
Constructive Computer Architecture
Tutorial 8

Final Project Part 2: Coherence

Sizhuo Zhang
6.175 TA

Nov 25, 2015 T08-1http://csg.csail.mit.edu/6.175

Debugging Techniques
Deficiency about $display
 Everything shows up together

Distinct log file for each module: write to file
 Also see src/unit_test/sc-test/Tb.bsv

Nov 25, 2015 T08-2http://csg.csail.mit.edu/6.175

Ehr#(2, File) file <- mkEhr(InvalidFile);
Reg#(Bool) opened <- mkReg(False);
rule doOpenFile(!opened);

let f <- $fopen(“a.txt”, "w");
if(f == InvalidFile) $finish;
file[0] <= f; opened <= True;

endrule
rule doPrint;

$fwrite(file[1], "Hello world\n");
endrule

Writing to
InvalidFile will
cause segfault.

Use EHR if the
logic will call
$fwrite in the first
cycle

Debugging Techniques
Deficiency about cycle counter
 Rule for printing cycle may be scheduled

before/after the rule we are interested in
 Don’t want to create a counter in each module
Use simulation time
 $display(“%t: evict cache line”, $time);
 $time returns Bit#(64) representing time
 In SceMi simulation, $time outputs: 10, 30, ...

Nov 25, 2015 T08-3http://csg.csail.mit.edu/6.175

Debugging Techniques
Add sanity check
Example 1
 Parent is handling upgrade request
 No other child has incompatible state
 Parent decides to send upgrade response
 Check: parent is not waiting for any child (waitc)

Example 2
 D cache receives upgrade response from memory
 Check: must be in WaitFillResp state
 Process the upgrade response
 Check: if in I state, then data in response must be

valid, otherwise data must be invalid (data field is
Maybe type in the lab)

Nov 25, 2015 T08-4http://csg.csail.mit.edu/6.175

Coherence Protocol:
Differences From Lecture

In lecture: address type for byte address
 Implementation: only uses cache line address
 addr >> 6 for 64B cache line

In lecture: parent reads data using 0 cycle
 Implementation: read from memory, long latency

In lecture: voluntary downgrade rule
 No need in implementation

In lecture: Parent directory tracks states for all
address
 32-bit address space huge directory
 Implementation: usually parent is L2 cache, so only

track address in L2 cache
 We don’t have L2 cache

Nov 25, 2015 T08-5http://csg.csail.mit.edu/6.175

Coherence Protocol:
Differences From Lecture

Work around for large directory
 For each child, only tracks addresses in its

L1 D cache

 To get MSI state for address a in core i

Nov 25, 2015 T08-6http://csg.csail.mit.edu/6.175

Vector#(CoreNum, Vector#(CacheRows, Reg#(CacheTag)))
tags <- replicateM(replicateM(mkRegU));

Vector#(CoreNum, Vector#(CacheRows, Reg#(MSI))
states <- replicateM(replicateM(mkReg(I)));

MSI s = tags[i][getIndex(a)] == getTag(a) ?
states[i][getIndex(a)] : I;

Load-Reserve (lr.w) and
Store-Conditional (sc.w)

New state in D cache
 Reg#(Maybe#(CacheLineAddr)) la <- mkReg(Invalid);

 Cache line address reserved by lr.w
Load reserve: lr.w rd, (rs1)
 rd <= mem[rs1]

 Make reservation: la <= Valid (getLineAddr(rs1));

Store conditional: sc.w rd, rs2, (rs1)
 Check la: la invalid or addresses don’t match: rd <= 1

 Otherwise: get exclusive permission (upgrade to M)
 Check la again
 If address match: mem[rs1] <= rs2; rd <= 0
 Otherwise: rd <= 1

 If cache hit, no need to check again (address already match)
 Always clear reservation: la <= Invalid

Nov 25, 2015 T08-7http://csg.csail.mit.edu/6.175

Load-Reserve (lr.w) and
Store-Conditional (sc.w)

Cache line eviction
 Due to replacement, invalidation request ...
 May lose track of reserved cache line

 Then clear reservation
 Compare evicted cache line with la

 If match: la <= invalid

 This is how lr.w/sc.w pair ensures atomicity

Nov 25, 2015 T08-8http://csg.csail.mit.edu/6.175

Reference Memory Model
Debug interface returned by reference model
is passed into every D cache

 D cache calls the debug interface refDMem
 Reference model will check violation of coherence

based on the calls
Referece model: src/ref

Nov 25, 2015 T08-9http://csg.csail.mit.edu/6.175

interface RefDMem;
method Action issue(MemReq req);
method Action commit(MemReq req,

Maybe#(CacheLine) line, Maybe#(MemResp) resp);
endinterface
module mkDCache#(CoreID id)(

MessageGet fromMem, MessagePut toMem,
RefDMem refDMem, DCache ifc);

Reference Memory Model
issue(MemReq req)
 Called when req issued to D cache
 in req method of D cache
 Give program order to reference model
commit(MemReq req, Maybe#(CacheLine) line,
Maybe#(MemResp) resp);
 Called when req finishes processing (commit)
 line: cache line accessed by req, set to Invalid if unknown
 resp: response to the core, set to Invalid if no repsonse

Reference model checks when commit is called
 req can be committed or not
 line value is correct or not (not checked if Invalid)
 resp is correct or not

Nov 25, 2015 T08-10http://csg.csail.mit.edu/6.175

Adding Store Queue
New behavior for memory requests
 Ld: can start processing when store queue is

not empty
 St: enqueuer to store queue
 Lr, Sc: wait for store queue to be empty
 Fence: wait for all previous requests to commit

(e.g. store queue must be empty)
 Ordering memory accesses

Issuing stores from store queue to process
 Only stall when there is a Ld request

Nov 25, 2015 T08-11http://csg.csail.mit.edu/6.175

Multicore Programs
Run programs on 2-core system
Single-thread programs
 Programs/assembly, programs/benchmarks
 core 1 starts looping forever at the very beginning

Multithread programs
 Programs/mc_bench
 startup code (crt.S): allocate 128KB local stack for

each core
 main function: fork based on core id

Nov 25, 2015 T08-12http://csg.csail.mit.edu/6.175

int main() {
int coreid = getCoreId();
if(coreid == 0) { return core0(); }
else { return core1(); }

}

Multicore Programs:
mc_print

Easiest one
Two cores print “0” and “1” respectively
Sample output:

 (no cycle/inst count printed)

Nov 25, 2015 T08-13http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_print.riscv.vmh ----
01
PASSED

Multicore Programs:
mc_hello

Core 0 passes each character of a string to core 1
Core 1 prints each character it receives
Sample output:

 (no cycle/inst count printed)

Nov 25, 2015 T08-14http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_hello.riscv.vmh ----
Hello World!
This message has been written to a software FIFO by core 0 and
read and printed by core 1.
PASSED

Multicore Programs:
mc_produce_consume

Larger version of mc_hello
Core 1 passes each element of an array to
core 0
Core 0 checks the data
Sample output:

Nov 25, 2015 T08-15http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_produce_consume.riscv.vmh ----
Benchmark mc_produce_consume
Cycles (core 0) = xxx
Insts (core 0) = xxx
Cycles (core 1) = xxx
Insts (core 1) = xxx
Cycles (total) = xxx
Insts (total) = xxx
Return 0
PASSED

Instruction counts may vary
due to variation in busy waiting
time, so IPC is not a good
performance metric.
Execute time is a better metric.

Multicore Programs:
mc_median/vvadd/multiply

Data parallel: fork-join style
Core 0 calculates first half results
Core 1 calculates second half results
Sample output:

Nov 25, 2015 T08-16http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_median.riscv.vmh ----
Benchmark mc_median
Cycles (core 0) = xxx
Insts (core 0) = xxx
Cycles (core 1) = xxx
Insts (core 1) = xxx
Cycles (total) = xxx
Insts (total) = xxx
Return 0
PASSED

Multicore Programs:
mc_dekker

Two cores contend for a mutex (Dekker’s algo)
After getting into critical section
 increment/decrement shared counter, print core ID

Sample output:

Nov 25, 2015 T08-17http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_dekker.riscv.vmh ----
Benchm1ark mc_1dekker1
100110...000
Core 0 decrements counter by 600
Core 1 increments counter by 900
Final counter value = 300
Cycles (core 0) = xxx
Insts (core 0) = xxx
Cycles (core 1) = xxx
Insts (core 1) = xxx
Cycles (total) = xxx
Insts (total) = xxx
Return 0
PASSED

For implementation with
store queue, fence is
inserted in mc_dekker.

Multicore Programs:
mc_spin_lock

Similar to mc_dekker, but use spin lock
implemented by lr.w/sc.w

Sample output:

Nov 25, 2015 T08-18http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_spin_lock.riscv.vmh ----
Bench1mark mc1_spin_l1ock
10101...000
Core 0 increments counter by 300
Core 1 increments counter by 600
Final counter value = 900
Cycles (core 0) = xxx
Insts (core 0) = xxx
Cycles (core 1) = xxx
Insts (core 1) = xxx
Cycles (total) = xxx
Insts (total) = xxx
Return 0
PASSED

Multicore Programs:
mc_incrementers

Similar to mc_dekker, but use atomic fetch-and-
add implemented by lr.w/sc.w
Core ID is not printed
Sample output:

Nov 25, 2015 T08-19http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_incrementers.riscv.vmh ----
Benchmark mc_incrementers

core0 had 1000 successes out of xxx tries
core1 had 1000 successes out of xxx tries
shared_count = 2000
Cycles (core 0) = xxx
Insts (core 0) = xxx
Cycles (core 1) = xxx
Insts (core 1) = xxx
Cycles (total) = xxx
Insts (total) = xxx
Return 0
PASSED

Some Reminders
Use CF regfile and scoreboard
 Compiler creates a conflict in my

implementation with bypass regfile and
pipelined scoreboard

Signup for project meeting
 Half-page progress report
Project deadline: 3:00pm Dec 9
Final presentation (10min)

Nov 25, 2015 T08-20http://csg.csail.mit.edu/6.175

