsize1)); // 1 + vsize = vsize1

function Vector#(mvsize,element_type)

concat(Vector#(m,Vector#(n,element_type)) xss)

provisos (Mul#(m,n,mvsize)); // m * n = mvsize

9.1.3 valueOf and SizeOf pseudo-functions

Bluespec provides these pseudo-functions to convert between types and numeric values. The pseudo-
function valueof (or valueOf) is used to convert a numeric type into the corresponding Integer value.

9.2. SIMPLE POLYMORPHIC MODULE WITH PROVISOS 127

The pseudo-function SizeOf is used to convert a type t into the numeric type representing its bit
size.

valueof Converts a numeric type into its Integer value.
valueOf

function Integer valueOf (t) ;

SizeOf Converts a type into a numeric type representing its bit size.

function t SizeOf#(any_type)

provisos (Bits#(any_type, sa)) ;

Example:

typedef Bit#(8) MyType;

//MyType is an alias of Bit#(8)

typedef SizeOf#(MyType) NumberOfBits;

//NumberOfBits is a numeric type, its value is 8

Integer ordinaryNumber = valueOf(NumberOfBits};

//valueOf converts a numeric type into an Integer

9.2 Simple polymorphic module with provisos

Source directory: polymorphism/provisos

Source listing: Appendix A.8.2

In this section we’re going to look at a set of examples reusing the Reg#(td) interface. Often when
using the Reg#(td) interface we need some provisos. The value stored in a Reg interface must always
be in the Bits type class, that is the operations pack and unpack are defined on the type to convert
into bits and back. So register interfaces always have the Bits proviso.

This first example is just hiding a register under a new name. We cannot synthesize this bound-
ary because it is polymorphic. In order to be synthesizable, a module must meet the following
characteristics:

• The module must be of type Module (advanced use of modules permits richer module types
than normal modules);

128 CHAPTER 9. POLYMORPHISM

• Its interface must be fully specified; there can be no polymorphic types in the interface;

• Its interface is a type whose methods and subinterfaces are all convertible to wires;

• All other inputs to the module must be convertible to Bits.

So to be able to synthesize a polymorphic module you have to wrap, or instantiate it from another
module, with a specific data type.

First, let’s look at an example, mkPlainReg, which provides a Reg#(tx) interface:

module mkPlainReg(Reg#(tx)) provisos(Bits#(tx,szTX));

Reg#(tx) val <- mkRegU;

return val;

endmodule

Since the interface provided by mkPlainReg and the interface of val are both Reg#(tx), we can just
return the interface as shown in the return val statement. Since mkRegU has the requirement of
being in the Bits class, the proviso Bits#(tx, szTX) is required by mkPlainReg as well.

The above module provides any Reg#(tx) interface which meets the Bits requirement, as stated by
the proviso. We could also define a register that returns Bit#(n):

module mkPlainReg2(Reg#(Bit#(n)));

Reg#(Bit#(n)) val <- mkRegU;

return val;

endmodule

This is still polymorphic, because we haven’t defined the width of the register. But the proviso is
not required because we know the data type (we don’t know the size), and by defining Bit#(n) we
have pack and unpack defined.

Once we wrap our polymorphic module with a specific data type we can synthesize it. In the
mkPlainRegInt module we instantiate the mkPlainReg module with a value of int. We are reusing
the mkPlainReg module for the specific int data type.

(* synthesize *)

module mkPlainRegInt(Reg#(int));

Reg#(int) val <- mkPlainReg;

method Action _write(int i) = val._write(i);

method int _read() = val._read();

endmodule

9.2. SIMPLE POLYMORPHIC MODULE WITH PROVISOS 129

In this next example, we are going to also need the Bitwise#(tx) proviso, because we are using the
bitwise invert function. The module can only be instantiated with a data type that is in the Bitwise
type class. The module could never be instantiated with a Bool, for instance.

module mkNotReg(Reg#(tx))

provisos(Bits#(tx,szTX), Bitwise#(tx));

Reg#(tx) val <- mkRegU;

method Action _write(tx i) = val._write(i);

method tx _read();

return ~val; // Bitwise#(tx) added because of ~ here

endmethod

endmodule

The mkDoubleReg module, defined below, uses an arithmetic operator, requiring the Arith proviso.

module mkDoubleReg(Reg#(tx))

provisos(Bits#(tx,szTX), Arith#(tx));

Reg#(tx) val <- mkRegU;

method Action _write(tx i) = val._write(i);

method tx _read();

return val * 2; // Arith#(tx) added here

endmethod

endmodule

As a general guideline, we recommend that you get a non-polymorphic version of the module working
before you attempt to parameterize a module. One reason is because the error messages provided
can be easier to understand when real data types are used.

Once you start parameterizing your blocks, you need to understand the error messages put out by
the compiler. Let’s comment out the Bitwise proviso in the mkNotReg example:

130 CHAPTER 9. POLYMORPHISM

module mkNotReg(Reg#(tx))

provisos(Bits#(tx,szTX));

Reg#(tx) val <- mkRegU;

method Action _write(tx i) = val._write(i);

method tx _read();

return ~val; // Bitwise#(tx) added because of ~ here

endmethod

endmodule

When you compile, you will get this error message:

Error: "Tb.bsv", line 61, column 8: (T0030)

The provisos for this expression are too general.

Given type:

_m__#(Reg#(tx))

With the following provisos:

IsModule#(_m__, _c__)

Bits#(tx, szTX)

The following additional provisos are needed:

Bitwise#(tx)

Introduced at the following locations:

"Tb.bsv", line 69, column 14

The general error you will often see is T0030: ”The provisos for this expression are too general.”
This means there are not enough provisos for the compiler to be able to safely match the module to
the various data types when called. In this case, the compiler tells us which proviso is missing.

A frequent issue is that blocks may have state of differing sizes. In this example, we put the type
on the interface for a module, since the size of the inputs and outputs affects the size of bus width
going in and out of the blocks.

interface T2#(type type_a, type type_b);

method Action drive(type_a ina, type_b inb);

method type_a result();

endinterface

In the module definition below, type_a is the same as type_x and type_b is the same as type_y.
We could use the same variable names, but we’re using different names to demonstrate that they
don’t have to be the same name.

9.2. SIMPLE POLYMORPHIC MODULE WITH PROVISOS 131

module mkT2(T2#(type_x,type_y))

provisos(Bits#(type_y,sY), // need to pack/unpack type_y

Arith#(type_x), // need to add with type "type_a"

Add#(SizeOf#(type_x),0,SizeOf#(type_y))); // must be the same size

Since type_b is a different type than type_a we need to recast it via pack/unpack. In this case it is
the same width, which is determined by the Add provisos above.

Wire#(type_x) val <- mkWire;

method Action drive(type_x ina, type_y inb);

val <= ina + unpack(pack(inb));

endmethod

method type_x result();

return val;

endmethod

endmodule

Now let’s modify the above example to make them different sizes. For example, maybe we send in
type_a, but return a wider size, or maybe perhaps, a log size. In this interface we send in type_a

and return type_b:

interface T3#(type type_a, type type_b);

method Action drive(type_a ina);

method type_b result();

endinterface

Now we will have to add provisos to relate type_a and type_b. In the previous example, we used
the Add proviso to define them as the same.

module mkT3(T3#(type_a,type_b))

provisos(Bits#(type_a,sA), // need to pack/unpack type_a

Bits#(type_b,sB),

Add#(unused,sB,sA), // needed by truncate

Log#(sA,sB)); // just for fun, make output roof of log2

It can get confusing sorting out the packs and unpacks, so it’s often easiest to break out the individual
steps, rather than trying to do it all at once. This has the added advantage of allowing the compiler
to give you more accurate error messages.

132 CHAPTER 9. POLYMORPHISM

Wire#(type_b) val <- mkWire;

method Action drive(type_a ina);

Bit#(sA) tmp = pack(ina);

Bit#(sB) tmp2 = truncate(tmp);

val <= unpack(tmp2);

// the above 3 lines could be rewritten as:

// val <= unpack(truncate(pack(ina)));

endmethod

method type_b result();

return val;

endmethod

endmodule

Chapter 10

Advanced types and
pattern-matching

10.1 User-defined types

While BSV provides many pre-defined types, users can define their own types including enumerated
types, structures, and tagged unions through the typedef statement. User-defined types can only
be defined at the top level of a package.

10.1.1 Type synonyms

The simplest user-defined type is a type synonym which allows you to define shorter or more mean-
ingful names for existing types. Type synonyms are just for convenience and readability. The new
type and the original type are the same type with different names; they can be used interchangeably.

typedef Type Identifier;

Examples:

typedef Int#(32) TDataX;

typedef Int#(32) TDataY;

typedef Bool TFlag;

TDataX a = 10;

TDataY b = a; // this is ok, since TDataX and TDataY are

// synonyms of the same type

133

134 CHAPTER 10. ADVANCED TYPES AND PATTERN-MATCHING

However, when using typedef to define a new enum, struct, or tagged union type, the new type is not
a synonym for any existing type. These introduce new types that are different from all other types.
For example, even if two typedefs give names to struct types with exactly the same corresponding
member names and types, they define two distinct types (“name equality”, not “structural equality”).
This is another manifestation of the principle of strong type-checking.

10.1.2 Enums

Source directory: adv_types/enum

Source listing: Appendix A.9.1

An enum defines a new type consisting of a set of scalar values with symbolic names.

typedef enum {Identifier1, Identifier2, ... IdentifierN} EnumName

deriving (Eq, Bits);

• Enum label identifiers must begin with uppercase letters.

• Enum labels can be repeated in different enum definitions (the type-checker will disambiguate
such identifiers).

• The optional deriving Bits clause tells the compiler to generate a bit-representation for the
enum, allowing values of the type to be used by all facilities and functions that require this (as
a proviso), including the Reg#() and FIFO#() types.

When deriving Bits is specified, the default decoding of labels is 0,1,2..., using just enough
bits to encode the entire set.

• The optional deriving Eq clause tells the compiler to pick a default equality operation for the
labels, allowing values of the type to be tested for equality and inequality.

Examples:

typedef enum {Green, Yellow, Red} TrafficLight deriving (Eq, Bits);

typedef enum {Reset, Count, Decision} States deriving (Eq, Bits);

typedef enum {IDLE, DOX, DOY, FINISH} Tenum1 deriving (Bits, Eq);

The enum declaration may explicitly specify the encoding used by assigning numbers to the labels.
When an assignment is omitted, the label is assigned the previous label value plus one. If the initial
label is omitted, it defaults to zero. Encodings must be unique, i.e., you cannot specify the same
encoding for more than one label. For the Tenum1 example above, the default label values would be
(0,1,2,3).

The labels are assigned explicitly in the following example.

10.1. USER-DEFINED TYPES 135

typedef enum { S0=43, S1, S2=20, S3=254 } Tenum2 deriving(Bits, Eq);

Since S1 doesn’t have a label specified, it is assigned the value 44.

When deriving Bits is specified, the compiler generates a Bit representation for the enum. The
width of its values is just enough to hold the largest value. In the example Tenum1, the largest value
is 3, requiring a Bit#(2) to represent the values. In the Tenum2 example, the largest value is 254,
requiring a Bit#(8) to represent the values.

The current example shows some enum declarations, and then some registers to hold those enum
values.

package Tb;

typedef enum { IDLE, DOX, DOY, FINISH } Tenum1 deriving(Bits, Eq);

typedef enum { S0=43, S1, S2=20, S3=254 } Tenum2 deriving(Bits, Eq);

(* synthesize *)

module mkTb (Empty);

Reg#(int) step <- mkReg(0);

// note r1 is initialized with one of the enum value

Reg#(Tenum1) r1 <- mkReg(IDLE);

// note r2 is initialized with one of the enum value

Reg#(Tenum2) r2 <- mkReg(S3);

You cannot do arithmetic on enums as they are values, not bits. This statement:

Tenum1 foo = IDLE;

foo = foo + 1;

will cause the following error from the compiler:

Error: "Tb.bsv", line 58, column 17: (T0031)

The provisos for this expression could not be resolved because there are no

instances of the form:

Arith#(Tb::Tenum1)

Again, this is a manifestation of the principle of strong type-checking and representation indepen-
dence. You can of course explicitly choose to define the arithmetic operators on a particular enum
type by making it an instance of the Arith typeclass and specifying the meanings of the arithmetic
operators.

136 CHAPTER 10. ADVANCED TYPES AND PATTERN-MATCHING

10.1.3 Structs

A structure or record (struct) is a composite type made up of a collection of members. Each member
has a particular type and is identified by a member, or field, name. A struct value contains all the
members. This is different from a tagged union (Section 10.1.4), in which each value contains one of
the members. Another way to think of structs and tagged unions is that a struct is a conjunction—
member1 and member2 ... and memberN–whereas a tagged union is a disjunction—member1 or
member2 ... or memberN.

• A struct value contains all members

• The name of the struct begins with an upper case letter

• Struct member names each begin with a lower case letter

• Each member name in a given structure must be unique within that struct, but may be used
in other structs or tagged unions

Examples:

typedef struct { int x; int y; } Coord;

typedef struct { Addr pc; RegFile rf; Memory mem; } Proc;

typedef struct {

Bool flag;

TDataY coordX;

TDataX coordY;

} TName deriving(Bits, Eq);

typedef struct{

Vector#(3, Bit#(8)) color;

Bit#(4) brightness;

Bool blinking;

} Pixel

deriving (Bits, Eq);

Note that structured types can be arbitrarily nested. In the Pixel example, the color field is itself
a Vector. The Pixel type uses deriving (Bits, Eq) to instruct the compiler to define the default
bit representation (shown in Figure 10.1) and equality operators this type.

To access a structure member, use the StructName.memberName notation. Example using the
Pixel type:

10.1. USER-DEFINED TYPES 137

color0 color1 color2

8 bits 8 bits 8 bits

bright bl

4 bits 1 bit

Figure 10.1: Pixel Structure

Vector#(256, Pixel) screenLine;

screenLine[0].color[1] = 8’hFF;

screenLine[0].brightness = screenLine[0].brightness + 1;

screenLine[0].blinking = False;

You can also write a “struct expression” to construct an entire struct value. Example (the right-hand
side of the assignment):

let myPixel = Pixel { color: replicate (8’hFF),

brightness: 4’d2,

blinking: screenLine[3].blinking };

10.1.4 Tagged unions

A tagged union is a composite type made up of a collection of members. A union value only contains
one member at a time while a structure value contains all of its members. Another way to think
of structs and tagged unions is that a struct is a conjunction—member1 and member2 ... and
memberN–whereas a tagged union is a disjunction—member1 or member2 ... or memberN.

Union member names begin with an uppercase letter. Each member name in a particular union
must be unique within the union, but may be used in other structs or tagged unions. In a tagged
union the member names are called tags. In the representation of a tagged union, in addition to the
bits corresponding to the member types, a tagged union typically also has some bits to remember
the tag. You can only access a single member at a time, corresponding to the current tag value.

Example:

138 CHAPTER 10. ADVANCED TYPES AND PATTERN-MATCHING

typedef union tagged {

Bit#(5) Register;

Bit#(22) Literal;

struct {

Bit#(5) regAddr;

Bit#(5) regIndex;

} Indexed;

} InstrOperand

deriving (Bits, Eq);

An instance of InstrOperand is either a 5-bit register specifier or a 22-bit literal value or an indexed
memory specifier consisting of two 5-bit register specifiers. This example also again demonstrates
that structured types (structs, tagged unions, vectors, etc.) can be arbitrarily nested.

Because the type declaration uses deriving (Bits, Eq), the compiler defines a canonical bit repre-
sentation and equality operations for the type. The canonical bit representation is shown in Figure
10.2. The canonical representation takes the canonical representation of each of the members and

Register

Literal

5 bits
5 bits

22 bits

01

00

10 regAddr:Bit#(5) regIndex:Bit#(5)Indexed

5 bits

Bit#(5)

Bit#(22)

Figure 10.2: InstrOperand Tagged Union

overlays them, aligned on the LSB (to the right). Then, it tacks on as many bits at the MSB end
(to the left) as is needed to represent the tags uniquely. The tag values are assigned 0, 1, 2, ... in
their textual order of appearance.

Of course, instead of using deriving(Bits), we could define a different representation explicitly
by providing an instance declaration making InstrOperand an instance of the Bits typeclass. In
this example, one could define a slightly more efficient representation, using a 1-bit tag value to
distinguish Literals and non-Literals, and then using one of the unused 22 bits to distinguish Registers
from Indexeds.

In the following example, a File is either an MCD or FD file type or invalid.

10.1. USER-DEFINED TYPES 139

typedef union tagged {

void InvalidFile ;

Bit#(31) MCD;

Bit#(31) FD;

} File;

The reason that BSV only uses tagged unions, as opposed to the “bare” unions found in C, C++
and SystemVerilog, is, once again, for type safety. A particularly insidious bug with bare unions is
to create a value assuming it is one member, but to read it as if it were another member; one gets
garbage bits without realizing it. By including a tag that identifies the current member type, we
can provide syntactic (and type-checked) means to ensure that it is impossible to “misinterpret” the
bits like that.

To update a tagged union variable use normal assignment notation, that is, replace the current
value in the tagged union variable by an entirely new tagged union value. In a struct it makes sense
to update a single member and leave the others unchanged, but in a union, one member replaces
another.

Example using the InstrOperand tagged union:

InstrOperand orand;

orand = tagged Indexed { regAddr:3, regIndex:4 };

orand = tagged Register 23;

A common example of a tagged union is the Maybe type:

typedef union tagged {

void Invalid;

a Valid;

} Maybe#(type a)

deriving (Eq, Bits);

In hardware, a Maybe is one bit longer than the member type, to hold the valid/invalid tag.

10.1.5 Maybe type

In hardware design one frequently encounters the following situation:

• A value of some type t

• An accompanying valid bit indicating whether the value is meaningful or not.

140 CHAPTER 10. ADVANCED TYPES AND PATTERN-MATCHING

For example, this might be the input to a module, with the valid bit indicating on which cycles the
environment is actually feeding a value. Or, a function/module that searches a data structure for a
target may return Invalid if the target is not present, or Valid and the target value if it is present.

The BSV library provides the type Maybe#(t) for this situation. The Maybe type is an instance of
a tagged union used for tagging values as either Valid or Invalid. If the value is Valid, the value
contains a data type of data_t.

typedef union tagged {

void Invalid;

data_t Valid;

} Maybe #(type data_t) deriving (Eq, Bits);

Two functions are defined for the Maybe type in the BSV library:

• isValid returns True if the Maybe argument is valid

• fromMaybe extracts the valid value from a Maybe argument. If the tag is invalid, a supplied
default value is returned.

Examples of defining and setting a Maybe#(int):

Maybe#(int) m1 = tagged Valid 23; //valid bit True, value 23

Maybe#(int) m2 = tagged Invalid; //valid bit False, value irrelevant

You can use the matches statement to check the validity of a Maybe variable m, while retrieving the
value. This technique can also be used in if statements and method conditions.

rule onValid (m matches tagged Valid .d);

x <= d;

The matches form plays two roles. First, it provides a boolean indicating whether the value matches
the pattern or not, and this is used in the rule condition. Second, if there is a match, it binds the
new variable d to the member value, which can be used in the rule body.

If a rule only fires when the Maybe value m is Invalid, you only have to check the tag, not the value.

rule onInvalid (!isValid(m)));

...

or

10.1. USER-DEFINED TYPES 141

rule onInvalid (m matches tagged Invalid);

...

The isValid function can be used to implement an if/else.

if isValid (m)

...

else

dout = 0;

10.1.6 Case statements and pattern-matching on tagged unions

Pattern-matching provides a visual and succinct notation to compare a value against a tagged union
and to access members of a tagged union. (Actually, pattern-matching is also used on structs, enums
and other scalars, but here we focus on its use for tagged unions.)

A pattern-matching case statement contains the keyword matches. Each case item has a left-hand
side and a right-hand side, separated by a colon. If the pattern-match on the left-hand side is True,
the expression on the right-hand side of the statement is executed. On a successful match, the
left-hand side may also bind new variables to the values of members of the matched value (i.e., they
implicitly select those members), and these variables can be used on the right-hand side of the case
item. Only the first matching statement is executed. If none of the case items succeed, the default
item is selected. If there is no default item, no statement is executed.

Integer literals can include the wildcard character ?. An integer literal containing a wildcard will
match any constant obtained by replacing each wildcard character by a valid digit. For example,
’h12?4 will match any constant between ’h1204 and ’h1294.

Let’s look at the tagged union defined in the simple processor example in the next section, 10.2,
describing the instruction set of the processor.

typedef union tagged {

struct { RegNum rd; Value v; } MovI;

InstructionAddress Br;

struct { RegNum rs; InstructionAddress dest; } Brz;

struct { RegNum rd; RegNum rs1; RegNum rs2; } Gt;

struct { RegNum rd; RegNum rs1; RegNum rs2; } Minus;

RegNum Output;

void Halt;

} Instruction deriving (Bits);

The simple processor module contains a single rule that encapsulates fetching and executing an
instruction (whenever the processor is running). The instruction memory is modeled using an array
of registers containing Instructions called imem:

142 CHAPTER 10. ADVANCED TYPES AND PATTERN-MATCHING

Reg#(Instruction) imem[imemSize];

An excerpt of the rule is shown here:

rule fetchAndExecute (running);

let instr = imem [pc];

case (instr) matches

tagged MovI { rd: .rd1, v: .v1 } : begin

regs[pack(rd1)] <= v1;

pc <= pc + 1;

end

tagged Br .d : pc <= d;

...

endcase

...

endrule

The first line in the rule body defines a name instr for the current instruction, imem[pc].

The case (instr) matches....endcase phrase is the pattern-matching case statement. The state-
ment tries to match the value in instr to the different members of the tagged union Instruction.
When it finds a match, the right-hand side statement executes the statements for that instruction.
For example, the first two arms of the case statement can be read in English as follows:

If ’instr’ is of the ’MovI’ kind,

its contents are a struct with members ’rd’ and ’v’

(of type RegNum and Value, respectively); let us bind these

members to the variables ’rd1’ and ’v1’ respectively,

and then let us assign v1 to the rd1’th register

and increment pc by 1

If ’instr’ is of the ’Br’ kind,

its contents are of type ’InstructionAddress’; let us bind it

to the variable ’d’,

and then let us assign ’d’ to ’pc’

In each case arm, the phrase before the colon : is the pattern that is to be matched against instr.
If the pattern successfully matches, it binds certain contents of instr to certain variables. When
the pattern is successfully matched, the case arm is selected, and we execute the right-hand side
(after the :) using the variables bound during the pattern matching.

As you can see, this pattern-matching notation dramatically improves readability, compared to the
more traditional explicit member selection notation in C/C++ (and improved readability usually
improves correctness).

10.2. SIMPLE PROCESSOR MODEL 143

Once you understand the pattern-matching, the right-hand sides of each case arm are practically
self-explanatory.

10.2 Simple Processor Model

Source directory: adv_types/simple_proc

Source listing: Appendix A.9.2

This section describes a program for a Simple Processor computing the GCD (Greatest Common
Divisor) of two numbers x and y. The example illustrates the use of enums, tagged unions, structures,
arrays of registers, and pattern matching.

The program encodes Euclid’s algorithm:

// pseudo-code

while (y != 0)

if (x <= y)

y = y - x

else swap (x <=> y)

Excerpts illustrating specific concepts are presented in this section. The complete program is found
in Appendix A.9.2. There are two files: the processor Simple Processor.bsv and a testbench
Tb.bsv.

Let’s look at SimpleProcessor.bsv. The module is very readable because the type system allow
us to work with symbolic names throughout, instead of getting bogged down with the details about
the bit fields in an instruction coding.

The statement:

typedef enum {R0, R1, R2, R3} RegNum

deriving (Bits);

defines four symbolic names for the registers in a four-register register file. The deriving (Bits)

phrase tells the compiler to pick a default bit representation (here 0, 1, 2, and 3) but we will never
have to be aware of these details in the code. The statement:

Integer regFileSize = exp (2, valueof (SizeOf#(RegNum)));

calculates the size of the register file (here it is 4). The statement Sizeof#(RegNum) evaluates to
the numeric type 2, because that is the number of bits needed to represent a regNum. valueof(2)

converts this numeric type 2 into the ordinary Integer 2. Finally, exp(2,2) computes the value of 2
raised to the power 2, yielding the Integer 4. Thus, if tomorrow we decided to double the sizeof the
register file:

144 CHAPTER 10. ADVANCED TYPES AND PATTERN-MATCHING

typedef enum {R0, R1, R2, R3, R4, R5, R6, R7} RegNum

the system will automatically recompute regFileSize to be 8. The next set of statements:

typedef 5 InstructionAddressWidth;

typedef UInt#(InstructionAddressWidth) InstructionAddress;

Integer imemSize = exp (2, valueof(InstructionAddressWidth));

defines instruction addresses to be 5 bit wide, defines the InstructionAdress type to be a synonym
for an unsigned integer of width 5, and finally computes the instruction memory size to be 25 yielding
32 (this is a very small computer!). Our simple processor computes with 32-bit values:

typedef Bit#(32) Value;

The next statement defines the tagged union data structure Instruction (we also discussed this in
the last section):

typedef union tagged {

struct { RegNum rd; Value v; } MovI;

InstructionAddress Br;

struct { RegNum rs; InstructionAddress dest; } Brz;

struct { RegNum rd; RegNum rs1; RegNum rs2; } Gt;

struct { RegNum rd; RegNum rs1; RegNum rs2; } Minus;

RegNum Output;

void Halt;

} Instruction deriving (Bits);

Notice that we do not get bogged down into details of how these members are laid out in memory,
i.e., the bit representations (we will revisit this question later). The deriving (Bits) phrase tells
the compiler to pick a default bit representation. In the module mkSimpleProcessor, we represent
instruction memory using an array of registers, where the array size is imemSize. The for-loop
initializes each element of the array with a fresh register using the mkRegU module, an uninitialized
register.

Reg#(Instruction) imem[imemSize];

for (Integer j = 0; j < imemSize; j = j + 1)

imem [j] <- mkRegU;

We looked at an excerpt of the rule fetchAndExecute in the previous section in our discussion of
pattern-matching. Let’s look at another excerpt containing all the matching statements, but not all
the details for the statement execution:

10.3. STRUCTS OF REGISTERS VS. REGISTER CONTAINING A STRUCT 145

let instr = imem [pc];

case (instr) matches

tagged MovI { rd: .rd, v: .v } : begin

regs[pack(rd)] <= v;

pc <= pc + 1;

end

tagged Br .d : pc <= d;

tagged Brz { rs: .rs, dest: .d } : if (regs[pack(rs)] == 0)

pc <= d;

else

pc <= pc + 1;

tagged Gt { rd:.rd, rs1:.rs1, rs2:.rs2 } : begin ... end

tagged Minus { rd:.rd, rs1:.rs1, rs2:.rs2 } : begin ... end

tagged Output .rs : begin ... end

tagged Halt : begin ... end

default: begin

display ("%0d: Illegal instruction at pc %0d: %0h", cycle, pc, instr);

running <= False;

end

endcase

cycle <= cycle + 1;

Each pattern matching phrase contains the rules for the different instructions. If none of the matches
are True, the default clause reports an illegal instruction. Why do we use pack in regs[pack(...)]

expressions? The reason is that variables like rd, rs1, rs2, etc. are of type RegNum whereas arrays
are indexed by numeric types such as integers, bits, and so on. By applying pack, we convert a
RegNum type into a Bits#() type, which is then legal as an array index.

10.3 Structs of registers vs. register containing a struct

Source directory: adv_types/struct_reg

Source listing: Appendix A.9.3

In this example we’re going to look at the difference between a struct containing registers and a reg-
ister containing a struct. Let’s define two structures. The first is a struct of bit-able types, meaning
we can add the provisos deriving(Bits, Eq) and the structure will have a default pack/unpack
defined for it. This allows us to load values of this type into FIFOs, registers, etc. The Eq part
will define ==, so that two structures of the same type can be compared (the default is a complete
bit-for-bit comparison).

146 CHAPTER 10. ADVANCED TYPES AND PATTERN-MATCHING

typedef struct {

int a;

Bool b;

} TEx1 deriving(Bits,Eq);

Our second structure is a struct of registers. We can’t add deriving(Bits, Eq), because an interface
type is a static concept, and we’re not trying dynamically to represent interfaces as bits, nor compare
them for equality.

typedef struct {

Reg#(int) ra;

Reg#(Bool) rb;

} TEx2;

We can define a register that contains values of type TEx1, meaning that r1 is a register value and can
be read or written like any other register. Its members are accessed via its interface, but the whole
entity is a register. Remember, if any bit of a register is updated, the entire register is considered
updated.

Reg#(TEx1) r1 <- mkReg(unpack(0));

Since the structure TEx1 is just a type, we can use it anywhere we use a type that is in the Bits class
(has pack/unpack defined), for example, in a FIFO.

FIFO#(TEx1) fifo <- mkFIFO;

TEx2 has interfaces defined inside of it. So we have to be careful to attach instances to the interfaces,
or assign them appropriately to other interfaces which are connected to instances.

TEx2 r2;

r2.ra <- mkReg(2);

r2.rb <- mkReg(True);

We can also define registers and assign the interfaces to the same instances as defined by this
interface/instance.

10.3. STRUCTS OF REGISTERS VS. REGISTER CONTAINING A STRUCT 147

Reg#(int) reg3A <- mkReg(3);

Reg#(Bool) reg3B <- mkReg(False);

TEx2 r3;

r3.ra = reg3A;

r3.rb = reg3B;

The last three lines could also have been written:

TEx2 r3 = TEx2 { ra: reg3A, rb: reg3B };

or:

let r3 = TEx2 { ra: reg3A, rb: reg3B };

A register is always updated in a single Action that updates the whole value, even if that value
happens to be a struct and we logically wish to update only one of its members. To update only
one of its members, you have to read out the entire struct value, compute a new struct value where
the member is changed, and write back the entire new struct value.

rule init (step == 0);

TEx1 t = r1; // read out the entire struct value

t.a = 20; // compute a new struct value with changed member

r1 <= t; // write back the entire new struct value

step <= step + 1;

endrule

In a structure of registers, on the other hand, each register can be updated individually because they
have different interfaces. So you don’t have to create a temp local variable.

rule step1 (step == 1);

r2.ra <= 31;

r2.rb <= False;

step <= step + 1;

endrule

Another way to think about it is this: TEx1 represents dynamic values, i.e., a struct that exists at
run time on wires, in registers, on interfaces, and so on. On the other hand, TEx2 is just a static
struct, a convenient notation to describe this pair of registers as a logical group.

148 CHAPTER 10. ADVANCED TYPES AND PATTERN-MATCHING

10.4 Tuples

Source directory: adv_types/tuple

Source listing: Appendix A.9.4

Tuples are predefined structures which group a small number of values together. BSV pre-defines
tuples for sizes 2,3,4,5,6,7, and 8; meaning they can have 2 to 8 members. Tuples enjoy certain
special syntactic support, and so You cannot define your own tuples.

The following type definition statement creates a Tuple2 type named foo, where the first value is a
Bool and the second value is an int, and assigns values.

Tuple2#(Bool, int) foo = tuple2(True, 25);

As a rule of thumb, structs are usually a better choice than Tuples as each member is named within
a struct. But on some occasions, you just want to collect a few values and pass them around without
having to define a new struct type for this.

A set of selector functions allow you to select a specified member from the tuple. For example,
tpl_3(x) extracts the third field from the tuple named x. Obviously, this must be from a tuple that
has at least 3 values.

In our example, we can use tpl_1 to read the first value of foo, and tpl_2 to read the second value:

Bool v1 = tpl_1(foo);

int v2 = tpl_2(foo);

Functions like tuple2 are ordinary functions, and like all functions, their arguments are positional,
so you cannot switch them. For example, if you tried:

Tuple2#(Bool, int) foo2 = tuple2(25, True);

you’d get a type-checking error, because it expects a Bool value in the first position and an int

argument in the second position. This is in contrast to struct expressions where, since members are
specified by name, any order is acceptable.

An example of a Tuple4:

Tuple4#(Bool, UInt#(4), Int#(8), Bit#(12)) bar = tuple4(True, 0, -2, 5);

Tuple components are often selected using pattern-matching. In the example below, the match
statement matches the left-side pattern against the values in the right-hand side expression. The
variables in and start are assigned to the components of the Tuple2, defining in as a Bit#(32)

and start as a Bool.

10.4. TUPLES 149

Reg#(Bit#(32)) a <- mkReg(0);

Tuple2#(Bit#(32), Bool) data;

rule r1;

match {.in, .start} = data;

a <= in;

endrule

This notation is special for tuples, and thus is not extensible by the user.

150 CHAPTER 10. ADVANCED TYPES AND PATTERN-MATCHING

Chapter 11

Static elaboration -
For-loops/while-loops

In BSV you can use for loops and while loops during static elaboration. It is important to note that
this use of loops does not express time-based behavior. Instead, they are used purely as a notational
means to express some repetitive code. They are statically unrolled and express the concatenation
of multiple instances of the loop body statements. We first saw this behavior in Section 4.2. In
particular, the loop termination condition must terminate the loop by static evaluation. Specifically,
the loop condition can never depend on a value in a register or a value returned in a method call,
which are only known during execution and not during static elaboration.

[BSV also has another, distinct use of for- and while-loops, to express time-based (temporal) behavior
of FSMs (finite state machines). These are described in Section 14.]

11.1 Non-terminating for-loops and while-loops

Source directory: static_elab/loops

Source listing: Appendix A.10.1

When using either type of loop, the loop iteration expressions, including the termination condition,
must become known during static elaboration; it cannot depend on a dynamic value in a state
element. In this example we examine what happens when you try to use a dynamic value, a value
stored in a register, to determine the loop termination.

151

152 CHAPTER 11. STATIC ELABORATION - FOR-LOOPS/WHILE-LOOPS

package Tb;

* synthesize *)

module mkTb (Empty);

Reg#(int) klimit <- mkReg (24);

rule r;

int a = 10;

for (int k = 20; k < klimit; k = k + 1)

a = a + k;

$display ("rule r, a = %0d", a);

endrule

endmodule: mkTb

endpackage: Tb

Let’s consider the following statement in rule r:

for (int k = 20; k < klimit; k = k + 1)

a = a + k;

In our discussion in Section 4.2, we said that loops like these are statically unrolled, essentially
making separate copies of the loop body. The problem here is that the loop termination depends
on a dynamic value, the value in register klimit. And although in this trivial example there is no
other assignment to register klimit and we may infer that its value is constant at 24, in general a
register’s value (or any other dynamic value) is not constant, and therefore the compiler cannot rely
on that value.

Conceptually, the compiler unrolls the loop one iteration at a time:

k = 20;

if (k < klimit) begin

a = a + k;

k = k + 1;

if (k < klimit) begin

a = a + k;

k = k + 1;

if (k < klimit) begin

a = a + k;

k = k + 1;

... and so on ...

11.2. STATIC AND DYNAMIC CONDITIONALS 153

end

end

end

At every state, it tries to reduce expressions whose values are known. For example, instead of
klimit, if we had the constant 24, the compiler would be able to reduce the first predicate:

(k < 24) -> (20 < 24) -> True

and then use this to eliminate the outermost if-then-else and so on. In particular, by repeated
application of such reduction, the compiler can unroll the loop into the appropriate number of loop
bodies.

However, when the predicate depends on a dynamic value (i.e., a value that is not known until
execution time, because, for example, it is read out of a register), the compiler cannot reduce these
expressions statically. It thus goes on forever, trying to unwind the loop until termination, which,
of course, is never reached. When we compile, we see a warning message like this:

Warning: "Prelude.bs", line 2469, column 0: (G0024)

The function unfolding steps interval has been exceeded when unfolding

‘Prelude.primFix’. The current number of steps is 100000. Next warning at

200000 steps. Elaboration terminates at 1000000 steps.

This is a red flag that indicates that the compiler is trying to unwind a statement that may not
terminate. Whenever we see a message like this, we should check if the compiler is trying to statically
elaborate a loop that depends on a dynamic value.

while loops have the same static elaboration requirements. If you replace the for loop with a while

loop like so:

int k = 20;

while (k < klimit) begin

a = a + k;

k = k + 1;

end

you will see the same compiler behavior.

11.2 Static and dynamic conditionals

Source directory: static_elab/conditional

Source listing: Appendix A.10.2

154 CHAPTER 11. STATIC ELABORATION - FOR-LOOPS/WHILE-LOOPS

BSV does not distinguish notationally between statically elaborated conditionals and dynamic con-
ditionals (muxes). The compiler tries to reduce all expressions statically as far as possible. If the
predicate reduces to a constant True or False, the compiler can statically eliminate the conditional;
otherwise it remains a mux that dynamically selects the value.

BSV also does not distinguish between conditional expressions (e1?e2:e3), if-then-else expressions,
if-then-else statements, case expressions, case statements, etc. They are all treated the same by the
compiler.

In the our example, the top-level statements:

Bool configVar = True;

int x0 = 23;

define some top-level constants. Note, that in general, this is a more modern, type-safe and preferable
way to define constants than the traditional use of macro preprocessor ‘define statements. The
statement:

int initval = (configVar ? (x0 + 10) : (x0 + 20));

uses a conditional expression on the right-hand side. In an expression e1?e2:e3, e1 must be a boolean
expression. If e1 evaluates to True, then the value of e2 is returned; otherwise the value of e3 is
returned. More generally, e1 can also include pattern-matching.

Our initial statement translates to:

If configVar is True

initval = x0 + 10

else

initval = x0 + 20

Since all the variables in the conditional statement are known, the expression is statically reduced
by the compiler and the statement effectively reduces to:

int initval = 33;

Similarly, the compiler can statically reduce the conditional expression in:

Reg#(int) r0 <- (configVar ? mkReg (initval) : mkRegU);

to be equivalent to:

11.2. STATIC AND DYNAMIC CONDITIONALS 155

Reg#(int) r0 <- mkReg (33);

Note that we used a statically elaborated conditional to choose between alternate module hierarchies:
mkReg(0) and mkRegU. If configVar is True we will instantiate mkReg, otherwise we instantiate the
module mkRegU. The same idea could be written using a conditional statement (if...else) instead
of a conditional expression to initialize the register to one of two modules, either mkReg(initval)

or mkRegU.

Reg#(int) r1;

if (configVar)

r1 <- mkReg(initval);

else

r1 <- mkRegU;

The above statements are statically elaborated conditionals; the condition is known during static
elaboration. You can also have conditional expressions which depend on a dynamic value, as shown
in this next section from the example:

Reg#(int) cycle <- mkReg (0);

...

rule r;

r0 <= ((pack (cycle)[0]==1) ? (r0 + 1) : (r0 + 5));

if (pack (cycle)[0]==1)

r1 <= r1 + 1;

else

r1 <= r1 + 5;

if (cycle > 7) $finish (0);

cycle <= cycle + 1;

endrule

In the following statement, the predicate of the conditional depends on a dynamic value, the contents
of the register cycle:

r0 <= ((pack (cycle)[0]==1) ? (r0 + 1) : (r0 + 5));

Because we need to know the dynamic value of cycle, the conditional expression cannot be reduced
by the compiler. Instead, it becomes hardware that makes the selection dynamically. Specifically,
it becomes a mux (multiplexer) that selects one of the two values, r0+1 or r0+5. In fact, if we look
at the generated Verilog file (mkTb.v), we see that this source statement has become the following
Verilog:

156 CHAPTER 11. STATIC ELABORATION - FOR-LOOPS/WHILE-LOOPS

// register r0

assign r0$D_IN = cycle[0] ? r0 + 32’d1 : r0 + 32’d5 ;

assign r0$EN = 1’d1 ;

The statements:

if (pack (cycle)[0]==1)

r1 <= r1 + 1;

else

r1 <= r1 + 5;

are an alternative way of saying the same thing (here with r1 instead of r0). Instead of using a
conditional expression, we used a conditional statement. But, in fact, the generated Verilog for r1

is the same as that generated for r0:

// register r1

assign r1$D_IN = cycle[0] ? r1 + 32’d1 : r1 + 32’d5 ;

assign r1$EN = 1’d1 ;

Chapter 12

Expressions

So far we’ve examined many of the fundamental statements in BSV including module instantiations,
variable declarations, register reads and writes, and loop statements. As we’ve seen, many of these
statements have included expressions. An expression represents a value, usually in the form of
a computation or comparison, which returns a result. Since all values in BSV have types, every
expression has a type.

Expressions occur on the right-hand sides of variable assignments, on the left-hand and right-hand
side of register assignments, as actual parameters and arguments in module instantiation, function
calls, method calls, array indexing, and so on.

There are many kinds of primary expressions, such as identifiers, literals, and system calls. Complex
expressions are built using conditional expressions along with unary and binary operators. The
supported unary and binary operators, in order of precedence, are shown in the following table.

157

158 CHAPTER 12. EXPRESSIONS

Unary and Binary Operators in order of Precedence
Operator Associativity Comments

+ - ! ~ n/a Unary: plus, minus, logical not, bitwise invert
& n/a Unary: and bit reduction
~& n/a Unary: nand bit reduction
| n/a Unary: or bit reduction
~| n/a Unary: nor bit reduction
^ n/a Unary: xor bit reduction

^~ ~^ n/a Unary: xnor bit reduction
* / % Left multiplication, division, modulus
+ - Left addition, subtraction
<< >> Left left and right shift

<= >= < > Left comparison ops
== != Left equality, inequality

& Left bitwise and
^ Left bitwise xor

^~ ~^ Left bitwise equivalence (xnor)
| Left bitwise or
&& Left logical and
|| Left logical or

Left associativity of an infix binary operator just means that an unparenthesized expression like this:

e1 + e2 + e3

is equivalent to the following parenthesized expression:

(e1 + e2) + e3

i.e., the operator “associates to the left”.

12.1 “Don’t care” expressions, 2-valued and 4-valued logic

Source directory: expressions/dontcare

Source listing: Appendix A.11.1

Verilog defines “4-valued logic”, where a bit can take on any of the following four values:

• 0 (gnd, low, false, ...)

• 1 (vcc, high, true, ...)

• X an uninitialized bit in a register, or a wire driven to both 0 and to 1.

• Z a wire that is not driven at all, floating, tristate

12.1. “DON’T CARE” EXPRESSIONS, 2-VALUED AND 4-VALUED LOGIC 159

The first two are the classical, pure boolean digital abstraction. The latter two are an artifact of
Verilog simulation semantics (even synthesizable Verilog is usually restricted to 0s and 1s).

BSV semantics is based on the abstraction of classical, pure boolean logic, just 0s and 1s (“2-valued
logic”). However, when BSV is compiled to Verilog and run on a Verilog simulator, you might see
Xs due to uninitialized values.

In BSV you can also specify “don’t care” values using the expression “?” (a question mark by itself).
Note, this does not mean X or Z, it just means “unspecified whether it is 0 or 1”, allowing the
compiler to pick 0 or 1, as convenient. This accomplishes two goals: first, it documents your intent
that you don’t care whether it’s a 0 or a 1, and second, the compiler can often exploit this freedom by
synthesizing more efficient logic. For example, if one input to a multiplexer is “?”, then the compiler
can choose it to be the same as one of the other inputs, and therefore simplify the multiplexer.

Let’s look at a quick example of how using ? can generate better logic. Consider the following logic
table:

a b out
0 0 1
0 1 ?
1 0 ?
1 1 0

If we presume that ? == 0, as we might simply do, then we get the following logic:

out = ~(a & b) one NAND gate

But, if we are more careful, this could optimize to:

out = ~a one INV gate

It doesn’t make a big impact on size for a single gate, but do this many times and the gate and
timing savings can be significant.

“Don’t care” values can be used by the BSV compiler itself for such optimization, or it may just pass
it on to Verilog for later optimization by the RTL-to-gates synthesis tool. There are two compiler
switches which determine how this is handled:

• -opt-undetermined-vals: tells the compiler to try to optimize don’t cares.

• -unspecified-to n: tells the compiler to write unspecified values to n, where n is 0,1, or X.
Note that Bluesim will only allow n to be 0 or 1, since it is a two-state simulator.

In a Verilog simulator, the ? cases will come out as X, which we expect the RTL-to-gates synthesizer
to optimize to the proper value.

160 CHAPTER 12. EXPRESSIONS

12.2 Case expressions

Source directory: expressions/case

Source listing: Appendix A.11.2

We examined case statements and pattern-matching in Section 10.1.6. BSV also allows the case
statement to be used as an expression, as demonstrated in this example.

Reg#(int) a <- mkReg(0);

rule init (step == 0);

int val = case(a)

0: return 25;

1: return 23;

2: return 17;

default: return 64;

endcase;

step <= step + 1;

endrule

The lines from case() to endcase are now an expression, forming the right-hand side of the assign-
ment statement. The semicolon at the end terminates the assignment statement.

Another interesting example uses the case expression to select between two modules to instantiate,
based on a parameter or constant.

Bool initReg = True;

Reg#(int) rr <- case (initReg)

False: mkRegU;

True: mkReg(0);

endcase;

The first example is a dynamic use of a case expression (it becomes a multiplexer); the second
example is a static use of a case expression (is processed, resolved and disappears during static
elaboration).

12.3 Function calls

Source directory: expressions/function_calls

Source listing: Appendix A.11.3

12.3. FUNCTION CALLS 161

A function definition is introduced by the keyword function. Every function must define the type
of the value returned by the function and a name for the function. The arguments and result of a
function can be of any BSV type at all (including other function types). Let’s look at two simple
functions definitions:

function int square(int a);

return a * a;

endfunction

function int increment(int a);

// saturate at maxInt

int maxInt = unpack({ 1’b1, 0 }); // a local constant

if (a != maxInt)

return a + 1;

else

return a;

endfunction

These function expressions can be used in statements and they can be nested since they don’t (indeed
cannot) update any state.

Reg#(int) step <- mkReg(0);

rule init (step == 0);

$display("=== step 0 ===");

$display("square 10 = ", square(10));

$display("increment 20 = ", increment(20));

// nested functions

$display("2*10+1 = ", increment(square(10)));

step <= step + 1;

endrule

In the above example, the functions represent combinational circuits. However, the same functions
can also be used during static elaboration:

Reg #(int) foo = mkReg (increment (square (10)));

Here, the functions are statically elaborated to the value 101 which is used as the initialization
value of the register. In BSV, we make no syntax distinction between the language used for static
elaboration and the language used to express dynamic computations—it is always clear from context
how a function is being used.

162 CHAPTER 12. EXPRESSIONS

Chapter 13

Vectors

BSV provides three types to describe collections of elements, each selected by one or more indices:
vectors, arrays, and lists. The Vector type, provided in the package of the same name, is the most
useful. Vectors are completely synthesizable and the package contains a large number of functions
to operate on the Vector data type.

We can define any type, user-defined or BSV-provided, as an array simply by using the [] notation.
The value within the [] must be a constant expression, that is computable during static elaboration.
An array can be multidimensional.

A Vector is an abstract data type which is a container of a specific length, holding elements of
one type. To use vectors you must import the Vector package which includes many functions to
create and operate on vectors. The length of a vector must be resolvable during type-checking
(although it is possible to write functions that are polymorphic in the vector length). If the data
type of the elements is in the Bits typeclass, the vector is in the Bits typeclass. In other words,
a vector can be turned into bits if the individual elements can be turned into bits. Therefore,
vectors are fully synthesizable. A vector can also store abstract types, such as a vector of rules or a
vector of Reg interfaces. These are useful during static elaboration although they have no hardware
implementation.

Lists are similar to vectors, but are used when the number of items in the list may vary at compile-
time or need not be strictly enforced by the type system. All elements of a list must be of the same
type. The List package defines a data type and functions which create and operate on lists. Lists
are most often used during static elaboration (compile-time) to manipulate collections of objects
when the size of the list is unknown. Lists are not synthesizable since their size may not be known.

Neither arrays nor lists are in the Bits typeclass, and therefore cannot be stored in registers or other
dynamic elements. When going through a synthesis boundary, where wires must be created, arrays
and lists must be converted into vectors in order to generate hardware.

The following examples define collections of elements of type UInt#(16):

UInt#(16) arr[10]; // an array named arr of 10 values

Vector#(10, UInt#(16)) vec; // a vector named vec of 10 values

List#(UInt#(16)) lis; // a list named lis of unknown number of values

163

164 CHAPTER 13. VECTORS

13.1 Arrays and square-bracket notation

Source directory: vector/arrays

Source listing: Appendix A.12.1

We can define any type, user-defined or BSV-provided, as an array simply by using the [] notation.
The value within the [] must be a constant expression, computable during static elaboration.
Arrays can be multidimensional.

In this example, we’re creating an array named arr with 10 instances, each of type UInt#(16). Each
instance of arr can be accessed as arr[0], arr[1], ..., arr[9].

UInt#(16) arr[10];

Now we can initialize it statically at the global level:

arr[0] = 0

arr[1] = 3

arr[2] = 6

...

A statically-elaborated for-loop can be used to initialize an array. The following is identical to typing
the 10 lines out separately:

for (Integer i=0; i<10; i=i+1)

arr[i] = fromInteger(i * 3);

You can create multi-dimensional arrays. There is no theoretical limit on the number of dimensions,
but you have to remember that you are creating logic that will be implemented in hardware for
selection and update. An example of a 2-dimensional array:

UInt#(16) arr2[3][4];

for (Integer i=0; i<3; i=i+1)

for (Integer j=0; j<4; j=j+1)

arr2[i][j] = fromInteger((i * 4) + j);

You can create arrays of register interfaces, or any module interface, in a similar way. Remember
to initialize the array, for example using a for-loop, or else it will contain a “don’t care” interface of
the element type:

13.2. ARRAYS VS. VECTORS 165

Reg#(int) arr3[4];

for (Integer i=0; i<4; i=i+1)

arr3[i] <- mkRegU; // initialization

You can write to all or any of the array’s registers within the same rule.

rule load_arr3;

arr3[0] <= ’h10;

arr3[1] <= 4;

arr3[2] <= 1;

arr3[3] <= 0;

endrule

13.2 Arrays vs. Vectors

Source directory: vector/arr_vs_vector

Source listing: Appendix A.12.2

Vectors are a much more powerful implementation of array functionality. In this section we discuss
the basics of vectors, which are defined in the Vector package. To use vectors, you must import the
package. This example also uses a FIFO, so we’ll import that package as well.

import Vector::*;

import FIFO::*;

Like arrays, vectors are used to group items together, but vectors have additional features and a
different syntax. The Vector package defines an abstract data type, a vector, which is a container
of a specific length, holding elements of one type. Functions which create and operate on vectors
are also defined within the Vector package.

The vector type is written: Vector#(number of items, type of items)

The function newVector can be used to create a new vector value with unspecified contents:

Vector#(4, Int#(16)) vec1 = newVector;

The Vector package provides many functions for creating and initializing a vector, including the
following functions:

• newVector creates a vector value with n unspecified elements; typically used when a vector is
declared.

166 CHAPTER 13. VECTORS

• genVector creates a vector value with index 0 containing Integer 0, index 1 containing
Integer 1, ..., index n− 1 containing Integer n− 1.

• replicate creates a vector of n elements by replicating the given argument c at every index

• genWith creates a vector of n elements by applying the given function to Integer arguments
0 through n− 1. The argument of the function is another function which has one argument of
type Integer and returns an element value of the vector element type. Thus, genVector can
be regarded as an application of genWith to the “identity” function.

This statement uses the replicate function to create vec2 and assign the value 0 to all the elements.
replicate creates as many items as needed of the given argument, in this case, 4 items of type
Int#(16).

Vector#(4, Int#(16)) vec2 = replicate(0);

This is essentially the same functionality as using arrays:

Int#(16) arr2a[4];

for (Integer i=0; i<4; i=i+1)

arr2a[i] = 0;

You can read and write vec2 and arr2a the same way, but the definition of the vector notation of
vec2 takes only one line.

We can also use the map function, which allows you to apply a function to all elements of a vector.
The map function takes as an argument a function, which is then applied to each element of the
vector given as its second argument, and returns a new vector. For example:

Vector#(4, Int#(16)) vec3 = map(fromInteger, genVector);

Here, genVector creates a vector of 4 elements (0,1,2,3), each of type Integer. Then, map applies
the function fromInteger to each element, returning a vector of four elements (0,1,2,3), each of
type Int#(16). This becomes the initial value of the declared variable vec3. Conceptually, it is
equivalent to the following “unrolled” form:

vec3[0] = fromInteger(0)

vec3[1] = fromInteger(1)

vec3[2] = fromInteger(2)

vec3[3] = fromInteger(3)

With arrays, you’d have to do it with an explicit loop:

13.3. BIT-VECTORS AND SQUARE BRACKET NOTATION 167

Int#(16) arr3a[4];

for (Integer i=0; i<4; i=i+1)

arr3a[i] = fromInteger(i);

We can even write our own function to load whatever we want at each index. For example, let’s
create a times13 table vector. The function times13:

function Int#(16) times13 (Integer i);

return fromInteger(i * 13);

endfunction

can be applied across the vector created by genVector:

Vector#(4, Int#(16)) vec4 = map(times13, genVector);

to produce a vector of 4 elements (0, 13, 26, 39), with each element of type Int#(16).

This is how it would be done with arrays:

Int#(16) arr4a[4];

for (Integer i=0; i<4; i=i+1)

arr4a[i] = fromInteger(i * 13);

Vector functions are more composable; they can be nested as deep as you wish. They encourage a
more “functional programming” style. As you work with vectors and vector functions, you will see
vectors have many advantages over arrays.

13.3 bit-vectors and square bracket notation

Source directory: vector/bit_vector

Source listing: Appendix A.12.3

Like Verilog, we can access the bits of Bit data types, but not of Int and UInt (at least not
without recasting them to Bit via the pack function). The idea is to use Int and UInt for math-
ematical operations where their bit representations are an irrelevant implementation detail. For
example, the mathematical operations on Int and UInt can be defined independently of whether
they are represented in “little-endian” or “big-endian” forms of bits. That being said, sometimes
there are hardware-related data-specific tricks with numbers, like is this number divisible by 4 or
bits[1:0]==0. Regardless, you should try to use Bit only for things that are bit type structures
and not for counters, etc. The more “representation-independent” your code is, the more it will be
robust to changes in representation.

168 CHAPTER 13. VECTORS

Accessing bits If you define a Bit type, you can use [] to access a particular bit.

rule test1;

Bit#(5) foo1 = 5’b01001;

$display("bit 0 of foo1 is ", foo1[0]);

$display("bit 1 of foo1 is ", foo1[1]);

$display("bit 2 of foo1 is ", foo1[2]);

$display("bit 3 of foo1 is ", foo1[3]);

$display("bit 4 of foo1 is ", foo1[4]);

...

resulting in the output:

bit 0 of foo1 is 1

bit 1 of foo1 is 0

bit 2 of foo1 is 0

bit 3 of foo1 is 1

bit 4 of foo1 is 0

Retrieving a a range of bits You can also get a range of bits:

Bit#(6) foo2 = ’b0110011;

$display("bits 2:0 of foo2 are %b", foo2[2:0]);

resulting in the output:

bits 2:0 of foo2 are 011

Defining a bit vector of a new size This returns bit vector of a new size:

Bit#(3) foo3 = foo2[5:3];

$display("bits 5:3 of foo2 are %b", foo3);

resulting in the output:

bits 5:3 of foo2 are 110

13.3. BIT-VECTORS AND SQUARE BRACKET NOTATION 169

Setting bits

foo3 = 3’b111;

$display("set foo3[2:0] to 1s => %b", foo3);

foo3[1:0] = 0;

$display("set foo3[1:0] to 0s => %b", foo3);

resulting in the output:

set foo3[2:0] to 1s => 111

set foo3[1:0] to 0s => 100

Using a vector of bit instead of a bit vector A better way to use and think of these functions
is to create a vector of bit (where bit is an alias for Bit#(1)).

Vector#(8, bit) bar1 = replicate(0);

If you define a vector you then have access to the large set of vector processing functions defined
in the Vector package. For example, let’s look at the genWith function. This function generates
a vector of elements by applying a given function to all the elements of a vectors. We’re going to
define the function isInteresting, which takes an Integer as an argument. It sets each bit to 1 if
it is divisible by 3.

function bit isInteresting(Integer i);

return (i % 3 == 0) ? 1 : 0;

endfunction

We can then use the genWith vector function to apply isInteresting to the vector bar2,

Vector#(16,bit) bar2 = genWith(isInteresting);

$display("bar2 is %b", bar2)

resulting in the output:

bar2 is 1001001001001001

170 CHAPTER 13. VECTORS

Rotating and shifting The Vector package provides functions for rotating and shifting vectors.
Because 16’b0101_0001_1000_1001 is a sized literal, we need to use the unpack function to turn
it into a Vector#(16, Bit#(1)) value. If Vector#(16, Bit#(1)) had an instance defined in the
SizedLiteral typeclass, then the function fromSizedLiteral would be defined for it, and the
unpack wouldn’t be necessary.

Vector#(16,bit) bar3 = unpack(16’b0101_0001_1000_1001);

$display("bar3 is %b", bar3)

The reverse function reverses the order of the elements.

$display("reverse bar3 is %b\n", reverse(bar3));

The rotate function moves each element down by 1. The element at index n moves to index n-1,
the zeroth element moves to index n.

$display("bar3 is %b", bar3);

$display("rotate1 bar3 is %b", rotate(bar3));

$display("rotate2 bar3 is %b", rotate(rotate(bar3)));

The above displays return the following results:

bar3 is 0101000110001001

reverse bar3 is 1001000110001010

bar3 is 0101000110001001

rotate1 bar3 is 1010100011000100

rotate2 bar3 is 0101010001100010

You can also define your own functions, using the functions in the Vector package. Here we wrap
rotateBy function to create rotateUp and rotateDown, where up moves each to the next higher
index (0->1->2->3...n->0) and down moves each bit down an index (n->n-1->n-2...1->0,0->n).

function Vector#(n,td) rotateUp(Vector#(n,td) inData, UInt#(m) inx)

provisos(Log#(n,m));

return rotateBy(inData, inx);

endfunction

function Vector#(n,td) rotateDown(Vector#(n,td) inData, UInt#(m) inx)

provisos(Log#(n,m));

UInt#(TAdd#(m,1)) maxInx = fromInteger(valueof(n));

return rotateBy(inData, truncate(maxInx-extend(inx)));

endfunction

13.3. BIT-VECTORS AND SQUARE BRACKET NOTATION 171

The rotation amount can up to n places, which can be represented in log (to base 2) bits. The
provisos assert this relationship between the vector length and the width of the rotation amount.
With this functions you can rotate the bits in the vector by any specified number of places.

$display("bar3 is %b", bar3);

$display("rotate up 1 bar3 is %b", rotateUp(bar3, 1));

$display("rotate up 2 bar3 is %b", rotateUp(bar3, 2));

$display("rotate up 3 bar3 is %b\n", rotateUp(bar3, 3));

$display("bar3 is %b", bar3);

$display("rotate dn 1 bar3 is %b", rotateDown(bar3, 1));

$display("rotate dn 2 bar3 is %b", rotateDown(bar3, 2));

$display("rotate dn 3 bar3 is %b", rotateDown(bar3, 3));

This results in the output:

bar3 is 0101000110001001

rotate up 1 bar3 is 1010001100010010

rotate up 2 bar3 is 0100011000100101

rotate up 3 bar3 is 1000110001001010

bar3 is 0101000110001001

rotate dn 1 bar3 is 1010100011000100

rotate dn 2 bar3 is 0101010001100010

rotate dn 3 bar3 is 0010101000110001

Note that in this section we are describing bit vectors, where the elements of the vector are all
Bit#(1). The vector functions are defined for any element type. For example, the rotate function
moves elements of any data type. The rotateBitsBy function is only defined for bit vectors.

You can still quickly pack and unpack bit vectors to a Bit#().

Bit#(16) val = 25;

bar3 = unpack(val);

$display("bar unpacked = %b / %d", bar3, bar3);

bar3[7] = 1;

// and back

Bit#(16) val2 = pack(bar3);

$display("bar packed = %b / %d", val2, val2);

The output is:

172 CHAPTER 13. VECTORS

bar unpacked = 0000000000011001 / 25

bar packed = 0000000010011001 / 153

13.4 Whole register update

Source directory: vector/whole_register

Source listing: Appendix A.12.4

In BSV, registers are considered atomic units with regard to their updates. That is, if any bit of a
register is updated, then the entire register is considered updated.

Let’s define registers containing bit vectors:

Reg#(Bit#(8)) foo <- mkReg(0);

Reg#(Bit#(8)) foo2 <- mkReg(0);

Reading any number of bits in any of the various bit-selection forms is fine:

rule up1;

$display("foo[1:0] = %b", foo[1:0]);

$display("foo[2] = %b", foo[2]);

Similarly, writing single bits within a rule is fine.

rule up2;

foo[1] <= 1;

However, BSV considers this register to be a single entity, and this is just an abbreviation for a
read-modify-write where the entire value is read out of the register, a new value is computed with
the changed bit, and the entire value is written back. Thus, if we tried to write the following:

rule update1;

foo[1] <= 1;

foo[2] <= 1;

we will get the following error:

13.4. WHOLE REGISTER UPDATE 173

Error: "Tb.bsv", line 14, column 9: (G0004)

Rule ‘RL_update1’ uses methods that conflict in parallel:

foo.write(...)

and

foo.write(...)

For the complete expressions use the flag ‘-show-range-conflict’.

because it is regarded as two read-modify-writes of the entire register, which cannot be done as part
of a single atomic Action.

If you really need to update multiple bits in a register in a single rule, couch it as a single read-
modify-write: read out the whole value, construct a new value with the multiple bits changed, and
write back the entire new value:

let tmp = foo2; // single read into a temporary variable

tmp[1] = 1;

tmp[3] = 1;

tmp[7:6] = 3;

foo2 <= tmp; // single write

This also applies to bits across rules. One rule can’t update foo[1] while another rule updates
foo[2]. Let’s consider the following two rules:

rule up1;

foo[1] <= ~foo[1];

endrule

rule up2;

foo[2] <= ~foo[2];

endrule

In this case, up1 and up2 have a resource conflict on the register foo. Even though foo has 8 bits
and the rules are writing different bits, BSV considers the register to be one indivisible piece of state.

If you really need to do this, consider creating separate bit registers and concat the bits together
when you read or write the entire register.

174 CHAPTER 13. VECTORS

Reg#(bit) b1 <- mkReg(0);

Reg#(bit) b2 <- mkReg(0);

rule up3;

b1 <= ~b1;

b2 <= ~b2;

endrule

rule done (b2 == 1);

$display("b12 = %b", {b1,b2});

$finish;

endrule

13.5 Vector of registers

You can create vectors of interfaces, including register interfaces. (Recall that in BSV, registers are
just another module with two methods, _write and _read.)

You can use a one line statement to define a vector of registers using the vector function replicateM.
If you accidently use replicate instead of replicateM (think of the M as replicate Module) you
will get the following error message:

Error: "Tb.bsv", line 20, column 35: (T0107)

The type ‘Vector::Vector#(12)’ is not a module. Perhaps you have used the

wrong function in a module instantiation, such as ‘map’ vs ‘mapM’.

Consider the modules at the following locations:

"Tb.bsv", line 20, column 46

For now, just remember:

....... <- replicateM() // notice <-

....... = replicate() // notice =

The difference is explained by the fact that replicateM must perform a side-effect (instantiation
of a module) for each element, and return the results, whereas replicate does not have any side
effects.

The following statement defines a vector of registers containing ints, using the replicateM function.

Vector#(12, Reg#(int)) arr1 <- replicateM(mkReg(0));

13.6. REGISTER CONTAINING A VECTOR VS. A VECTOR OF REGISTERS 175

13.6 Register containing a vector vs. a vector of registers

Source directory: vector/regvec_vecreg

Source listing: Appendix A.12.5

• Use a register containing a vector when you will be updating the entire vector together, at
once, in a single rule (atomically).

• Use a vector of registers when you will be updating a single element at a time.

The main issue is that when one field in a register is updated, the entire register is updated, even if
most of the fields do not change.

Assignments to a register containing a large vector must maintain the values for any unchanged
fields. This can lead to increased mux size, since all elements of the vector must be updated, even
if only a single element has changed.

On the other hand, if you have a vector of registers, and you dynamically pick a single register
to update, the scheduler may think you are touching all the registers in the vector (unless it can
statically know which index you are using). This can lead to rule conflicts where none may in fact
exist.

Let’s look an an example to compare. In both, we’re going to have an enum, named Status and a
rule to updateStatus

import Vector :: *;

...

typedef enum { OK,

FAIL,

TEST,

WAIT

} Status deriving (Bits, Eq);

Let’s define two different register/vector structures:

• regstatus is a register containing a vector of 10 status values (register containing a vector)

• vecstatus is a vector containing 10 registers of status (vector of registers)

We also define a register containing the failure condition where the Valid value is the value of type
Status.

176 CHAPTER 13. VECTORS

(* synthesize *)

module mkTb (Empty);

Reg#(Vector#(10,Status)) regstatus <- mkReg(replicate(OK)) ;

Vector#(10, Reg#(Status)) vecstatus <- replicateM (mkReg (OK)) ;

Reg#(Maybe#(UInt#(4))) failCond <- mkReg(Invalid);

Reg#(UInt#(4)) cycle <- mkReg(0);

To update elements in a register containing a vector (Reg#(Vector#(n, element))), you have to
read out the entire value of the register (a vector), update the relevant elements, then write back
the new value (a vector).

rule updateRegStatus (failCond matches tagged Valid .chan);

let tempstatus = regstatus; // read out whole vector value

tempstatus[chan] = FAIL;

tempstatus[chan + 1] = TEST;

regstatus <= tempstatus; // writeback whole vector value

endrule

In the vector of registers, you can have multiple statements updating the vector, since each is writing
a different, single register.

rule updateVecStatus (failCond matches tagged Valid .chan);

vecstatus[chan] <= FAIL ;

vecstatus[chan + 1] <= TEST;

endrule

13.7 Vector of module interfaces

Source directory: vector/modules

Source listing: Appendix A.12.6

In the last section we discussed a vector of registers (more precisely, a vector of register interfaces).
This is possible because we can express vectors of anything, including interfaces. Let’s look at a
small 2x4 switch, consisting of 2 vectors of FIFOs. ififo is a vector of 2 interfaces of type FIFO.
ofifo is a vector of 4 interfaces of type FIFO.

// two fifos in

Vector#(2,FIFO#(TD)) ififo <- replicateM(mkFIFO);

// four fifos out

Vector#(4,FIFO#(TD)) ofifo <- replicateM(mkFIFO);

13.8. STATIC AND DYNAMIC INDEXING OF VECTORS 177

We’ll take a simple approach and create a rule for each input FIFO to drive data to the output
FIFO. The preempts attribute removes a warning by ensuring that if move0 fires then move1 does
not.

ififo[0] is a single interface of type FIFO, which has first, deq, enq, and clear methods
defined. We can access those methods directly.

rule move0;

let data = ififo[0].first();

ififo[0].deq();

case (data[13:12])

0: ofifo[0].enq(data); // call (ofifo[0]) method enq(data)

1: ofifo[1].enq(data);

2: ofifo[2].enq(data);

3: ofifo[3].enq(data);

endcase

endrule

rule move1;

let data = ififo[1].first();

ififo[1].deq();

case (data[13:12])

0: ofifo[0].enq(data);

1: ofifo[1].enq(data);

2: ofifo[2].enq(data);

3: ofifo[3].enq(data);

endcase

endrule

If you run the complete example in appendix A.12.6, you will see how we create 4 rules to watch
each output and can view the data from each output.

13.8 Static and dynamic indexing of vectors

Source directory: vector/static_elab

Source listing: Appendix A.12.7

Static indexing means that the compiler can determine at compile time the values needed to index
an array. This is usually done with an index of type Integer, but can be done with other data
types as well. For instance, let’s create a vector of registers and look at various ways we can read
its contents.

178 CHAPTER 13. VECTORS

Vector#(8,Reg#(int)) arr1 <- replicateM(mkRegU);

Reg#(int) step <- mkReg(0);

First, we’ll index over a fixed predetermined range (0...7).

rule init (step == 0);

for (Integer i=0; i<8; i=i+1)

arr1[i] <= fromInteger(i);

step <= step + 1;

endrule

The indexes are all known during static elaboration, and so the compiler can easily determine what
actions to take. This essentially expands statically to:

arr1[0] <= fromInteger(0);

arr1[1] <= fromInteger(1);

arr1[2] <= fromInteger(2);

:: ::

arr1[7] <= fromInteger(7);

This analysis holds even if the index were some type other than Integer, as long as the compiler
can figure it out statically, such as:

rule step1 (step == 1);

for (int i=0; i<8; i=i+1)

arr1[i] <= i;

step <= step + 1;

endrule

The variable i here is an int, which is shorthand for Int#(32). Since this is the same data type as
the elements of arr1, we don’t need fromInteger, instead we can assign the value of i directly to
arr[i].

Also notice that there is no dependence between the steps of this loop, i.e., it is just a notation for
a big parallel assignment into multiple registers.

In this next rule, we’ll make it a bit more interesting. For instance, suppose we want to shift the
elements of this array manually:

13.8. STATIC AND DYNAMIC INDEXING OF VECTORS 179

rule step2 (step == 2);

for (int i=0; i<8; i=i+1)

if (i != 7)

arr1[i+1] <= arr1[i];

else

arr1[0] <= arr1[7];

step <= step + 1;

endrule

The compiler is still able to statically elaborate this loop into the desired rotation. Variable i is still
statically incrementing from 0...7. Observe that now we have an if-else structure (and we could
have used any case or structure that elaborates properly). This loop simply elaborates to:

arr[1] <= arr[0]

arr[2] <= arr[1]

arr[3] <= arr[2]

arr[4] <= arr[3]

arr[5] <= arr[4]

arr[6] <= arr[5]

arr[7] <= arr[6]

arr[0] <= arr[7]

To scramble the values arbitrarily, we could use a case statement, and it’s still static.

rule step3 (step == 3);

for (int i=0; i<8; i=i+1)

case (i)

0: arr1[0] <= arr1[3];

1: arr1[1] <= arr1[1];

2: arr1[2] <= arr1[2];

3: arr1[3] <= arr1[0];

4: arr1[4] <= arr1[5];

5: arr1[5] <= arr1[7];

6: arr1[6] <= arr1[4];

7: arr1[7] <= arr1[6];

step <= step + 1;

endrule

Now let’s look at dynamic (run-time) indexing. Example:

180 CHAPTER 13. VECTORS

Reg#(UInt#(3)) inx <- mkRegU;

rule step4 (step == 4);

arr1[inx] <= 0;

step <= step + 1;

endrule

... // other rules and methods that modify inx

Now the array is indexed by inx which is the UInt#(3) contents of a register. This creates a runtime
index, meaning when this rule fires, whatever value is in register inx will be used to index to the
proper array value. Therefore it must create the appropriate logic to be able to write every arr1

depending on the value of inx.

Now, as an optimization, if you know somehow that you only ever write to inx==0 and inx==1 (for
instance), then you can give the compiler a clue by coding something like this:

// if (inx == 0)

// arr1[0] <= 0;

// else if (inx == 1)

// arr1[1] <= 1;

This gives the compiler more information, resulting in better logic.

Chapter 14

Finite State Machines (FSMs)

Finite state machines (FSMs) are common in hardware design. First, we’ll examine how to build
an FSM using rules. Rules can be used to build arbitrary FSMs. Then we’ll demonstrate the
StmtFSM sub-language which is simpler to use for “well-structured” FSMs, i.e., FSMS built involving
sequencing, parallelism, conditions and loops and which have a a precise compositional model of
time. The StmtFSM sub-language is simpler in these cases because it provides a succinct notation
and automates all the generation and management of the actual FSM state. However StmtFSM does
not introduce any new semantics—everything is explained in terms of rules, and in fact that is how
the BSV compiler implements it.

14.1 Building an FSM explicitly using rules

Source directory: fsm/rules

Source listing: Appendix A.13.1

In this section we look at how to create a finite state machine (FSM) using rules. We define a rule
for each state. The body of the rule performs the state’s actions, and also updates the state to effect
a state transition. If we were using standard RTL, we would have to mux all the possible values
for each state to a single mux and then generate all the select signals. With BSV, the compiler
generates all the muxing and control for us. This means that each rule is self-contained and much
easier to understand. Need to add another state? Just add another rule. Need to add another exit
arc from a state? Just add it to the if/else conditions that updates the state in the rule.

All the usual concepts of rules apply. Implicit (or ready) conditions will cause a rule not to fire.
Additionally, the explicit (or rule) condition can be as complicated as you desire. The end effect is
that when the rule fires, you specify the state update and actions for the rule.

We’ll examine in later examples the StmtFSM sub-language, another way to implement state machines
that is simpler to use in many cases. But rules are the basic, most powerful way to implement a
state machine.

181

182 CHAPTER 14. FINITE STATE MACHINES (FSMS)

An enum is a good way to ensure that we have meaningful and mnemonic state names. Since it is
strongly-typed, it is difficult to misuse. We declare a register to hold the current state, and initialize
it to IDLE.

package Tb;

typedef enum { IDLE, STEP1, STEP2, STOP } State deriving(Bits,Eq);

(* synthesize *)

module mkTb (Empty);

Reg#(State) state <- mkReg(IDLE);

We declare some some additional registers that participate in the state transition decisions. The
counter runs for 200 cycles.

Reg#(int) counter <- mkReg(0);

Reg#(Bool) restart <- mkReg(False);

rule runCounter;

if (counter == 200) begin

$display("Done");

$finish;

end

counter <= counter + 1;

endrule

We then have one rule for each state. The following rule represents the behavior in the IDLE state.
In this example, the only action is to display a message, which it does repeatedly until the counter
is a multiple of 4 (4,8,12, etc), at which point it transitions to the STEP1 state.

rule stateIdle (state == IDLE); //default state

$display("Counter = %03d, State: IDLE", counter);

if (counter % 4 == 0)

state <= STEP1;

endrule

This rule represents state STEP1, where it remains until it either sees the restart signal in which
case it returns to the IDLE state, or it observes that the counter is a multiple of 8, when it transitions
to state STEP2.

14.2. ONE-HOT FSM EXPLICITLY USING RULES 183

rule stateStep1 (state == STEP1);

$display("Counter = %03d, State: STEP1", counter);

if (restart)

state <= IDLE;

else if (counter % 8 == 0)

state <= STEP2;

endrule

In state STEP2 it immediately transitions further to the STOP state.

rule stateStep2 (state == STEP2);

$display("Counter = %03d, State: STEP2", counter);

// advance to the next state, ignore restart signal here

state <= STOP;

endrule

In the STOP state, it resets the state back to IDLE.

rule stateSTOP (state == STOP);

$display("Counter = %03d, State: STOP", counter);

state <= IDLE;

endrule

endmodule

endpackage

In summary, coding an FSM using rules is simple: each rule condition represents a particular state.
The body of a rule performs the actions necessary in the state, and also performs updates that
affect rule conditions, i.e., enables the rule for the next state. In this way, arbitrary state-transition
diagrams can be encoded.

14.2 One-hot FSM explicitly using rules

Source directory: fsm/onehot

Source listing: Appendix A.13.2

In this section we will repeat the previous example, except that we shall use “one-hot” encoding for
the state. In the previous example, the state was expressed using an enum with four labels, encoded
in two bits as 00, 01, 10 and 11. In one-hot encoding, instead, the state is encoded in four bits as
0001, 0010, 0100 and 1000, respectively. Notice that in each encoding, exactly 1 bit is set, hence the
name “one-hot”.

184 CHAPTER 14. FINITE STATE MACHINES (FSMS)

One-hot encoding is more expensive in state bits. Whereas normal state encoding (like the enum)
takes log2(n) bits to represent n state values, one-hot coding takes n bits. The payoff comes in
decoding—with one-hot coding, we only need to test one bit to recognize a particular state, instead of
testing log2(n) bits. In some performance-critical situations (tightly timed hardware), this difference
is crucial.

(* synthesize *)

module mkTb (Empty);

// Indexes of bits for each state

Integer idle = 0;

Integer step1 = 1; // or "idle + 1"

Integer step2 = 2;

Integer stop = 3;

// Rather then write down the one-hot codings explicitly where it is easy to get

// it wrong, we use a function to create them

// create the single bit in the proper place, zero all others

function Bit#(4) toState(Integer st);

return (1 << st); // left-shift ’1’ by st places

endfunction

Reg#(Bit#(4)) state <- mkReg(toState(idle));

Reg#(int) counter <- mkReg(0);

Reg#(Bool) restart <- mkReg(False);

rule runCounter;

if (counter == 200) begin

$display("Done");

$finish;

end

counter <= counter + 1;

endrule

The rule conditions pick out one bit to check using a constant integer index, rather than comparing
against all the state bits. Otherwise, the rules (steps) are the same as in the previous example.

rule stateIdle (state[idle] == 1);

$display("Counter = %03d, State: IDLE", counter);

if (counter % 4 == 0)

state <= toState(step1);

endrule

14.3. STMTFSM 185

rule stateStep1 (state[step1] == 1);

$display("Counter = %03d, State: STEP1", counter);

if (restart)

state <= toState(idle);

else if (counter % 4 == 0)

state <= toState(step2);

endrule

rule stateStep2 (state[step2] == 1);

$display("Counter = %03d, State: STEP2", counter);

state <= toState(stop);

endrule

rule stateStop (state[stop] == 1);

$display("Counter = %03d, State: STOP", counter);

state <= toState(idle);

endrule

endmodule

endpackage

Although we know that these rules are mutually exclusive because of the “one-hot” property of
state, this mutual exclusivity is not known to the compiler, and so it will generate a number of
conflict warnings and conflict resolution logic. The mutually_exclusive attribute (Section 7.2.3)
informs the compiler about mutual exclusivity:

(* mutually_exclusive = "stateIdle, stateStep1, stateStep2, stateStop" *)

14.3 StmtFSM

Another way to define FSMs is with the StmtFSM library package, an extremely powerful way of
specifying structured FSMs in BSV. At the heart of this capability is a sub-language for specifying
structured FSMs, built out of basic Actions. The compiler expands this sub-language into explicit
rules, just as if you had written the FSM explicitly with rules with the basic Actions in the rule
bodies. In other words, the sub-language is a notational convenience and does not introduce any
new semantics.

The constructs in the sub-language are first-class objects, of type Stmt. You can write your own
functions and static-elaboration facilities to compute with Stmt objects.

This library is extremely useful for developing testbenches, as it allows you to quickly generate
C style loops, sequences, parallel blocks, etc. There is no ”goto” (you can only create structured
FSMs). One caveat: state encodings produced by the compiler from StmtFSM may not be as efficient
as hand-coded FSMs with explicit rules that exploit semantic knowledge about the states.

186 CHAPTER 14. FINITE STATE MACHINES (FSMS)

14.3.1 A basic template

Source directory: fsm/stmtfsm_basic

Source listing: Appendix A.13.3

Let’s look at a template showing the basic components of declaring, defining, and running an FSM.

1. You must import the StmtFSM package.

import StmtFSM :: *;

2. Create an FSM specification, which is an expression of type Stmt, using the sequential, parallel,
conditional, and looping constructs of the Stmt sub-language. Entry into the scope of the FSM
sub-language is signalled by the keyword seq.

Stmt test =

seq

$display("I am now running at ", $time);

$display("I am now running one more step at ", $time);

$display("And now I will finish at", $time);

$finish;

endseq;

3. Instantiate the FSM using the module constructor mkFSM, passing it the Stmt value above as
a parameter. The state machine is automatically constructed from the procedural description
given in the Stmt spec.

FSM testFSM <- mkFSM(test);

The module instantiation returns an FSM interface which has a start Action method for
starting the FSM, and a done boolean method that can be tested for FSM completion.

4. Use the start method to begin state machine execution. The start method has an implicit
condition that the FSM cannot already be running, that is, it must be done.

rule startit;

testFSM.start;

endrule

5. Use the done boolean method to test for FSM completion.

rule sequel (testFSM.done);

...

endrule

Statements can be composed into sequential, parallel, conditional, and loop forms. In the sequential
form (seq...endseq), the contained statements are executed one after the other. A statement can
be an Action, in which case it forms a rule, or it can be a nested FSM. A seq block terminates
when its last contained statement terminates; the total time is equal to the sum of the individual
statement times (the number of clock cycles will be greater than or equal to the number of contained
Actions, since the Actions become rules, and rules may stall according to rule scheduling semantics).

14.3. STMTFSM 187

In the parallel form (par...endpar), the contained statements (threads) are all executed in parallel.
Statements in each thread may or may not be executed simultaneously with statements in other
threads. If they cannot be executed (based on scheduling conflicts) they will be interleaved, in
accordance with regular rule scheduling. The entire par block terminates when the last of its
contained threads terminates.

In the conditional form (if...else), one or the other branch FSM is executed, depending on the
boolean condition. The total time taken is the total time for the chosen branch.

Loops within a Stmt context express time-based (temporal) behavior, unlike loops elsewhere in BSV
which are statically elaborated. There are two forms, while and for. In both forms, the loop body
statements can contain the keywords continue or break, where continue immediately jumps to
the start of the next iteration and break jumps out of the loop to the loop sequel. There is also a
repeat(n) form where n is a static integer constant.

14.3.2 AutoFSM

Source directory: fsm/autofsm

Source listing: Appendix A.13.4

Often for tests and testbenches, we just want to start up a sequence automatically and let it run
once. If we don’t need to start and restart it, then we can use mkAutoFSM. Basically, it’s like any
other FSM except it starts running a few cycles after reset and it calls $finish when its done. Be
careful that the work in the rest of your system has completed before the AutoFSM calls $finish.

package Tb;

import StmtFSM::*;

(* synthesize *)

module mkTb (Empty);

Stmt test =

seq

$display("I am now running at ", $time);

$display("I am now running one more step at ", $time);

$display("And now I will finish at", $time);

endseq;

mkAutoFSM (test);

rule always-run;

$display(" and a rule fires at", $time);

endrule

endmodule

endpackage

188 CHAPTER 14. FINITE STATE MACHINES (FSMS)

Another common idiom is to write the Stmt expression directly as an argument to mkAutoFSM:

mkAutoFSM (

seq

$display("I am now running at ", $time);

$display("I am now running one more step at ", $time);

$display("And now I will finish at", $time);

endseq;

);

14.3.3 StmtFSM example

Source directory: fsm/example

Source listing: Appendix A.13.5

Now that we’ve examined some of the StmtFSM basics, let’s look at a larger example. This example
doesn’t really do anything interesting other than demonstrate many of the components of StmtFSM.

As always, to use the StmtFSM library, we must import the StmtFSM package. We also instantiate
a FIFOF and some registers to introduce some subtleties into the FSM behavior.

package Tb;

import StmtFSM::*;

import FIFOF::*;

(* synthesize *)

module mkTb (Empty);

FIFOF#(int) fifo <- mkFIFOF;

Reg#(Bool) cond <- mkReg(True);

Reg#(int) ii <- mkRegU;

Reg#(int) jj <- mkRegU;

Reg#(int) kk <- mkRegU;

We define two functions to use in our example. The first, functionOfAction is an example of an
action inside a function. The second is functionOfSeq, is a function which returns a seq statement.

function Action functionOfAction(int x);

return action

$display("an action inside of a function, writing %d", x);

ii <= x;

endaction;

endfunction

14.3. STMTFSM 189

function Stmt functionOfSeq(int x);

return seq

action

$display("sequence in side function %d", x);

ii <= x;

endaction

action

$display("sequence in side function %d", x+1);

ii <= x+1;

endaction

endseq;

endfunction

The name of our FSM spec is test, of type Stmt, which takes a sequence of actions. The function
functionOfAction returns a value of type Action, defining an action that we will be repeating.

Stmt test =

seq

$display("This is action 1"); // cycle 1

$display("This is action 2"); // cycle 2

$display("This is action 3"); // cycle 3

// an action with several actions still only take one cycle

action

$display("This is action 4, part a");

$display("This is action 4, part b");

endaction

functionOfAction(10);

functionOfAction(20);

functionOfAction(30);

We can also create a function containing a sequence (seq...endseq) definition, and call it as an
Action. This is the functionOfSeq we defined above.

functionOfSeq(50);

// this whole action is just one cycle when it fires

action

$display("This is action 5");

if (cond)

$display("And it may have several actions inside of it");

endaction

190 CHAPTER 14. FINITE STATE MACHINES (FSMS)

A valid action is noAction, basically a nop. You can repeat multiple cycles of noAction or of a spe-
cific Action. Sequence statements can be nested; our seq...endseq can contain other seq...endseq
statements.

repeat (4) noAction;

repeat (4) action

$display("Repeating action!");

$display("Check it out");

endaction;

seq

noAction;

noAction;

endseq

An if/else statement can contain sequences, which will take multiple cycles to execute. The
if/else can be inside an action, in which case it takes only one cycle when it executes (either the
if or the else branch).

if (cond) seq

// if cond is true, then execute this sequence

$display("If seq 1"); // cycle 1

$display("If seq 2"); // cycle 2

$display("If seq 3"); // cycle 3

endseq

else seq

// if cond is false, then execute this sequence

action

$display("Else seq 1");

endaction

action

$display("Else seq 2");

endaction

endseq

// This takes one cycle when it executes

// The arms can only be of type Action, not Stmt

action

if (cond)

$display("if action 1");

else

$display("else action 1");

endaction

14.3. STMTFSM 191

Implicit conditions still matter. In the following enq statements, the FSM will stall on the action
when the implicit condition is false. In this example, we are forcing this by having a rule pull data
out of the FIFO, but only every 4 cycles. This means the FIFO will fill up, and then the FSM will
stall until the rule pulls some data out of the FIFO.

action

$display("Enq 10 at time ", $time);

fifo.enq(10);

endaction

action

$display("Enq 20 at time ", $time);

fifo.enq(20);

endaction

action

$display("Enq 30 at time ", $time);

fifo.enq(30);

endaction

action

$display("Enq 40 at time ", $time);

fifo.enq(40);

endaction

await is a function provided by the StmtFSM package and is used to generate an implicit condition;
await blocks the execution of an action until a condition becomes True. In this case, we want to
print a message when we are done. While the FIFO is notEmpty, the state machine waits and no
actions fire.

action

$display("FIFO is now empty, continue...");

await(fifo.notEmpty() == False);

endaction

for loops are handy, but notice one small timing quirk. The loop body takes two cycles, one for the
compare/first action and a second for the action to increment. This is done so that the increment
doesn’t interfere with the last step (which, in a large machine, may be complicated). A while loop,
on the other hand, has tighter control. The init is one cycle and the while check and action is also
a single cycle.

192 CHAPTER 14. FINITE STATE MACHINES (FSMS)

for (ii <= 0; ii < 10; ii <= ii + 1) seq

$display("For loop step %d at time ", ii, $time);

endseq

ii <= 0; //init for while loop

while (ii < 10) seq //check and action is one cycle

action

$display("While loop step %d at time ", ii, $time);

ii <= ii + 1;

endaction

endseq

Loops and control statements can be nested as deep as required.

for (ii <=0; ii<=4; ii<=ii+1)

for (jj <=0; jj<=5; jj<=jj+1)

for (kk <=0; kk<=3; kk<=kk+1) seq

action

if (kk == 0)

$display("kk = 000, and ii=%1d, jj=%1d", ii, jj);

else

$display("kk = -%1d, and ii=%1d, jj=%1d", kk, ii, jj);

endaction

endseq

We can use par/endpar within the seq/endseq block. In a par block, each line is a Stmt or action
that is executed in parallel. The entire par block completes when all the sub sequences finish.

par

$display("Par block statement 1 at ", $time);

$display("Par block statement 2 at ", $time);

seq

$display("Par block statement 3a at ", $time);

$display("Par block statement 3b at ", $time);

endseq

endpar

$display("Par block done!");

The following actions/sequences may stall if there are implicit conditions. Since these statements
run in parallel, we expect each sequence to run to completion as it can. Since there can be conflicts
with other statements in the sequence, it can be tricky to see exactly what is going to happen.

14.3. STMTFSM 193

par

seq

ii <= ii + 2;

ii <= ii + 3;

endseq

seq

ii <= ii + 1;

ii <= ii + 0;

endseq

ii <= ii + 10;

endpar

$display("par block conflict test, ii = ", ii);

Let’s look at the compile-time warnings. For example, the above statements will generate the
following warning:

Warning: "Tb.bsv", line 36, column 8: (G0036)

Rule "testFSM_mod_list_1_vs_vs_v_action_l256c16" will appear to fire before

"testFSM_mod_list_1_vs_v_action_l252c13" when both fire in the same clock

cycle, affecting:

calls to ii.write vs. ii.write

One very helpful thing to note is the generated rule name has at the end of it a useful piece of
information: testFSM_mod_list_1_vs_vs_v_action_l256c16, the last characters of the rule names
are often the line and character position (l<line>c<char>). In this case, we can see that the warning
is talking about line 256, character 16.

This is the end of the seq statement defining the FSM named test.

endseq;

Now we’ll instantiate an FSM interface type with instance name testFSM. mkFSM takes the Stmt as
a parameter.

The FSM interface has a few methods defined:

• method Action start: start running state machine, if it’s not running already

• method Bool done : return true if FSM is not running. done is set to True at reset.

FSM testFSM <- mkFSM(test);

194 CHAPTER 14. FINITE STATE MACHINES (FSMS)

We’ll now define another FSM to empty the FIFO.

Stmt rcvr =

seq

// loop forever, watching for data out of the FIFO

while(True) seq

action

$display("FIFO popped data", fifo.first());

fifo.deq();

endaction

repeat (5) noAction; // delay 5 cycles between dequeues

endseq

endseq;

FSM rcvrFSM <- mkFSM(rcvr);

The rule startit starts the main loop FSM, testFSM and the FIFO loop FSM, rcvrFSM. The former
will eventually terminate; the latter will never terminate because it contains a while(True) loop.

rule startit;

testFSM.start();

rcvrFSM.start();

endrule

The rule startit does not fire again, since the implicit conditions on the .start methods go false
as long as the FSMs are running.

We could have put the $finish statement at the end of the FSM, but the following rule shows how
you could use the done method.

rule finish (testFSM.done() && !rcvrFSM.done());

$finish;

endrule

endmodule

endpackage

Chapter 15

Importing existing RTL into a
BSV design

The BSV import "BVI" statement is used to wrap a Verilog module so that it looks like a BSV
module and can be used in a BSV design. This allows you to reuse RTL components from previous
designs or RTL that has been generated by other tools. With this technique you can also write
custom Verilog primitives for use in multiple designs. Many of the BSV primitives (registers, FIFOs,
etc), are implemented in Verilog, and then wrapped for inclusion in BSV designs. Instead of Verilog
ports, the wrapped module has methods and interfaces.

The Bluespec Development Workstation contains the importBVI Wizard to help you write the
import "BVI" statement. This option is accessed from the Tools menu of the workstation. The
wizard proceeds through six steps:

1. Verilog Module Overview: Review the Verilog parameters, inputs, outputs, and inouts

2. Bluespec Module Definition: Create the module header for the import BVI statement

3. Method Port Binding: Bind methods, ports, and subinterfaces to Verilog inputs and outputs

4. Combinational Paths: Add the path statements

5. Scheduling Annotations: Add the schedule statements

6. Finish: Review, compile, and save the BSV wrapper.

When you create the wrapper for a Verilog file, you choose how to translate the Verilog inputs and
outputs into methods and interfaces. A single Verilog module can have multiple implementations in
BSV, each connecting the Verilog pins to different interface methods.

We’re going to look at two examples of import statements for a sizedFIFO Verilog file. The first
example uses the FIFOF interface from the BSV library while the second defines a new interface,
based on Get and Put interfaces.

195

196 CHAPTER 15. IMPORTING EXISTING RTL INTO A BSV DESIGN

Both examples are wrapping the Verilog file SizedFIFO.v. Note that in these examples the Verilog
and RTL signal names are in all CAPS, while the BSV names are in mixed case. The Verilog file
can be found in Appendix A.14.1.

module SizedFIFO(V_CLK, V_RST_N, V_D_IN, V_ENQ,

V_FULL_N, V_D_OUT, V_DEQ, V_EMPTY_N, V_CLR);

parameter V_P1WIDTH = 1; // data width

parameter V_P2DEPTH = 3;

parameter V_P3CNTR_WIDTH = 1; // log(V_P2DEPTH-1)

// The -1 is allowed since this model has a fast output register

parameter V_GUARDED = 1;

input V_CLK;

input V_RST_N;

input V_CLR;

input [V_P1WIDTH - 1 : 0] V_D_IN;

input V_ENQ;

input V_DEQ;

output V_FULL_N;

output V_EMPTY_N;

output [V_P1WIDTH - 1 : 0] V_D_OUT;

15.1 Using an existing interface

Source directory: importbvi/FIFOifc

Source listing: Appendix A.14.2

In this section we’re going to wrap the Verilog file SizedFIFO.v with a BSV module providing the
FIFOF interface. The definition of the FIFOF, from the FIFOF package, is:

interface FIFOF #(type a) ;

method Action enq(a x1) ;

method Action deq() ;

method a first() ;

method Action clear() ;

method Bool notFull() ;

method Bool notEmpty() ;

endinterface: FIFOF

The import "BVI" statement defines a module named mkSizedFIFO, which has two arguments,
depth and g, and provides the FIFOF interface. The method statements shown below connects the

15.1. USING AN EXISTING INTERFACE 197

methods in the FIFOF interface to the appropriate Verilog wires. The *inhigh* attribute on an
enable indicates that the method is always_enabled. The source code for this example is in the file
SizedFIFO1.bsv.

15.1.1 Module header definition

The statement starts with the import "BVI" keyword, followed by the name of the Verilog module
being imported. The Verilog name can be excluded if it is the same as the BSV name for the module.
This is followed by the usual BSV module definition statement.

import "BVI" SizedFIFO =

module mkSizedFIFO #(Integer depth, Bool guard) (FIFOF#(a))

provisos(Bits#(a,size_a));

In our example, the names of the Verilog and BSV modules do not match. But if they did, as they
do in the following header, which both use the name RWire, then the Verilog name can be excluded.

import "BVI" RWire =

module RWire (VRWire#(a))

provisos (Bits#(a,sa));

...

endmodule: vMkRWire

could be also written as:

import "BVI"

module RWire (VRWire#(a))

provisos (Bits#(a,sa));

...

endmodule: vMkRWire

15.1.2 Parameters

The parameter statements define the compile-time constants passed into the Verilog module. The
valid types for parameters are String, Integer and Bit#(n). Parameter expressions must be
compile-time constants. They often include expressions using or containing type information from
the interface. Our sizedFIFO example has the following parameters:

parameter V_P1WIDTH = valueOf(size_a);

parameter V_P2DEPTH = depth;

parameter V_P3CNTR_WIDTH = log2(depth+1);

parameter V_GUARDED = Bit#(1)’(pack(guard));

198 CHAPTER 15. IMPORTING EXISTING RTL INTO A BSV DESIGN

15.1.3 Clocks and Resets

The following statements are used to connect Verilog clock and reset ports to BSV module clocks
and resets, and to associate methods with clock and reset signals:

• input_clock

• default_clock

• output_clock

• input_reset

• default_reset

• output_reset

The input_clock and input_reset statements specify the port connections for the clocks and resets
into the module; they correspond to Verilog input ports. The output_clock and output_reset

statements specify the port connections for clocks and resets provided by the module; they correspond
to Verilog outputs. The default_clock and default_reset statements specify the implicit clock
and reset used by methods and submodules without clocked_by and reset_by statements.

A module with multiple input clocks defines a clock domain crossing; the methods in different
domains are clocked by different clocks. These modules allow the safe crossing of signals and data
from one clock domain (the source domain) to another (the destination domain).

Some rules to remember when writing import "BVI" clock statements:

• Every import "BVI" wrapper must specify a default clock and a default reset. They do not
have to be connected to Verilog ports and can be defined as no_clock or no_reset.

• An input_clock or input_reset statement is required for each RTL input clock or reset port
which is not the default.

• For default clocks and resets which are connected to RTL ports, the input and default state-
ments can be combined into a single statement, which is a default_clock statement.

• Every Action or ActionValue method must be associated with a clock. The default clock will
be used unless there is a clocked_by clause in the method statement. If the default clock is
defined as no_clock, the method statement must include a clocked_by clause specifying an
input clock.

Let’s look at the clock and reset statements in our example.

default_clock clk;

default_reset rst_RST_N;

input_clock clk (V_CLK) <- exposeCurrentClock;

input_reset rst_RST_N (V_RST_N) clocked_by(clk) <- exposeCurrentReset;

15.1. USING AN EXISTING INTERFACE 199

The first two statements declare the BSV clock named clk and the BSV reset named rest_RST_N to
be the default clock and reset. These are used by methods that don’t contain an explicit clocked_by
or reset_by clause. The second set of statements defines the input_clock and input_reset,
connecting them up to the Verilog clock and reset ports. Note that in this example, these are the
same clock and reset as the defaults, that is, the Verilog input clock/reset are the default clock/reset
for the module. The functions exposeCurrentClock and exposeCurrentReset return the current
clock and reset of the module.

A clock can be connected to two Verilog ports, in which case the first port name within the paren-
theses is the oscillator, the second port name is the gate. If there is only one port name, it is the
oscillator and the gate port is unconnected and defaults to unused. Since in this example there is
only one Verilog port (V_CLK), it is the name of the oscillator and there is no gate port.

15.1.4 Methods

These statements connect the methods defined in the FIFOF interface with the inputs and outputs
defined in the Verilog file. When defining methods, the Verilog inputs and outputs are translated to
signals in the method.

Verilog non-clock inputs translate to:

• Enables for Action or ActionValue methods

• Arguments for any type method - Action, ActionValue or value

Verilog non-clock outputs translate to:

• Return values from ActionValue or value methods

• Ready signals for methods

method enq (V_D_IN) enable(V_ENQ) ready(V_FULL_N);

method deq () enable(V_DEQ) ready(V_EMPTY_N);

method V_D_OUT first () ready(V_EMPTY_N);

method V_FULL_N notFull ();

method V_EMPTY_N notEmpty ();

method clear () enable (V_CLR);

The following table shows the Verilog parameters, inputs, and outputs along with their BSV trans-
lations to the FIFOF methods and BSV definitions:

200 CHAPTER 15. IMPORTING EXISTING RTL INTO A BSV DESIGN

Translation of Verilog into BSV
SizedFIFO module providing FIFOF interface

Verilog BSV
Statement Type Value Description

parameter V_P1WIDTH = 1 parameter valueOf(size_a) function based on data
type

parameter V_P2DEPTH = 3 parameter depth argument to module
parameter V_P3CNTR_WIDTH =

1

parameter log2(depth+1) expression containing pa-
rameter

parameter V_GUARDED=1 parameter Bit#(1)’(pack(g)) argument to module
input V_CLK Clock clk default clock
input V_RST_N Reset rst_RST_N default reset
input V_CLR Action clear enable for clear
input [V_P1WIDTH - 1:0]

D_IN

Action enq argument for enq

input V_ENQ enable for enq
output V_FULL_N Value notFull ready for enq

return value of notFull
output [V_P1WIDTH - 1:0]

V_D_OUT

Value first return value of first

input V_DEQ Action deq enable for deq
output V_EMPTY_N Value notEmpty ready for deq

ready for first
return value of notEmpty

15.2 Defining a new interface

Source directory: importbvi/GetPutifc

Source listing: Appendix A.14.3

In this example, instead of using the pre-defined FIFOF interface, we’ll define a new interface,
MyGetPut. The interface has two subinterfaces: a Get#(a) interface and a Put#(a) interface. The
only methods defined will be get method and a put method. Contrast this with the previous exam-
ple, in which 6 methods were defined. In this example the Verilog port V_CLR is tied off, so there is
no clear method defined.

The MyGetPut interface declaration is:

interface MyGetPut#(type t);

interface Get#(t) g;

interface Put#(t) p;

endinterface

The Verilog parameters, inputs, and outputs are translated in to BSV objects and definitions ac-
cording to the following table.

15.2. DEFINING A NEW INTERFACE 201

Translation of Verilog into BSV
SizedFIFO module using MyGetPut Interface

Verilog BSV
Statement Type Value Description

parameter V_P1WIDTH = 1 parameter valueOf(size_a) function based on
data type

parameter V_P2DEPTH = 3 parameter depth argument to module
parameter V_P3CNTR_WIDTH =

1

parameter log2(depth+1) expression containing
parameter

parameter V_GUARDED=1 parameter Bit#(1)’(pack(guard)) argument to module
input V_CLK Clock clk default clock
input V_RST_N Reset rst_RST_N default reset
input V_CLR port 0 tied off
input [V_P1WIDTH - 1:0]

D_IN

Action put argument for p_put

input V_ENQ enable for p_put
output V_FULL_N ready for p_put
output [V_P1WIDTH - 1:0]

V_D_OUT

Value g_get output value

input V_DEQ enable for g_get
output V_EMPTY_N ready for g_get

The module header provides the interface MyGetPut instead of the FIFOF interface. We have to
import the GetPut package because we’re using the Get#(a) and Put#(a) interfaces defined there.

import GetPut :: * ;

import "BVI" SizedFIFO =

module mkSizedFIFO #(Integer depth, Bool guard) (MyGetPut#(a))

provisos(Bits#(a, size_a));

The parameters are the same. The clock and reset statements are also the same as the previous
example. In this example, we have a port statement, tying the V_CLR pin to zero.

The port statement declares an input port, which is not part of a method, along with the value to be
passed to the port. While parameters must be compile-time constants, ports can be dynamic (such
as the _read method of a register instantiated elsewhere in the module body). The port statement
is analogous to arguments to a BSV module, but it is rarely needed since the BSV style is to interact
and pass arguments through methods. Verilog ports are usually connected to BSV methods. Either
of the defining operators <- or = may be used, as appropriate.

202 CHAPTER 15. IMPORTING EXISTING RTL INTO A BSV DESIGN

parameter V_P1WIDTH = valueOf(size_a);

parameter V_P2DEPTH = depth;

parameter V_P3CNTR_WIDTH = log2(depth+1);

parameter V_GUARDED = Bit#(1)’(pack(guard));

port V_CLR = 0 ;

default_clock clk;

default_reset rst_RST_N;

input_clock clk (V_CLK) <- exposeCurrentClock;

input_reset rst_RST_N (V_RST_N) clocked_by(clk) <- exposeCurrentReset;

The biggest change is in the definition of the methods. The methods defined in the MyGetPut

interface are different than the methods defined in the FIFOF interface.

interface Get g;

method V_D_OUT get () enable(V_DEQ) ready(V_EMPTY_N);

endinterface

interface Put p;

method put(V_D_IN) enable(V_ENQ) ready(V_FULL_N);

endinterface

The two examples use the same inputs and outputs, but implement very different interface methods.
The table below compares how the Verilog inputs and outputs are used to define the interface
methods.

Translation of Verilog into BSV
Verilog Signal FIFOF interface MyGetPut interface

V_CLR enable for clear method tied off to 0
D_IN argument for enq argument for p_put
V_ENQ enable for enq enable for p_put
V_FULL_N ready for enq ready for p_put

return value of notFull
V_D_OUT output value of first output value of g_get
V_DEQ enable for deq enable for g_get
V_EMPTY_N ready for deq ready for g_get

ready for first
return value of notEmpty

Appendix A

Source Files

Complete, compilable, source and workstation project files are provided for all examples within this
manual. This appendix contains the complete source code listing for each of the examples. The BSV
(.bsv) and workstation project (.bspec) files are found in the directory listed for each example.

The source code directories follow the organization of the manual; each chapter corresponds to a
directory, with each example having its own subdirectory.

For example, the first chapter contains three examples: Hello world, a testbench communicating with
DUT (multiple modules) and an example divided into multiple packages. The directory structure
for these examples is:

getting_started/hello_world

getting_started/mult_modules

getting_started/mult_packages

Within each of these directories is a .bspec file for use with the development workstation, and all
.bsv files containing the source code.

A.1 Getting started with BSV

Chapter examples are in directory: getting_started

A.1.1 A simple example

Source files are in directory: getting_started/hello_world

// Copyright 2008 Bluespec, Inc. All rights reserved.

203

204 APPENDIX A. SOURCE FILES

// ==

// Small Example Suite: Example 1a

// Very basic ’Hello World’ example just to go through the

// mechanics of actually building and running a small BSV program

// (and not intended to teach anything about hardware!).

// ==

package Tb;

(* synthesize *)

module mkTb (Empty);

rule greet;

$display ("Hello World!");

$finish (0);

endrule

endmodule: mkTb

endpackage: Tb

// ==

A.1.2 Testbench communicating with DUT

Source files are in directory: getting_started/mult_modules

package Tb;

(* synthesize *)

module mkTb (Empty);

Ifc_type ifc <- mkModuleDeepThought;

rule theUltimateAnswer;

$display ("Hello World! The answer is: %0d", ifc.the_answer (10, 15, 17));

$finish (0);

endrule

endmodule: mkTb

interface Ifc_type;

method int the_answer (int x, int y, int z);

endinterface: Ifc_type

(* synthesize *)

module mkModuleDeepThought (Ifc_type);

method int the_answer (int x, int y, int z);

A.1. GETTING STARTED WITH BSV 205

return x + y + z;

endmethod

endmodule: mkModuleDeepThought

endpackage: Tb

A.1.3 Multiple packages in a single design

Source files are in directory: getting_started/mult_packages

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

import DeepThought::*;

(* synthesize *)

module mkTb (Empty);

Ifc_type ifc <- mkModuleDeepThought;

rule theUltimateAnswer;

$display ("Hello World! The answer is: %0d", ifc.the_answer (10, 15, 17));

$finish (0);

endrule

endmodule: mkTb

endpackage: Tb

package DeepThought;

interface Ifc_type;

method int the_answer (int x, int y, int z);

endinterface: Ifc_type

(* synthesize *)

module mkModuleDeepThought (Ifc_type);

method int the_answer (int x, int y, int z);

return x + y + z;

endmethod

endmodule: mkModuleDeepThought

endpackage: DeepThought

206 APPENDIX A. SOURCE FILES

A.2 Data types

Chapter examples are in directory: data

A.2.1 Using abstract types instead of Bit

Source files are in directory: data/bit_types

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

(* synthesize *)

module mkTb (Empty);

Reg#(int) step <- mkReg(0);

Reg#(Int#(16)) int16 <- mkReg(’h800);

Reg#(UInt#(16)) uint16 <- mkReg(’h800);

rule step0 (step == 0);

$display("== step 0 ==");

// UInt#(16) foo = -1; // uncomment this to see error

UInt#(16) foo = ’h1fff;

$display("foo = %x", foo);

foo = foo & 5;

$display("foo = %x", foo);

// [] is not legal for UInt (as it is for Bit)

// $display("foo[0] = %x", foo[0]); // uncomment this and see error

foo = ’hffff;

$display("foo = %x", foo);

// and it wraps just like you would expect it to

foo = foo + 1;

$display("foo = %x", foo);

// beware the < 0 is never true (this is an unsigned number)

// in fact, the compiler will display this the same as

// $display("fooneg = %x", 1’d0);

$display("fooneg = %x", foo < 0) ;

// this is a quick way to get min and max

UInt#(16) maxUInt16 = unpack(’1); // all 1’s

UInt#(16) minUInt16 = unpack(0);

A.2. DATA TYPES 207

$display("maxUInt16 = %x", maxUInt16);

$display("minUInt16 = %x", minUInt16);

$display("%x < %x == %x (unsigned)", minUInt16, maxUInt16, minUInt16 < maxUInt16);

step <= step + 1;

endrule

//

rule step1 (step == 1);

$display("== step 1 ==");

// this is a quick way to get min and max

Int#(16) maxInt16 = unpack({1’b0,’1}); // ’h011111

Int#(16) minInt16 = unpack({1’b1,’0}); // ’h100000

$display("maxInt16 = %x", maxInt16);

$display("minInt16 = %x", minInt16);

$display("%x < %x == %x (signed)", minInt16, maxInt16, minInt16 < maxInt16);

// you can’t do bit manipulation directly...

// uncomment this to see the error generated

// $display("error1 = %x", minInt16[4]);

$display("maxInt16/4 = %x", maxInt16 / 4);

int16 <= int16 / 4;

step <= step + 1;

endrule

//

rule step2 (step == 2);

$display("== step 2 ==");

Int#(32) bar = 10;

int foo = bar;

$display("foo is 32 bits = %b", foo);

bit onebit = 1;

Bit#(1) anotherbit = onebit;

$display("this is 1 bit = %b", onebit);

step <= step + 1;

endrule

208 APPENDIX A. SOURCE FILES

//

rule step3 (step == 3);

$display("== step 3 ==");

Bool b1 = True;

Bool b2 = True;

Bool b3 = b1 && b2;

if (b1)

$display("b1 is True");

bit onebit = 1;

// if (onebit) // uncomment this to see the type error

// $display("onebit is a 1");

if (onebit == 1)

$display("onebit is a 1");

step <= step + 1;

endrule

//

rule step4 (step == 4);

$display ("=== ===");

$display ("All done");

$finish (0);

endrule

endmodule: mkTb

endpackage: Tb

A.2.2 Integers

Source files are in directory: data/integers

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

(* synthesize *)

module mkTb (Empty);

Integer inx = 0;

Bool arr1[4];

arr1[inx] = True;

inx = inx + 1;

arr1[inx] = False;

A.2. DATA TYPES 209

inx = inx + 1;

arr1[inx] = True;

inx = inx + 1;

arr1[inx] = True;

int arr2[16];

for (Integer i=0; i<16; i=i+1)

arr2[i] = fromInteger(i);

Integer foo = 10;

foo = foo + 1;

foo = foo * 5;

Bit#(16) var1 = fromInteger(foo);

//

Reg#(int) step <- mkReg(0);

rule init (step == 0);

$display("=== step 0 ===");

Integer x = 10 ** 10000;

Bool isLarge = (x > 0);

$display("isLarge = ", isLarge);

// uncomment this and see the big number created, causing a error :)

//$display("Large number = ", x);

step <= step + 1;

endrule

rule step1 (step == 1);

$display("=== step 1 ===");

for (Integer i=1; i<16; i=i*2)

$display("i is ", i);

step <= step + 1;

endrule

rule step2 (step == 2);

$display ("All done");

$finish (0);

endrule

endmodule: mkTb

endpackage: Tb

210 APPENDIX A. SOURCE FILES

A.2.3 Strings

Source files are in directory: data/strings

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

(* synthesize *)

module mkTb (Empty);

function Action passString(String s);

return action

$display("passString => ", s);

endaction;

endfunction

Reg#(int) step <- mkReg(0);

//

rule init (step == 0);

$display("=== step 0 ===");

String s1 = "This is a test";

$display("first string = ", s1);

// we can use + to concatenate

String s2 = s1 + " of concatenation";

$display("Second string = ", s2);

passString("String passed to a function");

// the valid escape chars are listed in the reference manual

step <= step + 1;

endrule

//

rule step1 (step == 1);

$display ("All done");

$finish (0);

endrule

endmodule: mkTb

endpackage: Tb

A.3 Variables, assignments, and combinational circuits

Chapter examples are in directory: variable

A.3. VARIABLES, ASSIGNMENTS, AND COMBINATIONAL CIRCUITS 211

A.3.1 Variable declaration and initialization

Source files are in directory: variable/declaration

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

import FIFO::*;

import GetPut::*;

import ClientServer::*;

// A struct representing a 2-dimensional ’coordinate’

typedef struct { int x; int y; } Coord

deriving (Bits);

// An interface, and a module with that interface

module mkTransformer (Server#(Coord, Coord));

FIFO#(Coord) fi <- mkFIFO;

FIFO#(Coord) fo <- mkFIFO;

Coord delta1 = Coord { x: 10, y: 20 };

let delta2 = Coord { x: 5, y: 8 };

rule transform;

Coord c = fi.first(); fi.deq();

c.x = c.x + delta1.x + delta2.x;

c.y = c.y + delta1.y + delta2.y;

fo.enq (c);

endrule

interface request = toPut (fi);

interface response = toGet (fo);

endmodule: mkTransformer

// --

(* synthesize *)

module mkTb (Empty);

Reg#(int) cycle <- mkReg (0);

Reg#(int) rx <- mkReg (0);

Reg#(int) ry <- mkReg (0);

Server#(Coord, Coord) s <- mkTransformer;

rule count_cycles;

212 APPENDIX A. SOURCE FILES

cycle <= cycle + 1;

if (cycle > 7) $finish(0);

endrule

rule source;

let c = Coord { x: rx, y: ry };

s.request.put (c);

rx <= rx + 1;

ry <= ry + 1;

$display ("%0d: rule source, sending Coord { x: %0d, y: %0d }", cycle, rx, ry);

endrule

rule sink;

let c <- s.response.get ();

$display ("%0d: rule sink, returned value is Coord { x: %0d, y: %0d }", cycle, c.x, c.y);

endrule

endmodule: mkTb

endpackage: Tb

A.3.2 Combinational circuits

Source files are in directory: variable/combcircuits

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

import FIFO::*;

import GetPut::*;

import ClientServer::*;

(* synthesize *)

module mkTb (Empty);

Reg#(int) cycle <- mkReg (0);

rule count_cycles;

cycle <= cycle + 1;

if (cycle > 7) $finish(0);

endrule

int x = 10;

rule r;

int a = x;

a = a * a;

a = a - 5;

A.4. RULES, REGISTERS, AND FIFOS 213

if (pack(cycle)[0] == 0) a = a + 1;

else a = a + 2;

if (pack(cycle)[1:0] == 3) a = a + 3;

for (int k = 20; k < 24; k = k + 1)

a = a + k;

$display ("%0d: rule r, a = %0d", cycle, a);

endrule

endmodule: mkTb

endpackage: Tb

A.4 Rules, registers, and FIFOs

Chapter examples are in directory: rulesregs

A.4.1 Defining and updating a Register

Source files are in directory: rulesregs/register

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

(* synthesize *)

module mkTb (Empty);

Reg#(int) x <- mkReg (23);

rule countup (x < 30);

int y = x + 1;

x <= x + 1;

$display ("x = %0d, y = %0d", x, y);

endrule

rule done (x >= 30);

$finish (0);

endrule

endmodule: mkTb

endpackage: Tb

214 APPENDIX A. SOURCE FILES

A.4.2 Composition of rules

Source files are in directory: rulesregs/rules

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

(* synthesize *)

module mkTb (Empty);

Reg#(int) x1 <- mkReg (10);

Reg#(int) y1 <- mkReg (100);

Reg#(int) x2 <- mkReg (10);

Reg#(int) y2 <- mkReg (100);

rule r1;

$display ("r1");

x1 <= y1 + 1;

y1 <= x1 + 1;

endrule

rule r2a;

$display ("r2a");

x2 <= y2 + 1;

endrule

rule r2b;

$display ("r2b");

y2 <= x2 + 1;

endrule

// (* descending_urgency = "r2a, r2b" *)

rule show_and_eventually_stop;

$display (" x1,y1 = %0d,%0d; x2,y2 = %0d,%0d", x1, y1, x2, y2);

if (x1 >= 105) $finish (0);

endrule

endmodule: mkTb

endpackage: Tb

A.4.3 Multiple registers in a rigid pipeline

Source files are in directory: rulesregs/reg_pipeline

// Copyright 2010 Bluespec, Inc. All rights reserved.

A.4. RULES, REGISTERS, AND FIFOS 215

package Tb;

(* synthesize *)

module mkTb (Empty);

Reg#(int) x <- mkReg (’h10);

Pipe_ifc pipe <- mkPipe;

rule fill;

pipe.send (x);

x <= x + ’h10;

endrule

rule drain;

let y = pipe.receive();

$display (" y = %0h", y);

if (y > ’h80) $finish(0);

endrule

endmodule

interface Pipe_ifc;

method Action send (int a);

method int receive ();

endinterface

(* synthesize *)

module mkPipe (Pipe_ifc);

Reg#(int) x1 <- mkRegU;

Reg#(int) x2 <- mkRegU;

Reg#(int) x3 <- mkRegU;

Reg#(int) x4 <- mkRegU;

rule r1;

x2 <= x1 + 1;

x3 <= x2 + 1;

x4 <= x3 + 1;

endrule

rule show;

$display (" x1, x2, x3, x4 = %0h, %0h, %0h, %0h", x1, x2, x3, x4);

endrule

method Action send (int a);

x1 <= a;

endmethod

method int receive ();

return x4;

216 APPENDIX A. SOURCE FILES

endmethod

endmodule: mkPipe

endpackage: Tb

A.4.4 Using register syntax shorthand

Source files are in directory: rulesregs/reg_shorthand

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

(* synthesize *)

module mkTb (Empty);

Reg#(int) x <- mkReg (’h10);

Reg#(int) pipe <- mkPipe;

rule fill;

pipe <= x;

x <= x + ’h10;

endrule

rule drain;

let y = pipe;

$display (" y = %0h", y);

if (y > ’h80) $finish(0);

endrule

endmodule

(* synthesize *)

module mkPipe (Reg#(int));

Reg#(int) x1 <- mkRegU;

Reg#(int) x2 <- mkRegU;

Reg#(int) x3 <- mkRegU;

Reg#(int) x4 <- mkRegU;

rule r1;

x2 <= x1 + 1;

x3 <= x2 + 1;

x4 <= x3 + 1;

endrule

rule show;

$display (" x1, x2, x3, x4 = %0h, %0h, %0h, %0h", x1, x2, x3, x4);

endrule

A.4. RULES, REGISTERS, AND FIFOS 217

method Action _write (int a);

x1 <= a;

endmethod

method int _read ();

return x4;

endmethod

endmodule: mkPipe

endpackage: Tb

A.4.5 Using valid bits

Source files are in directory: rulesregs/validbits

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

(* synthesize *)

module mkTb (Empty);

Reg#(int) x <- mkReg (’h10);

Reg#(int) pipe <- mkPipe;

rule fill;

pipe <= x;

x <= x + ’h10;

endrule

rule drain;

let y = pipe;

$display (" y = %0h", y);

if (y > ’h80) $finish(0);

endrule

endmodule

(* synthesize *)

module mkPipe (Reg#(int));

Reg#(Bool) valid1 <- mkReg(False); Reg#(int) x1 <- mkRegU;

Reg#(Bool) valid2 <- mkReg(False); Reg#(int) x2 <- mkRegU;

Reg#(Bool) valid3 <- mkReg(False); Reg#(int) x3 <- mkRegU;

Reg#(Bool) valid4 <- mkReg(False); Reg#(int) x4 <- mkRegU;

rule r1;

valid2 <= valid1; x2 <= x1 + 1;

valid3 <= valid2; x3 <= x2 + 1;

218 APPENDIX A. SOURCE FILES

valid4 <= valid3; x4 <= x3 + 1;

endrule

rule show;

$write (" x1, x2, x3, x4 =");

display_Valid_Value (valid1, x1);

display_Valid_Value (valid2, x2);

display_Valid_Value (valid3, x3);

display_Valid_Value (valid4, x4);

$display ("");

endrule

method Action _write (int a);

valid1 <= True; x1 <= a;

endmethod

method int _read () if (valid4);

return x4;

endmethod

endmodule: mkPipe

function Action display_Valid_Value (Bool valid, int value);

if (valid) $write (" %0h", value);

else $write (" Invalid");

endfunction

endpackage: Tb

A.4.6 Asynchronous pipeline using FIFOs

Source files are in directory: rulesregs/fifo_pipeline

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

import FIFO::*;

(* synthesize *)

module mkTb (Empty);

Reg#(int) x <- mkReg (’h10);

Pipe_ifc pipe <- mkPipe;

rule fill;

pipe.send (x);

x <= x + ’h10;

endrule

A.4. RULES, REGISTERS, AND FIFOS 219

rule drain;

let y <- pipe.receive;

$display (" y = %0h", y);

if (y > ’h80) $finish(0);

endrule

endmodule

interface Pipe_ifc;

method Action send (int x);

method ActionValue#(int) receive;

endinterface

(* synthesize *)

module mkPipe (Pipe_ifc);

FIFO#(int) f1 <- mkFIFO;

FIFO#(int) f2 <- mkFIFO;

FIFO#(int) f3 <- mkFIFO;

FIFO#(int) f4 <- mkFIFO;

rule r2;

let v1 = f1.first; f1.deq;

$display (" v1 = %0h", v1);

f2.enq (v1+1);

endrule

rule r3;

let v2 = f2.first; f2.deq;

$display (" v2 = %0h", v2);

f3.enq (v2+1);

endrule

rule r4;

let v3 = f3.first; f3.deq;

$display (" v3 = %0h", v3);

f4.enq (v3+1);

endrule

method Action send (int a);

f1.enq (a);

endmethod

method ActionValue#(int) receive ();

let v4 = f4.first;

$display (" v4 = %0h", v4);

f4.deq;

return v4;

endmethod

220 APPENDIX A. SOURCE FILES

endmodule: mkPipe

endpackage: Tb

A.5 Module hierarchy and interfaces

Chapter examples are in directory: modules

A.5.1 Module hierarchies

Source files are in directory: modules/mod_hierarchy

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

(* synthesize *)

module mkTb (Empty);

Empty m3 <- mkM3;

endmodule

// --

(* synthesize *)

module mkM3 (Empty);

Reg#(int) x <- mkReg (10);

M1_ifc m1b <- mkM1 (20);

M2_ifc m2 <- mkM2 (30);

rule justonce;

$display ("x = %0d, m1b/x = %0d, m2/x = %0d, m2/m1a/x = %0d",

x, m1b.read_local_x, m2.read_local_x, m2.read_sub_x);

$finish (0);

endrule

endmodule

// --

interface M2_ifc;

method int read_local_x ();

method int read_sub_x ();

endinterface

(* synthesize *)

module mkM2 #(parameter int init_val) (M2_ifc);

A.5. MODULE HIERARCHY AND INTERFACES 221

M1_ifc m1a <- mkM1 (init_val + 10);

Reg#(int) x <- mkReg (init_val);

method int read_local_x ();

return x;

endmethod

method int read_sub_x ();

return m1a.read_local_x;

endmethod

endmodule: mkM2

// --

interface M1_ifc;

method int read_local_x ();

endinterface

(* synthesize *)

module mkM1 #(parameter int init_val) (M1_ifc);

Reg#(int) x <- mkReg (init_val);

method int read_local_x ();

return x;

endmethod

endmodule: mkM1

endpackage: Tb

A.5.2 Implicit conditions of methods

Source files are in directory: modules/implicit_cond

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

(* synthesize *)

module mkTb (Empty);

Dut_ifc dut <- mkDut;

rule r1;

let x1 = dut.f1;

$display ("x1 = %0d", x1);

if (x1 > 10) $finish (0);

222 APPENDIX A. SOURCE FILES

endrule

rule r2;

let x2 = dut.f2;

$display (" x2 = %0d", x2);

if (x2 > 10) $finish (0);

endrule

endmodule

// --

interface Dut_ifc;

method int f1 ();

method int f2 ();

endinterface

(* synthesize *)

module mkDut (Dut_ifc);

Reg#(int) x <- mkReg (0);

rule count;

x <= x + 1;

endrule

method int f1 ();

return x;

endmethod

method int f2 () if (is_even(x));

return x;

endmethod

endmodule

function Bool is_even (int v);

return ((pack (v))[0] == 0);

endfunction

endpackage: Tb

A.5.3 ActionValue method

Source files are in directory: modules/actionvalue

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

(* synthesize *)

module mkTb (Empty);

A.5. MODULE HIERARCHY AND INTERFACES 223

Dut_ifc dut <- mkDut;

rule r1;

int w <- dut.avmeth(10);

$display ("w = %0d", w);

if (w > 50) $finish (0);

endrule

endmodule

// --

interface Dut_ifc;

method ActionValue#(int) avmeth (int v);

endinterface

(* synthesize *)

module mkDut (Dut_ifc);

Reg#(int) x <- mkReg (0);

method ActionValue#(int) avmeth (int v);

x <= x + v;

return x;

endmethod

endmodule

endpackage: Tb

A.5.4 ActionValue method with type error

Source files are in directory: modules/action_value_type_error

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

(* synthesize *)

module mkTb (Empty);

Dut_ifc dut <- mkDut;

rule r1;

int w = dut.avmeth(10); // DELIBERATE ERROR

$display ("w = %0d", w);

if (w > 50) $finish (0);

endrule

endmodule

224 APPENDIX A. SOURCE FILES

// --

interface Dut_ifc;

method ActionValue#(int) avmeth (int v);

endinterface

(* synthesize *)

module mkDut (Dut_ifc);

Reg#(int) x <- mkReg (0);

method ActionValue#(int) avmeth (int v);

x <= x + v;

return x;

endmethod

endmodule

endpackage: Tb

A.5.5 ActionValue method with error in rule condition

Source files are in directory: modules/action_value_rule_error

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

(* synthesize *)

module mkTb (Empty);

Dut_ifc dut <- mkDut;

rule r1 (dut.avmeth (10) > 0); // DELIBERATE ERROR

int w = dut.avmeth(10);

$display ("w = %0d", w);

if (w > 50) $finish (0);

endrule

endmodule

// --

interface Dut_ifc;

method ActionValue#(int) avmeth (int v);

endinterface

(* synthesize *)

module mkDut (Dut_ifc);

A.5. MODULE HIERARCHY AND INTERFACES 225

Reg#(int) x <- mkReg (0);

method ActionValue#(int) avmeth (int v);

x <= x + v;

return x;

endmethod

endmodule

endpackage: Tb

A.5.6 Defining an Action function

Source files are in directory: modules/action_function

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

(* synthesize *)

module mkTb (Empty);

Reg#(int) x <- mkReg (0);

Reg#(int) y <- mkReg (0);

function Action incr_both (int dx, int dy);

return

action

x <= x + dx;

y <= y + dy;

endaction;

endfunction

rule r1 (x <= y);

incr_both (5, 1);

$display ("(x, y) = (%0d, %0d); r1 fires", x, y);

if (x > 30) $finish (0);

endrule

rule r2 (x > y);

incr_both (1, 4);

$display ("(x, y) = (%0d, %0d): r2 fires", x, y);

endrule

endmodule

endpackage: Tb

226 APPENDIX A. SOURCE FILES

A.5.7 Nested interfaces

Source files are in directory: modules/nested_ifc

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

import FIFO::*;

// --

// A top-level module connecting the stimulus generator to the DUT

(* synthesize *)

module mkTb (Empty);

Client_int stimulus_gen <- mkStimulusGen;

Server_int dut <- mkDut;

// Connect flow of requests from stimulus generator to DUT

rule connect_reqs;

let req <- stimulus_gen.get_request.get(); dut.put_request.put (req);

endrule

// Connect flow of responses from DUT back to stimulus generator

rule connect_resps;

let resp <- dut.get_response.get(); stimulus_gen.put_response.put (resp);

endrule

endmodule: mkTb

// --

// Interface definitions

interface Put_int;

method Action put (int x);

endinterface

interface Get_int;

method ActionValue#(int) get ();

endinterface

interface Client_int;

interface Get_int get_request;

interface Put_int put_response;

endinterface: Client_int

interface Server_int;

interface Put_int put_request;

interface Get_int get_response;

endinterface: Server_int

A.5. MODULE HIERARCHY AND INTERFACES 227

// --

// The DUT

(* synthesize *)

module mkDut (Server_int);

FIFO#(int) f_in <- mkFIFO; // to buffer incoming requests

FIFO#(int) f_out <- mkFIFO; // to buffer outgoing responses

rule compute;

let x = f_in.first; f_in.deq;

let y = x+1; // Some ’server’ computation (here: +1)

if (x == 20) y = y + 1; // Modeling an ’occasional bug’

f_out.enq (y);

endrule

interface Put_int put_request;

method Action put (int x);

f_in.enq (x);

endmethod

endinterface

interface Get_int get_response;

method ActionValue#(int) get ();

f_out.deq; return f_out.first;

endmethod

endinterface

endmodule: mkDut

// --

// The stimulus generator

(* synthesize *)

module mkStimulusGen (Client_int);

Reg#(int) x <- mkReg (0); // Seed for stimulus

FIFO#(int) f_out <- mkFIFO; // To buffer outgoing requests

FIFO#(int) f_in <- mkFIFO; // To buffer incoming responses

FIFO#(int) f_expected <- mkFIFO; // To buffer expected responses

rule gen_stimulus;

f_out.enq (x);

x <= x + 10;

f_expected.enq (x+1); // mimic functionality of the Dut ’server’

endrule

rule check_results;

let y = f_in.first; f_in.deq;

228 APPENDIX A. SOURCE FILES

let y_exp = f_expected.first; f_expected.deq;

$write ("(y, y_expected) = (%0d, %0d)", y, y_exp);

if (y == y_exp) $display (": PASSED");

else $display (": FAILED");

if (y_exp > 50) $finish(0);

endrule

interface get_request = interface Get_int;

method ActionValue#(int) get ();

f_out.deq; return f_out.first;

endmethod

endinterface;

interface Put_int put_response;

method Action put (int y) = f_in.enq (y);

endinterface

endmodule: mkStimulusGen

endpackage: Tb

A.5.8 Standard connectivity interfaces

Source files are in directory: modules/connect_ifc

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

import FIFO::*;

import GetPut::*;

import ClientServer::*;

import Connectable::*;

// --

// A top-level module connecting the stimulus generator to the DUT

(* synthesize *)

module mkTb (Empty);

Client#(int,int) stimulus_gen <- mkStimulusGen;

Server#(int,int) dut <- mkDut;

// Connect a client to a server (flow of requests and flow of responses)

mkConnection (stimulus_gen, dut);

endmodule: mkTb

// --

// The DUT

A.5. MODULE HIERARCHY AND INTERFACES 229

(* synthesize *)

module mkDut (Server#(int,int));

FIFO#(int) f_in <- mkFIFO; // to buffer incoming requests

FIFO#(int) f_out <- mkFIFO; // to buffer outgoing responses

rule compute;

let x = f_in.first; f_in.deq;

let y = x+1; // Some ’server’ computation (here: +1)

if (x == 20) y = y + 1; // Modeling an ’occasional bug’

f_out.enq (y);

endrule

interface request = toPut (f_in);

interface response = toGet (f_out);

endmodule: mkDut

// --

// The stimulus generator

(* synthesize *)

module mkStimulusGen (Client#(int,int));

Reg#(int) x <- mkReg (0); // Seed for stimulus

FIFO#(int) f_out <- mkFIFO; // To buffer outgoing requests

FIFO#(int) f_in <- mkFIFO; // To buffer incoming responses

FIFO#(int) f_expected <- mkFIFO; // To buffer expected responses

rule gen_stimulus;

f_out.enq (x);

x <= x + 10;

f_expected.enq (x+1); // mimic functionality of the Dut ’server’

endrule

rule check_results;

let y = f_in.first; f_in.deq;

let y_exp = f_expected.first; f_expected.deq;

$write ("(y, y_expected) = (%0d, %0d)", y, y_exp);

if (y == y_exp) $display (": PASSED");

else $display (": FAILED");

if (y_exp > 50) $finish(0);

endrule

return fifosToClient (f_out, f_in);

endmodule: mkStimulusGen

// ----------------

230 APPENDIX A. SOURCE FILES

// An interface transformer (a function with interface arguments and results)

function Client#(req_t, resp_t) fifosToClient (FIFO#(req_t) f_reqs, FIFO#(resp_t) f_resps);

return interface Client

interface Get request = toGet (f_reqs);

interface Put response = toPut (f_resps);

endinterface;

endfunction: fifosToClient

endpackage: Tb

A.6 Scheduling

Chapter examples are in directory: schedule

A.6.1 Scheduling error due to parallel composition

Source files are in directory: schedule/parallel_error

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

import FIFO ::*;

// (* synthesize *)

// module mkTb1 (Empty);

// FIFO#(int) f <- mkFIFO; // Instantiate a fifo

// // ----------------

// // Step ’state’ from 1 to 10

// Reg#(int) state <- mkReg (0);

// rule step_state;

// if (state > 9) $finish (0);

// state <= state + 1;

// endrule

// // ----------------

// // Enqueue two values to the fifo from the same rule

// rule enq (state < 7);

// f.enq(state);

// f.enq(state+1);

A.6. SCHEDULING 231

// $display("fifo enq: %d, %d", state, state+1);

// endrule

// endmodule: mkTb1

// --

// A top-level module instantiating a fifo

(* synthesize *)

module mkTb (Empty);

FIFO#(int) f <- mkFIFO; // Instantiate a fifo

// ----------------

// Step ’state’ from 1 to 10

Reg#(int) state <- mkReg (0);

rule step_state;

if (state > 9) $finish (0);

state <= state + 1;

endrule

// ----------------

// Enqueue two values to the fifo from seperate rules in the testbench

//

rule enq1 (state < 7);

f.enq(state);

$display("fifo enq1: %d", state);

endrule

rule enq2 (state > 4);

f.enq(state+1);

$display("fifo enq2: %d", state+1);

endrule

// ----------------

// Dequeue from the fifo, and check the first value

//

rule deq;

f.deq();

$display("fifo deq: %d", f.first());

endrule

endmodule: mkTb

endpackage: Tb

232 APPENDIX A. SOURCE FILES

A.6.2 Prioritization using descending urgency

Source files are in directory: schedule/desc_urgency

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

// importing the FIFO library package

import FIFO ::*;

// --

// A top-level module instantiating a fifo

(* synthesize *)

module mkTb (Empty);

FIFO#(int) f <- mkFIFO; // Instantiate a fifo

// ----------------

// Step ’state’ from 1 to 10

Reg#(int) state <- mkReg (0);

rule step_state;

if (state > 9) $finish (0);

state <= state + 1;

endrule

// ----------------

// Enqueue two values to the fifo from seperate rules in the testbench

//

(* descending_urgency = "enq1, enq2"*)

rule enq1 (state < 7);

f.enq(state);

$display("fifo enq1: %d", state);

endrule

rule enq2 (state > 4);

f.enq(state+1);

$display("fifo enq2: %d", state+1);

endrule

// ----------------

// Dequeue from the fifo, and check the first value

//

rule deq;

f.deq();

A.6. SCHEDULING 233

$display("fifo deq : %d", f.first());

endrule

endmodule: mkTb

endpackage: Tb

A.6.3 descending urgency vs. execution order

Source files are in directory: schedule/exec_order

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

import FIFO::*;

import GetPut::*;

import ClientServer::*;

(* synthesize *)

module mkTb (Empty);

Reg#(int) cycle <- mkReg(0);

Server#(int, int) g <- mkGadget;

// Send data to gadget every 5 out of 8 cycles

rule source;

cycle <= cycle + 1;

if (pack (cycle)[2:0] < 5) g.request.put (cycle);

endrule

rule drain;

let x <- g.response.get ();

$display ("%0d: draining %d", cycle, x);

if (cycle > 20) $finish(0);

endrule

endmodule: mkTb

// ==

// This module enqueues something on the outfifo whenever it isn’t full,

// either a value from infifo (if there is one), or a bubble (otherwise). It

// also keeps a count of the maximum interval between enqueueing an item and

// enqueuing a bubble (with no intervening item).

// Let us assume that enqueuing an actual available item is more urgent than

// enqueueing a bubble (and so is explicitly specified).

(* synthesize *)

module mkGadget (Server#(int,int));

234 APPENDIX A. SOURCE FILES

int bubble_value = 42;

FIFO#(int) infifo <- mkFIFO;

FIFO#(int) outfifo <- mkFIFO;

Reg#(int) bubble_cycles <- mkReg(0);

Reg#(int) max_bubble_cycles <- mkReg(0);

(* descending_urgency="enqueue_item, enqueue_bubble" *)

rule enqueue_item;

outfifo.enq(infifo.first);

infifo.deq;

bubble_cycles <= 0;

endrule

rule inc_bubble_cycles;

bubble_cycles <= bubble_cycles + 1;

endrule

rule enqueue_bubble;

outfifo.enq(bubble_value);

max_bubble_cycles <= max(max_bubble_cycles, bubble_cycles);

endrule

interface request = fifoToPut (infifo);

interface response = fifoToGet (outfifo);

endmodule: mkGadget

endpackage: Tb

A.6.4 mutually exclusive

Source files are in directory: schedule/mutually_exclusive

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

(* synthesize *)

module mkTb(Empty);

// a 3-bit reg with one bit always set

Reg#(Bit#(3)) x <- mkReg (1);

Reg#(int) cycle <- mkReg (0);

// A register used to induce a conflict

Reg#(int) y <- mkReg (0);

A.6. SCHEDULING 235

rule rx;

cycle <= cycle + 1;

x <= { x[1:0], x[2] }; // rotate the bits

$display ("%0d: Rule rx", cycle);

endrule

// (* mutually_exclusive = "ry0, ry1, ry2" *) // XXX

rule ry0 (x[0] == 1);

y <= y + 1;

$display ("%0d: Rule ry0", cycle);

endrule

rule ry1 (x[1] == 1);

y <= y + 2;

$display ("%0d: Rule ry1", cycle);

endrule

rule ry2 (x[2] == 1);

y <= y + 3;

$display ("%0d: Rule ry2", cycle);

endrule

rule done (cycle >= 10);

$finish (0);

endrule

endmodule: mkTb

endpackage: Tb

/*

Compile this program twice,

- once with the line XXX above commented out

[generates conflict warning message and priority logic]

- once with the line XXX above uncommented

[generates no conflict warning message and no priority logic]

In each case, examine the Verilog code to see the difference the logic.

* ==

*/

A.6.5 conflict free

Source files are in directory: schedule/conflict_free

// Copyright 2008 Bluespec, Inc. All rights reserved.

236 APPENDIX A. SOURCE FILES

package Tb;

(* synthesize *)

module mkTb(Empty);

// a 3-bit reg with one bit always set

Reg#(Bit#(3)) x <- mkReg (1);

Reg#(int) cycle <- mkReg (0);

// A register used to induce a conflict

Reg#(int) y <- mkReg (0);

rule rx;

cycle <= cycle + 1;

x <= { x[1:0], x[2] }; // rotate the bits

$display ("%0d: Rule rx", cycle);

endrule

// (* conflict_free = "ry0, ry1, ry2" *) // XXX

rule ry0;

if (x[0] == 1) y <= y + 1;

$display ("%0d: Rule ry0", cycle);

endrule

rule ry1;

if (x[1] == 1) y <= y + 2;

$display ("%0d: Rule ry1", cycle);

endrule

rule ry2;

if (x[2] == 1) y <= y + 3;

$display ("%0d: Rule ry2", cycle);

endrule

rule done;

if (cycle >= 10) $finish (0);

endrule

endmodule: mkTb

endpackage: Tb

A.6.6 preempts

Source files are in directory: schedule/preempts

A.6. SCHEDULING 237

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

import FIFO::*;

import GetPut::*;

import ClientServer::*;

(* synthesize *)

module mkTb (Empty);

Reg#(int) cycle <- mkReg(0);

Server#(int, int) g <- mkGadget;

// Send data to gadget every 5 out of 8 cycles

rule source;

cycle <= cycle + 1;

if (pack (cycle)[2:0] < 5) g.request.put (cycle);

endrule

rule drain;

let x <- g.response.get ();

$display ("%0d: draining %d", cycle, x);

if (cycle > 20) $finish(0);

endrule

endmodule: mkTb

// ==

// This module transfers an item from the infifo to the outfifo whenever

// possible. The other rule counts the idle cycles.

(* synthesize *)

module mkGadget (Server#(int,int));

FIFO#(int) infifo <- mkFIFO;

FIFO#(int) outfifo <- mkFIFO;

Reg#(int) idle_cycles <- mkReg(0);

(* preempts="enqueue_item, count_idle_cycles" *)

rule enqueue_item;

outfifo.enq(infifo.first);

infifo.deq;

endrule

rule count_idle_cycles;

idle_cycles <= idle_cycles + 1;

$display ("Idle cycle %0d", idle_cycles + 1);

endrule

interface request = fifoToPut (infifo);

238 APPENDIX A. SOURCE FILES

interface response = fifoToGet (outfifo);

endmodule: mkGadget

endpackage: Tb

A.6.7 fire when enabled, no implicit conditions

Source files are in directory: schedule/fire_when_enabled

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

import GetPut::*;

(* synthesize *)

module mkTb (Empty);

Reg#(int) cycle <- mkReg (0);

Reg#(int) x <- mkReg (0);

Put#(int) dut <- mkDut ();

// ----------------

rule count_cycles;

cycle <= cycle + 1;

if (cycle > 15) $finish(0);

endrule

// (* descending_urgency = "r2, r1" *)

(* descending_urgency = "r1, r2" *)

(* fire_when_enabled, no_implicit_conditions *)

rule r1 (pack (cycle)[2:0] != 7);

dut.put (x);

x <= x + 1;

endrule

rule r2;

x <= x + 2;

endrule

endmodule: mkTb

// ==

(* synthesize *)

A.6. SCHEDULING 239

module mkDut (Put#(int));

Reg#(int) y <- mkReg (0);

method Action put (int z);// if (y > 0);

y <= z;

endmethod

endmodule

// ==

endpackage: Tb

A.6.8 always ready, always enabled

Source files are in directory: schedule/always_ready

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

// ==

import PipelinedSyncROM_model::*;

// A synthesizable instance of the polymorphic pipelined sync ROM

typedef UInt#(16) Addr;

typedef UInt#(24) Data;

(* synthesize *)

(* always_ready = "request, response" *)

(* always_enabled = "request" *)

module mkPipelinedSyncROM_model_specific (PipelinedSyncROM#(Addr,Data));

let m <- mkPipelinedSyncROM_model ("mem_init.data", 0, 31);

return m;

endmodule

// --

// A top-level module that just reads some data from the pipelined ROM

(* synthesize *)

module mkTb (Empty);

PipelinedSyncROM#(Addr, Data) rom <- mkPipelinedSyncROM_model_specific ();

Reg#(Addr) ra <- mkReg (0);

Reg#(int) cycle <- mkReg (0);

240 APPENDIX A. SOURCE FILES

// ----------------

// Step ’address’ and feed to the ROM

rule step_addr;

rom.request (ra);

if (ra > 15) $finish (0);

ra <= ra + 1;

cycle <= cycle + 1;

$display ("%0d: Sending address %0h", cycle, ra);

endrule

rule show_data;

$display ("%0d: Data returned is %0h", cycle, rom.response());

endrule

endmodule: mkTb

endpackage: Tb

A.6.9 aggressive conditions

Source files are in directory: schedule/aggressive_conditions

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

import FIFO::*;

(* synthesize *)

module mkTb (Empty);

Reg#(int) cycle <- mkReg (0);

FIFO#(int) f0 <- mkSizedFIFO (3);

FIFO#(int) f1 <- mkSizedFIFO (3);

// ----------------

// RULES

rule count_cycles;

cycle <= cycle + 1;

if (cycle > 15) $finish(0);

endrule

rule rA;

if (pack (cycle)[0] == 0) begin

A.6. SCHEDULING 241

f0.enq (cycle);

$display ("%0d: Enqueuing %d into fifo f0", cycle, cycle);

end

else begin

f1.enq (cycle);

$display ("%0d: Enqueuing %d into fifo f1", cycle, cycle);

end

endrule

rule rB;

f0.deq ();

endrule

endmodule: mkTb

endpackage: Tb

A.6.10 Separating ActionValue method

Source files are in directory: schedule/separate_av

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

import FIFO::*;

interface Foo_ifc;

method ActionValue#(int) avx ();

method int vy ();

method Action ay ();

method int get_cycle_count ();

endinterface

(* synthesize *)

module mkFoo (Foo_ifc);

Reg#(int) x <- mkReg (0);

Reg#(int) y <- mkReg (0);

Reg#(int) cycle <- mkReg (0);

// ----------------

// RULES

rule count_cycles;

cycle <= cycle + 1;

if (cycle > 3) $finish (0);

242 APPENDIX A. SOURCE FILES

endrule

rule incx;

x <= x + 1;

$display ("%0d: rule incx; new x = %0d", cycle, x+1);

endrule

rule incy;

y <= y + 1;

$display ("%0d: rule incy; new y = %0d", cycle, y+1);

endrule

// ----------------

// METHODS

method ActionValue#(int) avx ();

$display ("%0d: method avx; setting x to 42; returning old x = %0d", cycle, x);

x <= 42;

return x;

endmethod

method int vy ();

return y;

endmethod

method Action ay ();

$display ("%0d: method ay; setting y to 42", cycle);

y <= 42;

endmethod

method int get_cycle_count ();

return cycle;

endmethod

endmodule

// --

(* synthesize *)

module mkTb (Empty);

Foo_ifc foo <- mkFoo;

let cycle = foo.get_cycle_count ();

// ----------------

// RULES

rule rAVX;

let x <- foo.avx ();

$display ("%0d: rule rAVX, x = %0d", cycle, x);

A.7. RWIRES AND WIRE TYPES 243

endrule

rule rAY;

$display ("%0d: rule rAY", cycle);

foo.ay ();

endrule

rule rVY;

let y = foo.vy ();

$display ("%0d: rule rVY, y = %0d", cycle, y);

endrule

endmodule: mkTb

endpackage: Tb

A.7 RWires and Wire types

Chapter examples are in directory: rwire

A.7.1 Simple RWire example

Source files are in directory: rwire/simplerwire

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

// --

// A top-level module connecting the stimulus generator to the DUT

(* synthesize *)

module mkTb (Empty);

Counter c1 <- mkCounter_v1; // Instantiate a version 1 counter

Counter c2 <- mkCounter_v2; // Instantiate a version 2 counter (same interface type)

// ----------------

// Step ’state’ from 1 to 10 and show both counter values in each state

Reg#(int) state <- mkReg (0);

rule step_state;

if (state > 9) $finish (0);

state <= state + 1;

endrule

244 APPENDIX A. SOURCE FILES

rule show;

$display ("In state %0d, counter values are %0d, %0d", state, c1.read (), c2.read ());

endrule

// ----------------

// For counter c1, increment by 5 in states 0..6, decrement by 2 in states 4..10

// The interesting states are 4..6

rule incr1 (state < 7);

c1.increment (5);

endrule

rule decr1 (state > 3);

c1.decrement (2);

endrule

// ----------------

// Same for counter c2 (increment by 5 in states 0..6, decrement by 2 in states 4..10)

// The interesting states are 4..6

rule incr2 (state < 7);

c2.increment (5);

endrule

rule decr2 (state > 3);

c2.decrement (2);

endrule

endmodule: mkTb

// --

// Interface to an up-down counter

interface Counter;

method int read(); // Read the counter’s value

method Action increment (int di); // Step the counter up by di

method Action decrement (int dd); // Step the counter down by dd

endinterface: Counter

// --

// Version 1 of the counter

(* synthesize *)

module mkCounter_v1 (Counter);

Reg#(int) value1 <- mkReg(0); // holding the counter’s value

method int read();

return value1;

endmethod

A.7. RWIRES AND WIRE TYPES 245

method Action increment (int di);

value1 <= value1 + di;

endmethod

method Action decrement (int dd);

value1 <= value1 - dd;

endmethod

endmodule: mkCounter_v1

// --

// Version 2 of the counter

(* synthesize *)

module mkCounter_v2 (Counter);

Reg#(int) value2 <- mkReg(0); // holding the counter’s value

RWire#(int) rw_incr <- mkRWire(); // Signal that increment method is being invoked

RWire#(int) rw_decr <- mkRWire(); // Signal that decrement method is being invoked

// This rule does all the work, depending on whether the increment or the decrement

// methods, both, or neither, is being invoked

(* fire_when_enabled, no_implicit_conditions *)

rule doit;

Maybe#(int) mbi = rw_incr.wget();

Maybe#(int) mbd = rw_decr.wget();

int di = fromMaybe (?, mbi);

int dd = fromMaybe (?, mbd);

if ((! isValid (mbi)) && (! isValid (mbd)))

noAction;

else if (isValid (mbi) && (! isValid (mbd)))

value2 <= value2 + di;

else if ((! isValid (mbi)) && isValid (mbd))

value2 <= value2 - dd;

else // (isValid (mbi) && isValid (mbd))

value2 <= value2 + di - dd;

endrule

method int read();

return value2;

endmethod

method Action increment (int di);

rw_incr.wset (di);

endmethod

method Action decrement (int dd);

rw_decr.wset (dd);

endmethod

246 APPENDIX A. SOURCE FILES

endmodule: mkCounter_v2

endpackage: Tb

/*

--

EXERCISE:

(1) Merge the two mkTb rules ’step_state’ and ’show’ into one rule;

observe what happens, and explain it. [Hint: compile-time

scheduling error.]

* ==

*/

A.7.2 RWire with pattern matching

Source files are in directory: rwire/pattern_matching

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

// --

// A top-level module connecting the stimulus generator to the DUT

(* synthesize *)

module mkTb (Empty);

Counter c1 <- mkCounter_v1; // Instantiate a version 1 counter

Counter c2 <- mkCounter_v2; // Instantiate a version 2 counter (same interface type)

// ----------------

// Step ’state’ from 1 to 10 and show both counter values in each state

Reg#(int) state <- mkReg (0);

rule step_state;

if (state > 9) $finish (0);

state <= state + 1;

endrule

rule show;

$display ("In state %0d, counter values are %0d, %0d", state, c1.read (), c2.read ());

endrule

// ----------------

// For counter c1, increment by 5 in states 0..6, decrement by 2 in states 4..10

// The interesting states are 4..6

A.7. RWIRES AND WIRE TYPES 247

rule incr1 (state < 7);

c1.increment (5);

endrule

rule decr1 (state > 3);

c1.decrement (2);

endrule

// ----------------

// Same for counter c2 (increment by 5 in states 0..6, decrement by 2 in states 4..10)

// The interesting states are 4..6

rule incr2 (state < 7);

c2.increment (5);

endrule

rule decr2 (state > 3);

c2.decrement (2);

endrule

endmodule: mkTb

// --

// Interface to an up-down counter

interface Counter;

method int read(); // Read the counter’s value

method Action increment (int di); // Step the counter up by di

method Action decrement (int dd); // Step the counter down by dd

endinterface: Counter

// --

// Version 1 of the counter

(* synthesize *)

module mkCounter_v1 (Counter);

Reg#(int) value1 <- mkReg(0); // holding the counter’s value

method int read();

return value1;

endmethod

method Action increment (int di);

value1 <= value1 + di;

endmethod

method Action decrement (int dd);

value1 <= value1 - dd;

endmethod

248 APPENDIX A. SOURCE FILES

endmodule: mkCounter_v1

// --

// Version 2 of the counter

(* synthesize *)

module mkCounter_v2 (Counter);

Reg#(int) value2 <- mkReg(0); // holding the counter’s value

RWire#(int) rw_incr <- mkRWire(); // Signal that increment method is being invoked

RWire#(int) rw_decr <- mkRWire(); // Signal that decrement method is being invoked

// This rule does all the work, depending on whether the increment or the decrement

// methods, both, or neither, is being invoked

(* fire_when_enabled, no_implicit_conditions *)

rule doit;

case (tuple2 (rw_incr.wget(), rw_decr.wget())) matches

{ tagged Invalid, tagged Invalid } : noAction;

{ tagged Valid .di, tagged Invalid } : value2 <= value2 + di;

{ tagged Invalid, tagged Valid .dd } : value2 <= value2 - dd;

{ tagged Valid .di, tagged Valid .dd } : value2 <= value2 + di - dd;

endcase

endrule

method int read();

return value2;

endmethod

method Action increment (int di);

rw_incr.wset (di);

endmethod

method Action decrement (int dd);

rw_decr.wset (dd);

endmethod

endmodule: mkCounter_v2

endpackage: Tb

A.7.3 Wire

Source files are in directory: rwire/wire

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

A.7. RWIRES AND WIRE TYPES 249

// --

// A top-level module connecting the stimulus generator to the DUT

(* synthesize *)

module mkTb (Empty);

Counter c1 <- mkCounter_v1; // Instantiate a version 1 counter

Counter c2 <- mkCounter_v2; // Instantiate a version 2 counter (same interface type)

// ----------------

// Step ’state’ from 1 to 10 and show both counter values in each state

Reg#(int) state <- mkReg (0);

rule step_state;

if (state > 9) $finish (0);

state <= state + 1;

endrule

rule show;

$display ("In state %0d, counter values are %0d, %0d", state, c1.read (), c2.read ());

endrule

// ----------------

// For counter c1, increment by 5 in states 0..6, decrement by 2 in states 4..10

// The interesting states are 4..6

rule incr1 (state < 7);

c1.increment (5);

endrule

rule decr1 (state > 3);

c1.decrement (2);

endrule

// ----------------

// Same for counter c2 (increment by 5 in states 0..6, decrement by 2 in states 4..10)

// The interesting states are 4..6

rule incr2 (state < 7);

c2.increment (5);

endrule

rule decr2 (state > 3);

c2.decrement (2);

endrule

endmodule: mkTb

// --

250 APPENDIX A. SOURCE FILES

// Interface to an up-down counter

interface Counter;

method int read(); // Read the counter’s value

method Action increment (int di); // Step the counter up by di

method Action decrement (int dd); // Step the counter down by dd

endinterface: Counter

// --

// Version 1 of the counter

(* synthesize *)

module mkCounter_v1 (Counter);

Reg#(int) value1 <- mkReg(0); // holding the counter’s value

method int read();

return value1;

endmethod

method Action increment (int di);

value1 <= value1 + di;

endmethod

method Action decrement (int dd);

value1 <= value1 - dd;

endmethod

endmodule: mkCounter_v1

// --

// Version 2 of the counter

(* synthesize *)

module mkCounter_v2 (Counter);

Reg#(int) value2 <- mkReg(0); // holding the counter’s value

Wire#(int) w_incr <- mkWire(); // Signal that increment method is being invoked

Wire#(int) w_decr <- mkWire(); // Signal that decrement method is being invoked

// ---------------- RULES

(* descending_urgency = "r_incr_and_decr, r_incr_only, r_decr_only" *)

rule r_incr_and_decr;

value2 <= value2 + w_incr - w_decr;

endrule

rule r_incr_only;

value2 <= value2 + w_incr;

endrule

A.7. RWIRES AND WIRE TYPES 251

rule r_decr_only;

value2 <= value2 - w_decr;

endrule

// ---------------- METHODS

method int read();

return value2;

endmethod

method Action increment (int di);

w_incr <= di;

endmethod

method Action decrement (int dd);

w_decr <= dd;

endmethod

endmodule: mkCounter_v2

endpackage: Tb

A.7.4 DWire

Source files are in directory: rwire/dwire

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

// --

// A top-level module connecting the stimulus generator to the DUT

(* synthesize *)

module mkTb (Empty);

Counter c1 <- mkCounter_v1; // Instantiate a version 1 counter

Counter c2 <- mkCounter_v2; // Instantiate a version 2 counter (same interface type)

// ----------------

// Step ’state’ from 1 to 10 and show both counter values in each state

Reg#(int) state <- mkReg (0);

rule step_state;

if (state > 9) $finish (0);

state <= state + 1;

endrule

252 APPENDIX A. SOURCE FILES

rule show;

$display ("In state %0d, counter values are %0d, %0d", state, c1.read (), c2.read ());

endrule

// ----------------

// For counter c1, increment by 5 in states 0..6, decrement by 2 in states 4..10

// The interesting states are 4..6

rule incr1 (state < 7);

c1.increment (5);

endrule

rule decr1 (state > 3);

c1.decrement (2);

endrule

// ----------------

// Same for counter c2 (increment by 5 in states 0..6, decrement by 2 in states 4..10)

// The interesting states are 4..6

rule incr2 (state < 7);

c2.increment (5);

endrule

rule decr2 (state > 3);

c2.decrement (2);

endrule

endmodule: mkTb

// --

// Interface to an up-down counter

interface Counter;

method int read(); // Read the counter’s value

method Action increment (int di); // Step the counter up by di

method Action decrement (int dd); // Step the counter down by dd

endinterface: Counter

// --

// Version 1 of the counter

(* synthesize *)

module mkCounter_v1 (Counter);

Reg#(int) value1 <- mkReg(0); // holding the counter’s value

method int read();

return value1;

endmethod

A.7. RWIRES AND WIRE TYPES 253

method Action increment (int di);

value1 <= value1 + di;

endmethod

method Action decrement (int dd);

value1 <= value1 - dd;

endmethod

endmodule: mkCounter_v1

// --

// Version 2 of the counter

(* synthesize *)

module mkCounter_v2 (Counter);

Reg#(int) value2 <- mkReg(0); // holding the counter’s value

Wire#(int) w_incr <- mkDWire (0); // Signal that increment method is being invoked

Wire#(int) w_decr <- mkDWire (0); // Signal that decrement method is being invoked

// ---------------- RULES

// This rule does all the work.

// If the increment method is being invoked,

// w_incr carries the increment value, else it carries 0

// If the decrement method is being invoked,

// w_decr carries the decrement value, else it carries 0

(* fire_when_enabled, no_implicit_conditions *)

rule r_incr_and_decr;

value2 <= value2 + w_incr - w_decr;

endrule

// ---------------- METHODS

method int read();

return value2;

endmethod

method Action increment (int di);

w_incr <= di;

endmethod

method Action decrement (int dd);

w_decr <= dd;

endmethod

endmodule: mkCounter_v2

254 APPENDIX A. SOURCE FILES

endpackage: Tb

A.7.5 PulseWire

Source files are in directory: rwire/pulsewire

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

// --

// A top-level module connecting the stimulus generator to the DUT

(* synthesize *)

module mkTb (Empty);

Counter c1 <- mkCounter_v1; // Instantiate a version 1 counter

Counter c2 <- mkCounter_v2; // Instantiate a version 2 counter (same interface type)

// ----------------

// Step ’state’ from 1 to 10 and show both counter values in each state

Reg#(int) state <- mkReg (0);

rule step_state;

if (state > 9) $finish (0);

state <= state + 1;

endrule

rule show;

$display ("In state %0d, counter values are %0d, %0d", state, c1.read (), c2.read ());

endrule

// ----------------

// For counter c1, increment by 5 in states 0..6, decrement by 1 in states 4..10

// The interesting states are 4..6

rule incr1 (state < 7);

c1.increment (5);

endrule

rule decr1 (state > 3);

c1.decrement (); // Decrement always by 1, so method has no argument

endrule

// ----------------

// Same for counter c2 (increment by 5 in states 0..6, decrement by 1 in states 4..10)

// The interesting states are 4..6

A.7. RWIRES AND WIRE TYPES 255

rule incr2 (state < 7);

c2.increment (5);

endrule

rule decr2 (state > 3);

c2.decrement (); // Decrement always by 1, so method has no argument

endrule

endmodule: mkTb

// --

// Interface to an up-down counter

interface Counter;

method int read(); // Read the counter’s value

method Action increment (int di); // Step the counter up by di

method Action decrement (); // Step the counter down by 1

endinterface: Counter

// --

// Version 1 of the counter

(* synthesize *)

module mkCounter_v1 (Counter);

Reg#(int) value1 <- mkReg(0); // holding the counter’s value

method int read();

return value1;

endmethod

method Action increment (int di);

value1 <= value1 + di;

endmethod

method Action decrement ();

value1 <= value1 - 1;

endmethod

endmodule: mkCounter_v1

// --

// Version 2 of the counter

(* synthesize *)

module mkCounter_v2 (Counter);

Reg#(int) value2 <- mkReg(0); // holding the counter’s value

RWire#(int) rw_incr <- mkRWire(); // Signal that increment method is being invoked

PulseWire pw_decr <- mkPulseWire(); // Signal that decrement method is being invoked

256 APPENDIX A. SOURCE FILES

// This rule does all the work, depending on whether the increment or the decrement

// methods, both, or neither, is being invoked

(* fire_when_enabled, no_implicit_conditions *)

rule doit;

case (tuple2 (rw_incr.wget(), pw_decr)) matches

{ tagged Invalid, False } : noAction;

{ tagged Valid .di, False } : value2 <= value2 + di;

{ tagged Invalid, True } : value2 <= value2 - 1;

{ tagged Valid .di, True } : value2 <= value2 + di - 1;

endcase

endrule

method int read();

return value2;

endmethod

method Action increment (int di);

rw_incr.wset (di);

endmethod

method Action decrement ();

pw_decr.send ();

endmethod

endmodule: mkCounter_v2

endpackage: Tb

A.7.6 BypassWire

Source files are in directory: rwire/bypasswire

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

// --

// A top-level module connecting the stimulus generator to the DUT

(* synthesize *)

module mkTb (Empty);

Counter c1 <- mkCounter_v1; // Instantiate a version 1 counter

Counter c2 <- mkCounter_v2; // Instantiate a version 2 counter (same interface type)

// ----------------

// Step ’state’ from 1 to 10 and show both counter values in each state

A.7. RWIRES AND WIRE TYPES 257

Reg#(int) state <- mkReg (0);

rule step_state;

if (state > 9) $finish (0);

state <= state + 1;

endrule

rule show;

$display ("In state %0d, counter values are %0d, %0d", state, c1.read (), c2.read ());

endrule

// ----------------

// For counter c1, increment by 5 always, decrement by 2 in states 4..10

rule incr1;

c1.increment (5);

endrule

rule decr1 (state > 3);

c1.decrement (2);

endrule

// ----------------

// Same for counter c2 (increment by 5 always, decrement by 2 in states 4..10)

rule incr2;

c2.increment (5);

endrule

rule decr2 (state > 3);

c2.decrement (2);

endrule

endmodule: mkTb

// --

// Interface to an up-down counter

interface Counter;

method int read(); // Read the counter’s value

method Action increment (int di); // Step the counter up by di

method Action decrement (int dd); // Step the counter down by dd

endinterface: Counter

// --

// Version 1 of the counter

(* synthesize *)

module mkCounter_v1 (Counter);

Reg#(int) value1 <- mkReg(0); // holding the counter’s value

258 APPENDIX A. SOURCE FILES

method int read();

return value1;

endmethod

method Action increment (int di);

value1 <= value1 + di;

endmethod

method Action decrement (int dd);

value1 <= value1 - dd;

endmethod

endmodule: mkCounter_v1

// --

// Version 2 of the counter

(* synthesize,

always_enabled = "increment" *)

module mkCounter_v2 (Counter);

Reg#(int) value2 <- mkReg(0); // holding the counter’s value

Wire#(int) w_incr <- mkBypassWire(); // Signal that increment method is being invoked

Wire#(int) w_decr <- mkDWire (0); // Signal that decrement method is being invoked

// ---------------- RULES

(* fire_when_enabled, no_implicit_conditions *)

rule r_incr_and_decr;

value2 <= value2 + w_incr - w_decr;

endrule

// ---------------- METHODS

method int read();

return value2;

endmethod

method Action increment (int di);

w_incr <= di;

endmethod

method Action decrement (int dd);

w_decr <= dd;

endmethod

endmodule: mkCounter_v2

endpackage: Tb

A.7. RWIRES AND WIRE TYPES 259

/* ==

EXERCISE:

(1) Remove the attribute

always_enabled = "increment"

from the mkCounter_v2 module declaration, then compile with -verilog.

Observe and explain the compiler warning message.

* ==

*/

A.7.7 RWires and atomicity

Source files are in directory: rwire/rwire_atomicity

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

import FIFO::*;

// --

// A top-level module connecting the stimulus generator to the DUT

(* synthesize *)

module mkTb (Empty);

FIFO#(int) f <- mkPipelineFIFO; // Instantiate a FIFO (see module def below)

// ----------------

// Step ’state’ from 1 to 10

Reg#(int) state <- mkReg (0);

rule step_state;

if (state > 9) $finish (0);

state <= state + 1;

endrule

// ----------------

// Enqueue and dequeue something on every cycle (in every state)

rule e;

let x = state * 10;

f.enq (x);

$display ("State %0d: Enqueue %0d", state, x);

260 APPENDIX A. SOURCE FILES

endrule

rule d;

let y = f.first ();

f.deq ();

$display ("State %0d: Dequeue %0d", state, y);

endrule

// ----------------

// Also clear the FIFO in state 2

rule clear_counter (state == 2);

f.clear ();

$display ("State %0d: Clearing", state);

endrule

endmodule: mkTb

// --

// A 1-element "pipeline" FIFO

(* synthesize *)

module mkPipelineFIFO (FIFO#(int));

// STATE ----------------

// The FIFO

Reg#(Bool) full <- mkReg (False);

Reg#(int) data <- mkRegU;

RWire#(int) rw_enq <- mkRWire; // enq method signal

PulseWire pw_deq <- mkPulseWire; // deq method signal

Bool enq_ok = ((! full) || pw_deq);

Bool deq_ok = full;

// RULES ----------------

// This rule does all the work, taking into account that ’enq()’ and

// ’deq()’ may be called simultaneously when the FIFO is already full

rule rule_update_final (isValid(rw_enq.wget) || pw_deq);

full <= isValid(rw_enq.wget);

data <= fromMaybe (?, rw_enq.wget);

endrule

// INTERFACE ----------------

method Action enq(v) if (enq_ok);

rw_enq.wset(v);

endmethod

A.8. POLYMORPHISM 261

method Action deq() if (deq_ok);

pw_deq.send ();

endmethod

method first() if (full);

return data;

endmethod

method Action clear();

full <= False;

endmethod

endmodule: mkPipelineFIFO

endpackage: Tb

/*

--

EXERCISE:

(1) Fix the above problem.

HINT (one possible approach): in the ’enq()’ method, set the

’full’ and ’data’ registers. In ’rule_update_final’, just

set ’full’ to False whenever ’deq()’ but not ’enq()’ is invoked.

In this case there would still be the choice of whether the rule

or the clear method fired first; but this wouldn’t matter any

more, as they would both be assigning the same value to ’full’.

* ==

*/

A.8 Polymorphism

Chapter examples are in directory: polymorphism

A.8.1 Polymorphic function

Source files are in directory: polymorphism/function

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

(* synthesize *)

module mkTb (Empty);

262 APPENDIX A. SOURCE FILES

function td nop(td i);

return i;

endfunction

function Bool equal(td i, td j) provisos(Eq#(td));

return (i == j);

endfunction

function td add2x(td i, td j) provisos(Arith#(td));

return (i + 2*j);

endfunction

function Bool i2xj(td i, td j) provisos(Arith#(td), Eq#(td));

return ((i - 2*j) == 0);

endfunction

function Bool isBlock(td i) provisos(Bits#(td,szTD));

return (pack(i) & 3) == 0;

endfunction

function Bool isBlock2(td i) provisos(Bits#(td,szTD),

Add#(2,unused,szTD)); // 2 + unused == szTD

return (pack(i) & 3) == 0;

endfunction

function Bool isMod3(td i) provisos(Arith#(td),

Eq#(td),

Add#(4,unused,SizeOf#(td)));

return (i % 3) == 0;

endfunction

//

rule show;

$display(" nop is ", nop(10));

Bit#(10) v1 = 2;

$display(" equal %x %x ", equal(v1,v1), equal(v1,~v1));

Bit#(8) v2 = 2;

Bit#(8) v3 = 8;

$display(" add2x = %x", add2x(v2,v3));

$display(" i2xj = %x", i2xj(v2,v3));

$display(" isBlock = %x", isBlock(v2));

$display(" isBlock2 = %x", isBlock2(v2));

A.8. POLYMORPHISM 263

$display(" isMod3 = %x", isMod3(v3));

// if you try to compile these two lines

// Bit#(2) v4 = 1;

// $display(" isMod3 = %x", isMod3(v4));

// you get a compiler error, as the size of v4 is too small

// to match the required provisos..

$finish;

endrule

endmodule

endpackage

A.8.2 Simple polymorphic function with provisos

Source files are in directory: polymorphism/provisos

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

// (* synthesize *)

module mkPlainReg(Reg#(tx)) provisos(Bits#(tx,szTX));

Reg#(tx) val <- mkRegU;

return val;

endmodule

module mkPlainReg2(Reg#(Bit#(n)));

Reg#(Bit#(n)) val <- mkRegU;

return val;

endmodule

//

// If you wrap your polymorphic module with a specific data type

// then you can synthesize it

(* synthesize *)

module mkPlainRegInt(Reg#(int));

Reg#(int) val <- mkPlainReg;

method Action _write(int i) = val._write(i);

method int _read() = val._read();

endmodule

module mkNotReg(Reg#(tx)) provisos(Bits#(tx,szTX)

264 APPENDIX A. SOURCE FILES

,Bitwise#(tx) // comment this out to see error

);

Reg#(tx) val <- mkRegU;

method Action _write(tx i) = val._write(i);

method tx _read();

return ~val; // Bitwise#(tx) added because of ~ here

endmethod

endmodule

module mkDoubleReg(Reg#(tx)) provisos(Bits#(tx,szTX),

Arith#(tx));

Reg#(tx) val <- mkRegU;

method Action _write(tx i) = val._write(i);

method tx _read();

return val * 2; // Arith#(tx) added here

endmethod

endmodule

interface T2#(type ta, type tb);

method Action drive(ta ina, tb inb);

method ta result();

endinterface

module mkT2(T2#(tx,ty)) provisos(Bits#(ty,sY), // need to pack/unpack ty

Arith#(tx), // need to add with type "ta"

Add#(SizeOf#(tx),0,SizeOf#(ty)) // must be the same size

);

Wire#(tx) val <- mkWire;

method Action drive(tx ina, ty inb);

val <= ina + unpack(pack(inb));

endmethod

method tx result();

return val;

endmethod

endmodule

interface T3#(type ta, type tb);

method Action drive(ta ina);

method tb result();

endinterface

module mkT3(T3#(ta,tb)) provisos(Bits#(ta,sA), // need to pack/unpack ta

Bits#(tb,sB),

A.9. ADVANCED TYPES AND PATTERN-MATCHING 265

Add#(unused,sB,sA), // needed by truncate

Log#(sA,sB));

// just for fun, make output roof of log2

Wire#(tb) val <- mkWire;

method Action drive(ta ina);

Bit#(sA) tmp = pack(ina);

Bit#(sB) tmp2 = truncate(tmp);

val <= unpack(tmp2);

endmethod

method tb result();

return val;

endmethod

endmodule

(* synthesize *)

module mkTb (Empty);

Reg#(Bool) r1 <- mkPlainReg;

Reg#(int) r2 <- mkPlainRegInt;

Reg#(int) r3 <- mkNotReg;

Reg#(int) r4 <- mkDoubleReg;

T2#(UInt#(32),Int#(32)) modT2 <- mkT2;

T3#(UInt#(32),UInt#(5)) modT3 <- mkT3;

endmodule

endpackage

A.9 Advanced types and pattern-matching

Chapter examples are in directory: adv_types

A.9.1 Enums

Source files are in directory: adv_types/enum

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

typedef enum { IDLE, DOX, DOY, FINISH } Tenum1 deriving(Bits, Eq);

266 APPENDIX A. SOURCE FILES

typedef enum { S0=43, S1, S2=20, S3=254 } Tenum2 deriving(Bits, Eq);

(* synthesize *)

module mkTb (Empty);

Reg#(int) step <- mkReg(0);

Reg#(Tenum1) r1 <- mkReg(IDLE);

Reg#(Tenum2) r2 <- mkReg(S3);

rule init (step == 0);

$display("=== step 0 ===");

$display("enum1 IDLE => ", IDLE);

$display("enum1 DOX => ", DOX);

$display("enum1 DOY => ", DOY);

$display("enum1 FINISH => ", FINISH);

$display("enum2 S0 => ", S0);

$display("enum2 S1 => ", S1);

$display("enum2 S2 => ", S2);

$display("enum2 S3 => ", S3);

step <= step + 1;

endrule

rule step1 (step == 1);

$display("=== step 1 ===");

Tenum1 foo = IDLE;

step <= step + 1;

endrule

rule step2 (step == 2);

$display ("All done");

$finish (0);

endrule

//

rule watcher (step != 0);

endrule

endmodule: mkTb

endpackage: Tb

A.9. ADVANCED TYPES AND PATTERN-MATCHING 267

A.9.2 Simple Processor Model

Source files are in directory: adv_types/simple_proc

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

import SimpleProcessor::*;

// The program encodes Euclid’s algorithm:

// while (y != 0) if (x <= y) y = y - x else swap (x <=> y)

// In this example, x = 15 and y = 27, so the output should be 3

InstructionAddress label_loop = 3;

InstructionAddress label_subtract = 10;

InstructionAddress label_done = 12;

InstructionAddress label_last = 13;

Instruction code [14] =

{

tagged MovI { rd: R0, v: 0 }, // 0: The constant 0

tagged MovI { rd: R1, v: 15 }, // 1: x = 21

tagged MovI { rd: R2, v: 27 }, // 2: y = 27

// label_loop

tagged Brz { rs: R2, dest:label_done }, // 3: if (y == 0) goto done

tagged Gt { rd: R3, rs1: R1, rs2: R2 }, // 4: tmp = (x > y)

tagged Brz { rs: R3, dest: label_subtract }, // 5: if (x <= y) goto subtract

// swap

tagged Minus { rd: R3, rs1: R1, rs2: R0 }, // 6: tmp = x;

tagged Minus { rd: R1, rs1: R2, rs2: R0 }, // 7: x = y;

tagged Minus { rd: R2, rs1: R3, rs2: R0 }, // 8: y = tmp;

tagged Br label_loop, // 9: goto loop

// label_subtract

tagged Minus { rd: R2, rs1: R2, rs2: R1 }, // 10: y = y - x

tagged Br label_loop, // 11: goto loop

// label_done

tagged Output R1, // 12: output x

// label_last

tagged Halt // 13: halt

};

// --

// The testbench

(* synthesize *)

module mkTb (Empty);

Reg#(InstructionAddress) ia <- mkReg (0);

SimpleProcessor sp <- mkSimpleProcessor ();

268 APPENDIX A. SOURCE FILES

// Iterate through the instructions array, loading the program into

// into the processor’s instruction memory

rule loadInstrs (ia <= label_last);

sp.loadInstruction (ia, code [ia]);

ia <= ia + 1;

endrule

// Start the processor executing its program

rule go (ia == label_last + 1);

sp.start();

ia <= ia + 1;

endrule

// Wait till the processor halts, and quit

rule windup ((ia > label_last + 1) && (sp.halted));

$display ("Fyi: size of an Instruction is %0d bits", valueof (SizeOf#(Instruction)));

$finish (0);

endrule

endmodule: mkTb

endpackage: Tb

// Copyright 2010 Bluespec, Inc. All rights reserved.

package SimpleProcessor;

// --

// A small instruction set

// ---- Names of the four registers in the register file

typedef enum {R0, R1, R2, R3} RegNum

deriving (Bits);

Integer regFileSize = 2** valueof (SizeOf#(RegNum));

// ---- Instruction addresses for a 32-location instruction memory

typedef 5 InstructionAddressWidth;

typedef UInt#(InstructionAddressWidth) InstructionAddress;

Integer imemSize = 2** valueof(InstructionAddressWidth);

// ---- Values stored in registers

typedef Bit#(32) Value;

// ---- Instructions

typedef union tagged {

struct { RegNum rd; Value v; } MovI; // Move Immediate

InstructionAddress Br; // Branch Unconditionally

struct { RegNum rs; InstructionAddress dest; } Brz; // Branch if zero

struct { RegNum rd; RegNum rs1; RegNum rs2; } Gt; // rd <= (rs1 > rs2)

A.9. ADVANCED TYPES AND PATTERN-MATCHING 269

struct { RegNum rd; RegNum rs1; RegNum rs2; } Minus; // rd <= (rs1 - rs2)

RegNum Output;

void Halt;

} Instruction

deriving (Bits);

// --

// The processor model

interface SimpleProcessor;

method Action loadInstruction (InstructionAddress ia, Instruction instr);

method Action start (); // Begin instruction execution at pc 0

method Bool halted ();

endinterface

(* synthesize *)

module mkSimpleProcessor (SimpleProcessor);

// ---- Instruction memory (modeled here using an array of registers)

Reg#(Instruction) imem[imemSize];

for (Integer j = 0; j < imemSize; j = j + 1)

imem [j] <- mkRegU;

Reg#(InstructionAddress) pc <- mkReg (0); // The program counter

// ---- The register file (modeled here using an array of registers)

Reg#(Value) regs[regFileSize]; // The register file

for (Integer j = 0; j < regFileSize; j = j + 1)

regs [j] <- mkRegU;

// ---- Status

Reg#(Bool) running <- mkReg (False);

Reg#(UInt#(32)) cycle <- mkReg (0);

// ----------------

// RULES

rule fetchAndExecute (running);

let instr = imem [pc];

case (instr) matches

tagged MovI { rd: .rd, v: .v } : begin

regs[pack(rd)] <= v;

pc <= pc + 1;

end

tagged Br .d : pc <= d;

tagged Brz { rs: .rs, dest: .d } : if (regs[pack(rs)] == 0)

pc <= d;

else

pc <= pc + 1;

tagged Gt { rd:.rd, rs1:.rs1, rs2:.rs2 } : begin

270 APPENDIX A. SOURCE FILES

Bool b = (regs[pack(rs1)] > regs[pack(rs2)]);

Value bv = extend (pack (b));

regs[pack(rd)] <= bv;

pc <= pc + 1;

end

tagged Minus { rd:.rd, rs1:.rs1, rs2:.rs2 } : begin

regs[pack(rd)] <= regs[pack(rs1)] - regs[pack(rs2)];

pc <= pc + 1;

end

tagged Output .rs : begin

$display ("%0d: output regs[%d] = %0d",

cycle, rs, regs[pack(rs)]);

pc <= pc + 1;

end

tagged Halt : begin

$display ("%0d: Halt at pc", cycle, pc);

running <= False;

end

default: begin

$display ("%0d: Illegal instruction at pc %0d: %0h", cycle, pc, instr);

running <= False;

end

endcase

cycle <= cycle + 1;

endrule

// ----------------

// METHODS

method Action loadInstruction (InstructionAddress ia, Instruction instr) if (! running);

imem [ia] <= instr;

endmethod

method Action start ();

cycle <= 0;

pc <= 0;

running <= True;

endmethod

method Bool halted ();

return (! running);

endmethod

endmodule: mkSimpleProcessor

endpackage: SimpleProcessor

A.9. ADVANCED TYPES AND PATTERN-MATCHING 271

A.9.3 Structs of registers vs. register containing a struct

Source files are in directory: adv_types/struct_reg

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

import FIFO::*;

typedef struct {

int a;

Bool b;

} TEx1 deriving(Bits,Eq);

typedef struct {

Reg#(int) ra;

Reg#(Bool) rb;

} TEx2;

(* synthesize *)

module mkTb (Empty);

Reg#(int) step <- mkReg(0);

Reg#(TEx1) r1 <- mkReg(unpack(0));

FIFO#(TEx1) fifo <- mkFIFO;

TEx2 r2;

r2.ra <- mkReg(2);

r2.rb <- mkReg(True);

Reg#(int) reg3A <- mkReg(3);

Reg#(Bool) reg3B <- mkReg(False);

TEx2 r3;

r3.ra = reg3A;

r3.rb = reg3B;

rule init (step == 0);

$display("=== step 0 ===");

$display("r1.a = ", r1.a);

$display("r1.b = ", r1.b);

TEx1 t = r1;

t.a = 20;

t.b = False;

r1 <= t;

272 APPENDIX A. SOURCE FILES

step <= step + 1;

endrule

rule step1 (step == 1);

$display("=== step 1 ===");

$display("r2.ra = ", r2.ra);

$display("r2.rb = ", r2.rb);

r2.ra <= 31;

r2.rb <= False;

step <= step + 1;

endrule

rule step2 (step == 2);

$display("=== step 2 ===");

$display("r3.ra = ", r3.ra);

$display("r3.rb = ", r3.rb);

$display ("All done");

$finish (0);

endrule

endmodule: mkTb

endpackage: Tb

A.9.4 Tuples

Source files are in directory: adv_types/tuple

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

(* synthesize *)

module mkTb (Empty);

Reg#(int) step <- mkReg(0);

rule init (step == 0);

$display("=== step 0 ===");

Tuple2#(Bool, int) foo = tuple2(True, 25);

Bool field1 = tpl_1(foo); // this is value 1 in the list

int field2 = tpl_2(foo); // this is value 2 in the list

foo = tuple2(!field1, field2);

A.10. STATIC ELABORATION - FOR LOOPS/WHILE LOOPS 273

$display("tpl_1(foo) = ", tpl_1(foo));

$display("tpl_2(foo) = ", tpl_2(foo));

step <= step + 1;

endrule

rule step1 (step == 1);

$display("=== step 1 ===");

Tuple4#(Bool, UInt#(4), Int#(8), Bit#(12)) bar = tuple4(True, 0, -2, 5);

$display("tpl_1(bar) = ", tpl_1(bar));

$display("tpl_2(bar) = ", tpl_2(bar));

$display("tpl_3(bar) = ", tpl_3(bar));

$display("tpl_4(bar) = ", tpl_4(bar));

step <= step + 1;

endrule

rule step2 (step == 2);

$display("=== step 2 ===");

$display ("All done");

$finish (0);

endrule

endmodule: mkTb

endpackage: Tb

A.10 Static elaboration - for loops/while loops

Chapter examples are in directory: static_elab

A.10.1 For-loops/While-loops

Source files are in directory: static_elab/loops

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

import FIFO::*;

import GetPut::*;

import ClientServer::*;

(* synthesize *)

274 APPENDIX A. SOURCE FILES

module mkTb (Empty);

Reg#(int) klimit <- mkReg (24);

rule r;

int a = 10;

for (int k = 20; k < klimit; k = k + 1)

a = a + k;

$display ("rule r, a = %0d", a);

endrule

endmodule: mkTb

endpackage: Tb

/*

EXERCISE:

- Replace the ’for’ loop with a ’while’ loop, like so:

int k = 20;

while (k < klimit) begin

a = a + k;

k = k + 1;

end

and you should see exactly the same behavior.

* ==

*/

A.10.2 Static and dynamic conditionals

Source files are in directory: static_elab/conditional

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

import FIFO::*;

import GetPut::*;

import ClientServer::*;

Bool configVar = True;

int x0 = 23;

A.11. EXPRESSIONS 275

(* synthesize *)

module mkTb (Empty);

Reg#(int) cycle <- mkReg (0);

int initval = (configVar ? (x0 + 10) : (x0 + 20));

Reg#(int) r0 <- (configVar ? mkReg (initval) : mkRegU);

Reg#(int) r1;

if (configVar)

r1 <- mkReg(initval);

else

r1 <- mkRegU;

// ----------------

// RULES

rule r;

$display ("%0d: rule r, r0 = %0d, r1 = %0d", cycle, r0, r1);

r0 <= ((pack (cycle)[0]==1) ? (r0 + 1) : (r0 + 5));

if (pack (cycle)[0]==1)

r1 <= r1 + 1;

else

r1 <= r1 + 5;

if (cycle > 7) $finish (0);

cycle <= cycle + 1;

endrule

endmodule: mkTb

endpackage: Tb

A.11 Expressions

Chapter examples are in directory: expressions

A.11.1 Don’t care expressions

Source files are in directory: expressions/dontcare

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

276 APPENDIX A. SOURCE FILES

(* synthesize *)

module mkTb (Empty);

Reg#(int) step <- mkReg(0);

rule init (step == 0);

$display("=== step 0 ===");

// for instance.. let’s do the exact example above...

bit o = 0;

for (Bit#(2) i=0; i<2; i=i+1)

for (Bit#(2) j=0; j<2; j=j+1) begin

bit a = i[0];

bit b = j[0];

if ((a==0) && (b==0))

o = 1;

else

o = 0;

$display("%b%b = %b", a,b,o);

end

// this generates the NAND gate we expect and may be more natural

step <= step + 1;

endrule

rule step1 (step == 1);

$display("=== step 1 ===");

bit o = 0;

for (Bit#(2) i=0; i<2; i=i+1)

for (Bit#(2) j=0; j<2; j=j+1) begin

bit a = i[0];

bit b = j[0];

// but let’s enumerate out the case we really care about

if ((a==0) && (b==0))

o = 1;

else if ((a==1) && (b==1))

o = 0;

else

o = ?;

$display("%b%b = %b", a,b,o);

end

step <= step + 1;

endrule

A.11. EXPRESSIONS 277

rule step2 (step == 2);

$display("=== step 2 ===");

bit o = 0;

for (Bit#(2) i=0; i<2; i=i+1)

for (Bit#(2) j=0; j<2; j=j+1) begin

bit a = i[0];

bit b = j[0];

case ({ a, b })

2’b11: o = 1;

2’b01: o = ?;

2’b10: o = ?;

2’b00: o = 0;

endcase

$display("%b%b = %b", a,b,o);

end

step <= step + 1;

endrule

rule step3 (step == 3);

$display("=== step 3 ===");

bit o = 0;

for (Bit#(2) i=0; i<2; i=i+1)

for (Bit#(2) j=0; j<2; j=j+1) begin

bit a = i[0];

bit b = j[0];

case ({ a, b }) matches

2’b?1: o = ?;

2’b10: o = 1;

2’b00: o = 0;

endcase

$display("%b%b = %b", a,b,o);

end

step <= step + 1;

endrule

rule step4 (step == 4);

$display("=== step 4 ===");

$display ("All done");

$finish (0);

278 APPENDIX A. SOURCE FILES

endrule

endmodule: mkTb

endpackage: Tb

A.11.2 Case expressions

Source files are in directory: expressions/case

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

(* synthesize *)

module mkTb (Empty);

Reg#(int) step <- mkReg(0);

Reg#(int) a <- mkReg(0);

rule init (step == 0);

$display("=== step 0 ===");

int val = case(a)

0: return 25;

1: return 23;

2: return 17;

default: return 64;

endcase;

$display("val = %b", val);

step <= step + 1;

endrule

Bool initReg = True;

Reg#(int) rr <- case (initReg)

False: mkRegU;

True: mkReg(0);

endcase;

rule step1 (step == 1);

$display("=== step 1 ===");

$display("reg rr is initialized to ", rr);

step <= step + 1;

endrule

A.11. EXPRESSIONS 279

rule step2 (step == 2);

$display("=== step 2 ===");

$display ("All done");

$finish (0);

endrule

endmodule: mkTb

endpackage: Tb

A.11.3 Function calls

Source files are in directory: expressions/function_calls

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

(* synthesize *)

module mkTb (Empty);

function int square(int a);

return a * a;

endfunction

function int increment(int a);

// count up to maxInt then stop

int maxInt = unpack({ 1’b1, 0 });

if (a != maxInt)

return a + 1;

else

return a;

endfunction

//

Reg#(int) step <- mkReg(0);

rule init (step == 0);

$display("=== step 0 ===");

$display("square 10 = ", square(10));

$display("increment 20 = ", increment(20));

$display("2*10+1 = ", increment(square(10)));

step <= step + 1;

endrule

280 APPENDIX A. SOURCE FILES

rule step1 (step == 1);

$display("=== step 1 ===");

$display ("All done");

$finish (0);

endrule

endmodule: mkTb

endpackage: Tb

A.12 Vectors

Chapter examples are in directory: vector

A.12.1 Arrays and square-bracket notation

Source files are in directory: vector/arrays

// Copyright 2008 Bluespec, Inc. All rights reserved.

package Tb;

(* synthesize *)

module mkTb (Empty);

UInt#(16) arr[10];

for (Integer i=0; i<10; i=i+1)

arr[i] = fromInteger(i * 3);

UInt#(16) arr2[3][4];

for (Integer i=0; i<3; i=i+1)

for (Integer j=0; j<4; j=j+1)

arr2[i][j] = fromInteger((i * 4) + j);

Reg#(int) arr3[4];

for (Integer i=0; i<4; i=i+1)

arr3[i] <- mkRegU;

rule load_arr3;

arr3[0] <= ’h10;

arr3[1] <= 4;

arr3[2] <= 1;

arr3[3] <= 0;

endrule

A.12. VECTORS 281

rule display_arr3;

for (Integer i=0; i<4; i=i+1)

$display("arr3[i] = %x", arr3[i]);

$finish;

endrule

endmodule: mkTb

endpackage: Tb

A.12.2 Arrays vs. Vectors

Source files are in directory: vector/arr_vs_vector

// Copyright 2008 Bluespec, Inc. All rights reserved.

package Tb;

import Vector::*;

import FIFO::*;

(* synthesize *)

module mkTb (Empty);

Int#(16) arr1[4];

for (Integer i=0; i<4; i=i+1)

arr1[i] = 0;

Vector#(4, Int#(16)) vec1 = newVector;

Vector#(4, Int#(16)) vec2 = replicate(0);

Int#(16) arr2a[4];

for (Integer i=0; i<4; i=i+1)

arr2a[i] = 0;

Vector#(4, Int#(16)) vec3 = map(fromInteger, genVector);

Int#(16) arr3a[4];

for (Integer i=0; i<4; i=i+1)

arr3a[i] = fromInteger(i);

function Int#(16) vec3init(Integer i);

return fromInteger(i * 13);

endfunction

Vector#(4, Int#(16)) vec4 = map(vec3init, genVector);

Int#(16) arr4a[4];

282 APPENDIX A. SOURCE FILES

for (Integer i=0; i<4; i=i+1)

arr4a[i] = fromInteger(i * 13);

rule displayArray;

for (Integer i= 0; i < 4; i=i+1)

$display("arr1[i] = %x", arr1[i]);

endrule

rule displayVec2;

for (Integer i= 0; i < 4; i=i+1)

$display("vec2[i] = %x", vec2[i]);

endrule

rule displayVec3;

for (Integer i= 0; i < 4; i=i+1)

$display("vec3[i] = %d", vec3[i]);

endrule

rule displayVec4;

for (Integer i= 0; i < 4; i=i+1)

$display("vec4[i] = %d", vec4[i]);

endrule

rule finish;

$finish;

endrule

endmodule: mkTb

endpackage: Tb

A.12.3 bit-vectors and square bracket notation

Source files are in directory: vector/bit_vector

// Copyright 2008 Bluespec, Inc. All rights reserved.

package Tb;

import Vector::*;

function Vector#(n,td) rotateUp(Vector#(n,td) inData, UInt#(m) inx)

provisos(Log#(n,m));

return rotateBy(inData, inx);

endfunction

A.12. VECTORS 283

function Vector#(n,td) rotateDown(Vector#(n,td) inData, UInt#(m) inx)

provisos(Log#(n,m));

UInt#(m) maxInx = fromInteger(valueof(n)-1);

return rotateBy(inData, (maxInx+1)-inx);

endfunction

(* synthesize *)

module mkTb (Empty);

rule test1;

Bit#(5) foo1 = 5’b01001;

$display("bit 0 of foo1 is ", foo1[0]);

$display("bit 1 of foo1 is ", foo1[1]);

$display("bit 2 of foo1 is ", foo1[2]);

$display("bit 3 of foo1 is ", foo1[3]);

$display("bit 4 of foo1 is ", foo1[4]);

// You can also get a range of bits:

Bit#(6) foo2 = ’b0110011;

$display("bit 2:0 of foo2 is %b", foo2[2:0]);

// and note that this returns a type Bit of the new size

Bit#(3) foo3 = foo2[5:3];

$display("bit 5:3 of foo2 is %b", foo3);

// you can also set bits as you’d expect

foo3 = 3’b111;

$display("set foo3[2:0] to 1s => %b", foo3);

foo3[1:0] = 0;

$display("set foo3[1:0] to 0 => %b", foo3);

Vector#(8, bit) bar1 = replicate(0);

function bit isInteresting(Integer i);

return (i % 3 == 0) ? 1 : 0;

endfunction

Vector#(16,bit) bar2 = genWith(isInteresting);

$display("bar2 is %b", bar2);

Vector#(16,bit) bar3 = unpack(16’b0101_0001_1000_1001);

$display("bar3 is %b", bar3);

$display("reverse bar3 is %b\n", reverse(bar3));

$display("bar3 is %b", bar3);

$display("rotate1 bar3 is %b", rotate(bar3));

$display("rotate2 bar3 is %b\n", rotate(rotate(bar3)));

284 APPENDIX A. SOURCE FILES

// rotate left or right doesn’t necessarily make since

// or at least I liked the idea of rotateUp and rotateDown

// (you could of course wrap it in your own function with these)

$display("bar3 is %b", bar3);

$display("rotate up 1 bar3 is %b", rotateUp(bar3, 1));

$display("rotate up 2 bar3 is %b", rotateUp(bar3, 2));

$display("rotate up 3 bar3 is %b\n", rotateUp(bar3, 3));

$display("bar3 is %b", bar3);

$display("rotate dn 1 bar3 is %b", rotateDown(bar3, 1));

$display("rotate dn 2 bar3 is %b", rotateDown(bar3, 2));

$display("rotate dn 3 bar3 is %b\n", rotateDown(bar3, 3));

// and you can still quickly pack and unpack them between a Bit

Bit#(16) val = 25;

bar3 = unpack(val);

$display("bar unpacked = %b / %d", bar3, bar3);

bar3[7] = 1;

// and back

Bit#(16) val2 = pack(bar3);

$display("bar packed = %b / %d", val2, val2);

$finish (0);

endrule

endmodule: mkTb

endpackage: Tb

A.12.4 Whole register update

Source files are in directory: vector/whole_register

// Copyright 2008 Bluespec, Inc. All rights reserved.

package Tb;

(* synthesize *)

module mkTb (Empty);

Reg#(Bit#(8)) foo <- mkReg(0);

Reg#(Bit#(8)) foo2 <- mkReg(0);

(* preempts = "up1, up2" *)

rule up1;

$display("foo[1:0] = %b", foo[1:0]);

A.12. VECTORS 285

$display("foo[2] = %b", foo[2]);

foo[1] <= 1;

let tmp = foo2;

tmp[1] = 1;

tmp[3] = 1;

tmp[7:6] = 3;

foo2 <= tmp;

endrule

rule up2;

foo[2] <= 1;

endrule

Reg#(bit) b1 <- mkReg(0);

Reg#(bit) b2 <- mkReg(0);

rule up3;

b1 <= 1;

b2 <= 1;

endrule

rule done (b2 == 1);

$display("b12 = %b", {b1,b2});

$finish;

endrule

endmodule: mkTb

endpackage: Tb

A.12.5 Register containing a vector vs. vector of registers

Source files are in directory: vector/regvec_vecreg

package Tb;

import Vector :: *;

typedef enum { OK,

FAIL,

TEST,

WAIT

} Status deriving (Bits, Eq);

(* synthesize *)

module mkTb (Empty);

286 APPENDIX A. SOURCE FILES

Reg#(Vector#(10,Status)) regstatus <- mkReg(replicate(OK)) ;

Vector#(10, Reg#(Status)) vecstatus <- replicateM (mkReg (OK)) ;

Reg#(Maybe#(UInt#(4))) failCond <- mkReg(Invalid);

Reg#(UInt#(4)) cycle <- mkReg(0);

rule checkChannel;

cycle <= cycle + 1;

if (cycle == 5)

failCond <= tagged Valid 5;

else

failCond <= tagged Invalid;

$display("cycle = ", cycle);

if (cycle > 9) $finish(0);

endrule

rule updateRegStatus (failCond matches tagged Valid .chan);

let tempstatus = regstatus;

tempstatus[chan] = FAIL;

tempstatus[chan + 1] = TEST;

regstatus <= tempstatus ;

endrule

rule displayReg ;

for (Integer i = 0 ; i < 10; i = i + 1) begin

$display ("RegStatus(i)", regstatus[i]);

$display ("VecStatus(i)", vecstatus[i]);

end

endrule

rule updateVecStatus (failCond matches tagged Valid .chan);

vecstatus[chan] <= FAIL ;

vecstatus[chan + 1] <= TEST;

endrule

endmodule

endpackage

A.12.6 Vector of modules

Source files are in directory: vector/modules

// Copyright 2008 Bluespec, Inc. All rights reserved.

A.12. VECTORS 287

// section 8 f - array of module

package Tb;

typedef Bit#(14) TD;

import FIFO::*;

import Vector::*;

import StmtFSM::*;

(* synthesize *)

module mkTb (Empty);

// two fifos in

Vector#(2,FIFO#(TD)) ififo <- replicateM(mkFIFO);

// four fifos out

Vector#(4,FIFO#(TD)) ofifo <- replicateM(mkFIFO);

// if move0 fires, then move1 does not

// this just gets rid of the warning you see otherwise

// this is good enough for this example of index modules

(* preempts = "move0, move1" *)

rule move0;

let data = ififo[0].first();

ififo[0].deq();

case (data[13:12])

0: ofifo[0].enq(data); // call (ofifo[0]) method enq(data)

1: ofifo[1].enq(data);

2: ofifo[2].enq(data);

3: ofifo[3].enq(data);

endcase

endrule

rule move1;

let data = ififo[1].first();

ififo[1].deq();

case (data[13:12])

0: ofifo[0].enq(data);

1: ofifo[1].enq(data);

2: ofifo[2].enq(data);

3: ofifo[3].enq(data);

endcase

endrule

// see more about test sequences in section 12

Stmt test =

seq

// bits 13:12 select the output fifo

ififo[0].enq(’h0000);

288 APPENDIX A. SOURCE FILES

ififo[0].enq(’h1001);

ififo[0].enq(’h2002);

ififo[0].enq(’h3003);

ififo[1].enq(’h0000);

ififo[1].enq(’h1010);

ififo[1].enq(’h2020);

ififo[1].enq(’h3030);

noAction;

endseq;

mkAutoFSM (test);

// and now create 4 rules to watch each output using

// static elaboration

for (Integer i=0; i<4; i=i+1)

rule watch;

let data = ofifo[i].first();

ofifo[i].deq();

$display("ofifo[%d] => %x at ", i, data, $time);

endrule

endmodule: mkTb

endpackage: Tb

A.12.7 Static elaboration

Source files are in directory: vector/static_elab

// Copyright 2008 Bluespec, Inc. All rights reserved.

package Tb;

import Vector::*;

(* synthesize *)

module mkTb (Empty);

Vector#(8,Reg#(int)) arr1 <- replicateM(mkRegU);

Reg#(int) step <- mkReg(0);

rule init (step == 0);

for (Integer i=0; i<8; i=i+1)

arr1[i] <= fromInteger(i);

step <= step + 1;

endrule

rule step1 (step == 1);

for (int i=0; i<8; i=i+1)

arr1[i] <= i;

A.12. VECTORS 289

step <= step + 1;

endrule

rule step2 (step == 2);

for (int i=0; i<8; i=i+1)

if (i != 7)

arr1[i+1] <= arr1[i];

else

arr1[0] <= arr1[7];

step <= step + 1;

endrule

rule step3 (step == 3);

for (int i=0; i<8; i=i+1)

case (i)

0: arr1[0] <= arr1[3];

1: arr1[1] <= arr1[1];

2: arr1[2] <= arr1[2];

3: arr1[3] <= arr1[0];

4: arr1[4] <= arr1[5];

5: arr1[5] <= arr1[7];

6: arr1[6] <= arr1[4];

7: arr1[7] <= arr1[6];

endcase

step <= step + 1;

endrule

// now let’s get run time...

Reg#(UInt#(3)) inx <- mkReg(0);

rule step4 (step == 4);

arr1[inx] <= 0;

step <= step + 1;

endrule

rule step5 (step == 5);

for (Integer i=0; i<8; i=i+1) begin

int indexVal = unpack(zeroExtend(pack(inx)));

end

step <= step + 1;

endrule

rule step6 (step == 6);

for (Integer i=1; i<8; i=i+1)

arr1[i-1] <= arr1[i] + fromInteger(i * 3);

step <= step + 1;

endrule

rule step7 (step == 7);

int acc = 0;

290 APPENDIX A. SOURCE FILES

for (Integer i=0; i<8; i=i+1) begin

acc = arr1[i] + acc;

arr1[i] <= acc;

end

step <= step + 1;

endrule

rule step8 (step == 8);

$display ("All done");

$finish (0);

endrule

rule watcher (step > 0);

$display("=== step %d ===", step);

for (Integer i=0; i<8; i=i+1)

$display (" arr1[%d] = ", i, arr1[i]);

endrule

endmodule: mkTb

endpackage: Tb

A.13 Finite State Machines

Chapter examples are in directory: fsm

A.13.1 Building a FSM explicitly using rules

Source files are in directory: fsm/rules

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

typedef enum { IDLE, STEP1, STEP2, STOP } State deriving(Bits,Eq);

// A top-level module connecting the stimulus generator to the DUT

(* synthesize *)

module mkTb (Empty);

Reg#(State) state <- mkReg(IDLE);

Reg#(int) counter <- mkReg(0);

Reg#(Bool) restart <- mkReg(False);

rule runCounter;

if (counter == 200) begin

A.13. FINITE STATE MACHINES 291

$display("Done");

$finish;

end

counter <= counter + 1;

endrule

rule stateIdle (state == IDLE);

$display("Counter = %03d, State: IDLE", counter);

// arc out of this state when counter = 4,8,12,etc

if (counter % 4 == 0)

state <= STEP1;

endrule

rule stateStep1 (state == STEP1);

$display("Counter = %03d, State: STEP1", counter);

if (restart)

state <= IDLE;

else if (counter % 8 == 0)

state <= STEP2;

endrule

rule stateStep2 (state == STEP2);

$display("Counter = %03d, State: STEP2", counter);

state <= STOP;

endrule

rule stateSTOP (state == STOP);

$display("Counter = %03d, State: STOP", counter);

state <= IDLE;

endrule

endmodule

endpackage

A.13.2 One-hot FSM explicitly using rules

Source files are in directory: fsm/onehot

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

// --

// A top-level module connecting the stimulus generator to the DUT

(* synthesize *)

module mkTb (Empty);

Integer idle = 0;

Integer step1 = 1; // or "idle + 1",

292 APPENDIX A. SOURCE FILES

Integer step2 = 2;

Integer stop = 3;

function Bit#(4) toState(Integer st);

return 1 << st;

endfunction

Reg#(Bit#(4)) state <- mkReg(toState(idle));

// counter just to generate some conditions to move state along

Reg#(int) counter <- mkReg(0);

Reg#(Bool) restart <- mkReg(False);

rule runCounter;

if (counter == 200) begin

$display("Done");

$finish;

end

counter <= counter + 1;

endrule

(* mutually_exclusive = "stateIdle, stateStep1, stateStep2, stateStop" *)

rule stateIdle (state[idle] == 1);

$display("Counter = %03d, State: IDLE", counter);

if (counter % 4 == 0)

state <= toState(step1);

endrule

rule stateStep1 (state[step1] == 1);

$display("Counter = %03d, State: STEP1", counter);

if (restart)

state <= toState(idle);

else if (counter % 4 == 0)

state <= toState(step2);

endrule

rule stateStep2 (state[step2] == 1);

$display("Counter = %03d, State: STEP2", counter);

state <= toState(stop);

endrule

rule stateStop (state[stop] == 1);

$display("Counter = %03d, State: STOP", counter);

state <= toState(idle);

endrule

endmodule

A.13. FINITE STATE MACHINES 293

endpackage

A.13.3 StmtFSM - Basic template

Source files are in directory: fsm/stmtfsm_basic

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

import StmtFSM::*;

(* synthesize *)

module mkTb (Empty);

Reg#(Bool) complete <- mkReg(False);

Stmt test =

seq

$display("I am now running at ", $time);

$display("I am now running one more step at ", $time);

$display("And now I will finish at", $time);

$finish;

endseq;

FSM testFSM <- mkFSM (test);

rule startit ;

testFSM.start();

endrule

rule alwaysrun;

$display(" and a rule fires at", $time);

endrule

endmodule

endpackage

A.13.4 AutoFSM

Source files are in directory: fsm/autofsm

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

import StmtFSM::*;

(* synthesize *)

294 APPENDIX A. SOURCE FILES

module mkTb (Empty);

Stmt test =

seq

$display("I am now running at ", $time);

$display("I am now running one more step at ", $time);

$display("And now I will finish at", $time);

endseq;

mkAutoFSM (test);

rule alwaysrun;

$display(" and a rule fires at", $time);

endrule

endmodule

endpackage

A.13.5 StmtFSM example

Source files are in directory: fsm/example

// Copyright 2010 Bluespec, Inc. All rights reserved.

package Tb;

import StmtFSM::*;

import FIFOF::*;

(* synthesize *)

module mkTb (Empty);

FIFOF#(int) fifo <- mkFIFOF;

Reg#(Bool) cond <- mkReg(True);

Reg#(int) ii <- mkRegU;

Reg#(int) jj <- mkRegU;

Reg#(int) kk <- mkRegU;

function Action functionOfAction(int x);

return action

$display("this is an action inside of a function, writing %d", x);

ii <= x;

endaction;

endfunction

function Stmt functionOfSeq(int x);

return seq

action

A.13. FINITE STATE MACHINES 295

$display("sequence in side function %d", x);

ii <= x;

endaction

action

$display("sequence in side function %d", x+1);

ii <= x+1;

endaction

endseq;

endfunction

Stmt test =

seq

// something of type "action" can be put on one line by itself

$display("This is action 1"); // cycle 1

$display("This is action 2"); // cycle 2

$display("This is action 3"); // cycle 3

// an action with several actions still only take one cycle

action

$display("This is action 4, part a");

$display("This is action 4, part b");

endaction

// use functions to create actions that you are repeating a lot

functionOfAction(10);

functionOfAction(20);

functionOfAction(30);

// Create a function with my sequence and call it as needed

functionOfSeq(50);

// this whole action is just one cycle when it fires

action

$display("This is action 5");

if (cond)

$display("And it may have several actions inside of it");

endaction

// this is a valid "nop".. It’s an action - it’s noAction!

noAction;

repeat (4) noAction;

repeat (4) action

$display("Repeating action!");

$display("Check it out");

endaction

seq

noAction;

296 APPENDIX A. SOURCE FILES

noAction;

endseq

if (cond) seq

// if cond is true, then execute this sequence

$display("If seq 1"); // cycle 1

$display("If seq 2"); // cycle 2

$display("If seq 3"); // cycle 3

endseq

else seq

// if cond is false, then execute this sequence

action

$display("Else seq 1");

endaction

action

$display("Else seq 2");

endaction

endseq

//

// noice this is different that if/else inside a action

// this takes one cycle when it executes

action

if (cond)

$display("if action 1");

else

$display("else action 1");

endaction

action

$display("Enq 10 at time ", $time);

fifo.enq(10);

endaction

action

$display("Enq 20 at time ", $time);

fifo.enq(20);

endaction

action

$display("Enq 30 at time ", $time);

fifo.enq(30);

endaction

action

$display("Enq 40 at time ", $time);

fifo.enq(40);

endaction

//

// await is used to generate an implicit condition

// await is an action which can be merged into another action

// in this case I wanted to print a message when we were done

A.13. FINITE STATE MACHINES 297

// while the fifo is notEmpty, the state machine

// sits here and no actions fire

action

$display("Fifo is now empty, continue...");

await(fifo.notEmpty() == False);

endaction

if (cond)

noAction; // A

else

noAction; // B

for (ii <= 0; ii < 10; ii <= ii + 1) seq

$display("For loop step %d at time ", ii, $time);

endseq

ii <= 0;

while (ii < 10) seq

action

$display("While loop step %d at time ", ii, $time);

ii <= ii + 1;

endaction

endseq

for (ii <=0; ii<=4; ii<=ii+1)

for (jj <=0; jj<=5; jj<=jj+1)

for (kk <=0; kk<=3; kk<=kk+1) seq

action

if (kk == 0)

$display("kk = 000, and ii=%1d, jj=%1d", ii, jj);

else

$display("kk = --%1d, and ii=%1d, jj=%1d", kk, ii, jj);

endaction

endseq

par

$display("Par block statement 1 at ", $time);

$display("Par block statement 2 at ", $time);

seq

$display("Par block statement 3a at ", $time);

$display("Par block statement 3b at ", $time);

endseq

endpar

$display("Par block done!");

par

seq

298 APPENDIX A. SOURCE FILES

ii <= 2;

ii <= 3;

endseq

seq

ii <= 1;

ii <= 0;

endseq

ii <= 10;

endpar

$display("par block conflict test, ii = ", ii);

endseq;

FSM testFSM <- mkFSM(test);

Stmt rcvr =

seq

while(True) seq

action

$display("fifo popped data", fifo.first());

fifo.deq();

endaction

repeat (5) noAction;

endseq

endseq;

FSM rcvrFSM <- mkFSM(rcvr);

rule startit;

testFSM.start();

rcvrFSM.start();

endrule

rule finish (testFSM.done() && !rcvrFSM.done());

$finish;

endrule

endmodule

endpackage

A.14 Importing existing RTL

Chapter examples are in directory: importbvi

A.14. IMPORTING EXISTING RTL 299

A.14.1 Verilog File

Source files are in directory: importbvi/verilog

module SizedFIFO(V_CLK, V_RST_N, V_D_IN, V_ENQ, V_FULL_N, V_D_OUT, V_DEQ, V_EMPTY_N, V_CLR);

parameter V_P1WIDTH = 1; // data width

parameter V_P2DEPTH = 3;

parameter V_P3CNTR_WIDTH = 1; // log(p2depth-1)

// The -1 is allowed since this model has a fast output register

parameter V_GUARDED = 1;

input V_CLK;

input V_RST_N;

input V_CLR;

input [V_P1WIDTH - 1 : 0] V_D_IN;

input V_ENQ;

input V_DEQ;

output V_FULL_N;

output V_EMPTY_N;

output [V_P1WIDTH - 1 : 0] V_D_OUT;

endmodule

A.14.2 Using an existing interface

Source files are in directory: importbvi/FIFOifc

import FIFOF :: * ;

import "BVI" SizedFIFO =

module mkSizedFIFOtest #(Integer depth, Bool g) (FIFOF#(a))

//module mkSizedFIFOtest #(Integer depth) (FIFOF#(a))

provisos(Bits#(a,size_a));

parameter V_P1WIDTH = valueOf(size_a);

parameter V_P2DEPTH = depth;

parameter V_P3CNTR_WIDTH = log2(depth+1);

parameter V_GUARDED = Bit#(1)’(pack(g));

default_clock clk;

default_reset rst_RST_N;

input_clock clk (V_CLK) <- exposeCurrentClock;

input_reset rst_RST_N (V_RST_N) clocked_by(clk) <- exposeCurrentReset;

method enq (V_D_IN) enable(V_ENQ) ready(V_FULL_N);

method deq () enable(V_DEQ) ready(V_EMPTY_N);

method V_D_OUT first () ready(V_EMPTY_N);

300 APPENDIX A. SOURCE FILES

method V_FULL_N notFull ();

method V_EMPTY_N notEmpty ();

method clear () enable (V_CLR);

schedule deq CF enq ;

schedule enq CF (deq, first) ;

schedule (first, notEmpty, notFull) CF (first,notEmpty, notFull) ;

schedule (clear, deq, enq) SBR clear ;

schedule first SB (clear, deq) ;

schedule (notEmpty, notFull) SB (clear, deq, enq) ;

schedule deq C deq;

schedule enq C enq;

endmodule

(*synthesize*)

module mkTb();

FIFOF#(Bit#(8)) i <- mkSizedFIFOtest(2, True);

endmodule

A.14.3 Defining a new interface

Source files are in directory: importbvi/GetPutifc

interface MyGetPut#(type t);

interface Get#(t) g;

interface Put#(t) p;

endinterface

import GetPut ::*;

import "BVI" SizedFIFO =

module mkSizedFIFOtest #(Integer depth, Bool guard) (MyGetPut#(a))

provisos(Bits#(a,size_a));

parameter V_P1WIDTH = valueOf(size_a);

parameter V_P2DEPTH = depth;

parameter V_P3CNTR_WIDTH = log2(depth+1);

parameter V_GUARDED = Bit#(1)’(pack(guard));

port V_CLR = 0;

default_clock clk;

default_reset rst_RST_N;

input_clock clk (V_CLK) <- exposeCurrentClock;

input_reset rst_RST_N (V_RST_N) clocked_by(clk) <- exposeCurrentReset;

A.14. IMPORTING EXISTING RTL 301

interface Get g;

method V_D_OUT get () enable(V_DEQ) ready(V_EMPTY_N);

endinterface

interface Put p;

method put(V_D_IN) enable(V_ENQ) ready(V_FULL_N);

endinterface

schedule g_get CF p_put ;

schedule g_get C g_get;

schedule p_put C p_put;

endmodule

(*synthesize*)

module mkTb();

MyGetPut#(Bit#(8)) i <- mkSizedFIFOtest(2, True);

endmodule

Index

-show-range-conflict, 86
.ba, 24
.bo, 24
.bspec, 24, 26
.bsv, 24
.cxx, 24
.h, 24
.o, 24
.so, 24
.v, 24
$display, 23
$finish, 23

Action method, 30
ActionValue method, 30
aggressive-conditions, 100
always_enabled, 99
always_ready, 99
Arith (typeclass), 35, 39, 41, 124, 125, 135
attributes

always_enabled, 99
always_ready, 99
conflict_free, 93
descending_urgency, 56, 87, 89, 95, 98,

115
fire_when_enabled, 96, 111
mutually_exclusive, 91
no_implicit_conditions, 96, 111
preempts, 94
synthesize, 22

BDW (Bluespec Development Workstation),
24

Bit (type), 36
bit (type), 39
BitExtend (typeclass), 35, 125

extend (function), 35
signExtend (function), 35
truncate (function), 35
zeroExtend (function), 35

BitReduction (typeclass), 35, 125
Bits (typeclass), 35, 125

pack (function), 35, 97, 125, 145, 171
unpack (function), 35, 97, 125, 145, 171

Bitwise (typeclass), 35, 125
Bluesim, 24, 159

waveforms, 70
Bool (type), 37, 39
Bounded (typeclass), 35, 125
building a design, 26
BypassWire, 119

case expressions, 160
case statements, 141

example of, 113, 118, 144, 177, 179
Client interface, 45, 77, 81
ClientServer interface, 45
comments, 22
compile, 27
conflict_free, 93

data types, 33
declaring variables, 43
descending_urgency, 56, 87, 89, 95, 98, 115
don’t care expressions, 158
DWire, 115

enum
definition of, 134
example of, 143, 175, 181

Eq (typeclass), 35, 125
execution order, 89
extend (function), 35

302

INDEX 303

FIFO, 36, 93, 101, 120, 145, 176
FIFO

interface, 44, 61, 86, 120, 134
package, 61, 81, 165

FIFOF (package), 188
file types, 24
fire_when_enabled, 96, 111
flags

+bscvcd, 70
-V, 70
-aggressive-conditions, 100
-g, 22
-sched-dot, 90
-show-range-conflict, 86
simulation, 70

fromInteger (function), 35, 41
fromReal (function), 35
function, 161

Action functions, 75
interface transformers, 83
Maybe functions, 108, 140
polymorphic, 123
Vector functions, 165

Get interface, 77, 81, 195

implicit conditions, 30, 62, 100, 112, 181
attributes, 96
BypassWire, 119
DWire, 116
methods, 70, 74
StmtFSM, 186, 191
Wire, 114

import statement, 31, 61, 81, 165, 186
importBVI, 195
initializing variables, 43
instance (typeclass), 34
instantiating modules, 30, 43

Vector functions, 174
Int (type), 37, 39
int (type), 39
Integer (type), 40
interface, 29, 44, 81

subinterface, 45, 76
interface method, 30

Action, 30

ActionValue, 30
Value, 30

interface type, 30
ClientServer, 45
Client, 45, 77, 81
Empty, 22
FIFO, 44
Get, 77, 81, 195
Put, 77, 81, 195
Server, 45, 77, 81

Literal (typeclass), 35, 125
fromInteger (function), 35

Maybe (functions), 108, 140
Maybe (type), 107, 139, 175
method statement, 29

defining, 72, 80
implicit condition, 97
importBVI, 196
scope of methods, 68

mkConnection (module), 81
mkFIFO (module), 44, 61, 86
module, 65

definition, 22
instantiation, 30, 43
polymorphic, 127
reports, 25, 90
scheduling attributes, 87, 88
Verilog, 195

mutually_exclusive, 91

no_implicit_conditions, 96, 111

Ord (typeclass), 35, 125
overloading, 34

pack (function), 35, 97, 125, 145, 171
package, 22, 24, 28, 31
pattern-matching

in case expressions, 160
in case statements, 113, 117, 141, 144
in conditional expressions, 154
select from Tuples, 148

polymorphism, 84
preempts, 94
project file (.bspec), 24

304 INDEX

provisos, 124, 145, 171
PulseWire, 116
Put interface, 77, 81, 195

RealLiteral (typeclass), 35
fromReal (function), 35

rules, 23, 53
condition, 23, 74
conflict, 54, 93, 94, 112
scheduling, 85

RWire, 107, 120, 197

scheduling attributes, 87
scheduling graphs, 25
scheduling rules, 54, 70, 85, 107, 175
Server interface, 45, 77, 81
signExtend (function), 35, 37
SizeOf (function), 127
String (type), 23, 42, 197
struct, 145, 148

example of, 43, 141
type definition, 136

subinterface, 45, 76, 81
synthesize, 22
system tasks, 23

tagged union, 136, 137, 140, 141
example of, 144

toGet, 83
toPut, 83
truncate (function), 35, 37
Tuple, 113, 148
type

Bit, 36
bit, 39
conversion functions, 35
Int, 37, 39
int, 39
Integer, 40
Maybe, 107
String, 42
UInt, 37, 38

typeclass, 34, 125
Arith, 35, 125
BitExtend, 35, 125
BitReduction, 35, 125

Bits, 35, 125
Bitwise, 35, 125
Bounded, 35, 125
Eq, 35, 125
Literal, 35, 125
Ord, 35, 125
RealLiteral, 35

UInt (type), 37, 38
unpack (function), 35, 39, 97, 125, 145, 171

Value method, 30
valueOf (function), 35, 126, 197
variables, 43
Vector, 163

example of, 126, 136
Verilog, 25

always blocks, 53
importing, 195
module boundary, 22
port list, 65
simulation, 24
system tasks, 23
waveforms, 70

waveforms, 70
Wire, 114
workstation, 24, 90, 195

zeroExtend (function), 35, 37

	Table of Contents
	Introduction
	Design activities where BSV is used
	Key ideas in BSV
	Behavior
	Structure

	Why BSV? Can't we do all this with existing languages (like C++)?
	About this book

	Getting started with BSV
	A simple example
	Comments
	Package
	(* synthesize *)
	Module definition
	Rule
	System tasks

	Building the design
	Bluespec Development Workstation (BDW)
	Components of a BSV design
	Overview of the BSV build process
	Create a project file
	Compile

	Multiple modules in a single package
	Interfaces

	Multiple packages in a single design

	Data types
	Type
	Uppercase and lowercase in type and value identifiers
	Typeclasses and overloading
	Pre-defined type classes
	Data type conversion functions
	Some common scalar types
	Bit#(n)
	Bool
	UInt#(n)
	Int#(n)

	Using abstract types instead of Bit
	Integers
	Strings

	Variables, assignments, and combinational circuits
	Variable declaration and initialization
	Side-effect initialization
	Value initialization
	Value initialization from a Value method
	Initializing sub-interface components
	Additional examples

	Combinational circuits
	Error - no type declaration
	Error - no initialization

	Rules, registers, and fifos
	Defining and updating a register
	Registers
	Updating the register

	Rules and their semantics: atomicity and orderings
	Composition of rules
	Attribute descending_urgency

	Multiple registers in a rigid synchronous pipeline
	Using register syntax shorthands
	Using valid bits
	Multiple FIFOs in an elastic asynchronous pipeline

	Module hierarchy and interfaces
	Module hierarchies
	Parameter
	Scope of methods
	Analyzing a design

	Implicit conditions of methods
	ActionValue methods
	The let statement
	The <- operator
	Defining the ActionValue Method

	ActionValue method with type error
	ActionValue method with error in rule condition
	Defining an Action function
	Nested interfaces
	Standard connectivity interfaces

	Scheduling
	Scheduling error due to parallel composition
	Scheduling attributes
	Prioritization using descending_urgency
	Descending urgency vs. execution order
	mutually_exclusive
	conflict_free
	preempts
	fire_when_enabled, no_implicit_conditions

	always_ready, always_enabled
	-aggressive-conditions
	Separating an ActionValue method

	RWires and Wire types
	RWire
	Up-down counter with simultaneous up/down commands
	Attributes (*fire_when_enabled, no_implicit_conditions*)
	Compiling the Example
	RWire with pattern-matching

	Wire
	DWire
	PulseWire
	BypassWire
	RWires and atomicity

	Polymorphism
	Polymorphic function
	Common overloading provisos
	Size relationship provisos
	valueOf and SizeOf pseudo-functions

	Simple polymorphic module with provisos

	Advanced types and pattern-matching
	User-defined types
	Type synonyms
	Enums
	Structs
	Tagged unions
	Maybe type
	Case statements and pattern-matching on tagged unions

	Simple Processor Model
	Structs of registers vs. register containing a struct
	Tuples

	Static elaboration - For-loops/while-loops
	Non-terminating for-loops and while-loops
	Static and dynamic conditionals

	Expressions
	``Don't care'' expressions, 2-valued and 4-valued logic
	Case expressions
	Function calls

	Vectors
	Arrays and square-bracket notation
	Arrays vs. Vectors
	bit-vectors and square bracket notation
	Whole register update
	Vector of registers
	Register containing a vector vs. a vector of registers
	Vector of module interfaces
	Static and dynamic indexing of vectors

	Finite State Machines (FSMs)
	Building an FSM explicitly using rules
	One-hot FSM explicitly using rules
	StmtFSM
	A basic template
	AutoFSM
	StmtFSM example

	Importing existing RTL into a BSV design
	Using an existing interface
	Module header definition
	Parameters
	Clocks and Resets
	Methods

	Defining a new interface

	Source Files
	Getting started with BSV
	A simple example
	Testbench communicating with DUT
	Multiple packages in a single design

	Data types
	Using abstract types instead of Bit
	Integers
	Strings

	Variables, assignments, and combinational circuits
	Variable declaration and initialization
	Combinational circuits

	Rules, registers, and FIFOs
	Defining and updating a Register
	Composition of rules
	Multiple registers in a rigid pipeline
	Using register syntax shorthand
	Using valid bits
	Asynchronous pipeline using FIFOs

	Module hierarchy and interfaces
	Module hierarchies
	Implicit conditions of methods
	ActionValue method
	ActionValue method with type error
	ActionValue method with error in rule condition
	Defining an Action function
	Nested interfaces
	Standard connectivity interfaces

	Scheduling
	Scheduling error due to parallel composition
	Prioritization using descending_urgency
	descending urgency vs. execution order
	mutually_exclusive
	conflict_free
	preempts
	fire_when_enabled, no_implicit_conditions
	always_ready, always_enabled
	aggressive_conditions
	Separating ActionValue method

	RWires and Wire types
	Simple RWire example
	RWire with pattern matching
	Wire
	DWire
	PulseWire
	BypassWire
	RWires and atomicity

	Polymorphism
	Polymorphic function
	Simple polymorphic function with provisos

	Advanced types and pattern-matching
	Enums
	Simple Processor Model
	Structs of registers vs. register containing a struct
	Tuples

	Static elaboration - for loops/while loops
	For-loops/While-loops
	Static and dynamic conditionals

	Expressions
	Don't care expressions
	Case expressions
	Function calls

	Vectors
	Arrays and square-bracket notation
	Arrays vs. Vectors
	bit-vectors and square bracket notation
	Whole register update
	Register containing a vector vs. vector of registers
	Vector of modules
	Static elaboration

	Finite State Machines
	Building a FSM explicitly using rules
	One-hot FSM explicitly using rules
	StmtFSM - Basic template
	AutoFSM
	StmtFSM example

	Importing existing RTL
	Verilog File
	Using an existing interface
	Defining a new interface

	Index

