
Constructive Computer Architecture
Tutorial 8

Final Project Part 2: Coherence

Sizhuo Zhang
6.175 TA

Nov 25, 2015 T08-1http://csg.csail.mit.edu/6.175



Debugging Techniques
Deficiency about $display
 Everything shows up together

Distinct log file for each module: write to file
 Also see src/unit_test/sc-test/Tb.bsv

Nov 25, 2015 T08-2http://csg.csail.mit.edu/6.175

Ehr#(2, File) file <- mkEhr(InvalidFile);
Reg#(Bool) opened <- mkReg(False);
rule doOpenFile(!opened);

let f <- $fopen(“a.txt”, "w");
if(f == InvalidFile) $finish;
file[0] <= f; opened <= True;

endrule
rule doPrint;

$fwrite(file[1], "Hello world\n");
endrule

Writing to 
InvalidFile will 
cause segfault.

Use EHR if the 
logic will call 
$fwrite in the first 
cycle



Debugging Techniques
Deficiency about cycle counter
 Rule for printing cycle may be scheduled 

before/after the rule we are interested in
 Don’t want to create a counter in each module
Use simulation time
 $display(“%t: evict cache line”, $time);
 $time returns Bit#(64) representing time
 In SceMi simulation, $time outputs: 10, 30, ...

Nov 25, 2015 T08-3http://csg.csail.mit.edu/6.175



Debugging Techniques
Add sanity check
Example 1
 Parent is handling upgrade request
 No other child has incompatible state
 Parent decides to send upgrade response
 Check: parent is not waiting for any child (waitc)

Example 2
 D cache receives upgrade response from memory
 Check: must be in WaitFillResp state
 Process the upgrade response
 Check: if in I state, then data in response must be 

valid, otherwise data must be invalid (data field is 
Maybe type in the lab)

Nov 25, 2015 T08-4http://csg.csail.mit.edu/6.175



Coherence Protocol:
Differences From Lecture

In lecture: address type for byte address
 Implementation: only uses cache line address 
 addr >> 6 for 64B cache line

In lecture: parent reads data using 0 cycle
 Implementation: read from memory, long latency

In lecture: voluntary downgrade rule
 No need in implementation

In lecture: Parent directory tracks states for all 
address
 32-bit address space  huge directory
 Implementation: usually parent is L2 cache, so only 

track address in L2 cache
 We don’t have L2 cache

Nov 25, 2015 T08-5http://csg.csail.mit.edu/6.175



Coherence Protocol:
Differences From Lecture

Work around for large directory
 For each child, only tracks addresses in its 

L1 D cache

 To get MSI state for address a in core i

Nov 25, 2015 T08-6http://csg.csail.mit.edu/6.175

Vector#(CoreNum, Vector#(CacheRows, Reg#(CacheTag))) 
tags <- replicateM(replicateM(mkRegU));

Vector#(CoreNum, Vector#(CacheRows, Reg#(MSI))
states <- replicateM(replicateM(mkReg(I)));

MSI s = tags[i][getIndex(a)] == getTag(a) ? 
states[i][getIndex(a)] : I;



Load-Reserve (lr.w) and 
Store-Conditional (sc.w)

New state in D cache
 Reg#(Maybe#(CacheLineAddr)) la <- mkReg(Invalid);

 Cache line address reserved by lr.w
Load reserve: lr.w rd, (rs1)
 rd <= mem[rs1]

 Make reservation: la <= Valid (getLineAddr(rs1));

Store conditional: sc.w rd, rs2, (rs1)
 Check la: la invalid or addresses don’t match: rd <= 1

 Otherwise: get exclusive permission (upgrade to M)
 Check la again
 If address match: mem[rs1] <= rs2; rd <= 0
 Otherwise: rd <= 1

 If cache hit, no need to check again (address already match)
 Always clear reservation: la <= Invalid

Nov 25, 2015 T08-7http://csg.csail.mit.edu/6.175



Load-Reserve (lr.w) and 
Store-Conditional (sc.w)

Cache line eviction
 Due to replacement, invalidation request ...
 May lose track of reserved cache line

 Then clear reservation
 Compare evicted cache line with la

 If match: la <= invalid

 This is how lr.w/sc.w pair ensures atomicity

Nov 25, 2015 T08-8http://csg.csail.mit.edu/6.175



Reference Memory Model
Debug interface returned by reference model 
is passed into every D cache

 D cache calls the debug interface refDMem
 Reference model will check violation of coherence 

based on the calls
Referece model: src/ref

Nov 25, 2015 T08-9http://csg.csail.mit.edu/6.175

interface RefDMem;
method Action issue(MemReq req);
method Action commit(MemReq req, 

Maybe#(CacheLine) line, Maybe#(MemResp) resp);
endinterface
module mkDCache#(CoreID id)(

MessageGet fromMem, MessagePut toMem, 
RefDMem refDMem, DCache ifc);



Reference Memory Model
issue(MemReq req)
 Called when req issued to D cache 
 in req method of D cache
 Give program order to reference model
commit(MemReq req, Maybe#(CacheLine) line, 
Maybe#(MemResp) resp);
 Called when req finishes processing (commit)
 line: cache line accessed by req, set to Invalid if unknown
 resp: response to the core, set to Invalid if no repsonse

Reference model checks when commit is called
 req can be committed or not
 line value is correct or not (not checked if Invalid)
 resp is correct or not

Nov 25, 2015 T08-10http://csg.csail.mit.edu/6.175



Adding Store Queue
New behavior for memory requests
 Ld: can start processing when store queue is 

not empty
 St: enqueuer to store queue
 Lr, Sc: wait for store queue to be empty
 Fence: wait for all previous requests to commit 

(e.g. store queue must be empty)
 Ordering memory accesses

Issuing stores from store queue to process
 Only stall when there is a Ld request

Nov 25, 2015 T08-11http://csg.csail.mit.edu/6.175



Multicore Programs
Run programs on 2-core system
Single-thread programs
 Programs/assembly, programs/benchmarks
 core 1 starts looping forever at the very beginning

Multithread programs
 Programs/mc_bench
 startup code (crt.S): allocate 128KB local stack for 

each core
 main function: fork based on core id

Nov 25, 2015 T08-12http://csg.csail.mit.edu/6.175

int main() {
int coreid = getCoreId();
if(coreid == 0) { return core0(); }
else { return core1(); }

}



Multicore Programs:
mc_print

Easiest one
Two cores print “0” and “1” respectively
Sample output:

 (no cycle/inst count printed)

Nov 25, 2015 T08-13http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_print.riscv.vmh ----
01
PASSED



Multicore Programs:
mc_hello

Core 0 passes each character of a string to core 1
Core 1 prints each character it receives
Sample output:

 (no cycle/inst count printed)

Nov 25, 2015 T08-14http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_hello.riscv.vmh ----
Hello World!
This message has been written to a software FIFO by core 0 and 
read and printed by core 1.
PASSED



Multicore Programs:
mc_produce_consume

Larger version of mc_hello
Core 1 passes each element of an array to 
core 0
Core 0 checks the data
Sample output:

Nov 25, 2015 T08-15http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_produce_consume.riscv.vmh ----
Benchmark mc_produce_consume
Cycles (core 0) = xxx
Insts (core 0) = xxx
Cycles (core 1) = xxx
Insts (core 1) = xxx
Cycles  (total) = xxx
Insts (total) = xxx
Return 0
PASSED

Instruction counts may vary 
due to variation in busy waiting 
time, so IPC is not a good 
performance metric.
Execute time is a better metric.



Multicore Programs:
mc_median/vvadd/multiply

Data parallel: fork-join style
Core 0 calculates first half results
Core 1 calculates second half results
Sample output:

Nov 25, 2015 T08-16http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_median.riscv.vmh ----
Benchmark mc_median
Cycles (core 0) = xxx
Insts (core 0) = xxx
Cycles (core 1) = xxx
Insts (core 1) = xxx
Cycles  (total) = xxx
Insts (total) = xxx
Return 0
PASSED



Multicore Programs:
mc_dekker

Two cores contend for a mutex (Dekker’s algo)
After getting into critical section
 increment/decrement shared counter, print core ID

Sample output:

Nov 25, 2015 T08-17http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_dekker.riscv.vmh ----
Benchm1ark mc_1dekker1
100110...000
Core 0 decrements counter by 600
Core 1 increments counter by 900
Final counter value = 300
Cycles (core 0) = xxx
Insts (core 0) = xxx
Cycles (core 1) = xxx
Insts (core 1) = xxx
Cycles  (total) = xxx
Insts (total) = xxx
Return 0
PASSED

For implementation with 
store queue, fence is 
inserted in mc_dekker.



Multicore Programs:
mc_spin_lock

Similar to mc_dekker, but use spin lock 
implemented by lr.w/sc.w

Sample output:

Nov 25, 2015 T08-18http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_spin_lock.riscv.vmh ----
Bench1mark mc1_spin_l1ock
10101...000
Core 0 increments counter by 300
Core 1 increments counter by 600
Final counter value = 900
Cycles (core 0) = xxx
Insts (core 0) = xxx
Cycles (core 1) = xxx
Insts (core 1) = xxx
Cycles  (total) = xxx
Insts (total) = xxx
Return 0
PASSED



Multicore Programs:
mc_incrementers

Similar to mc_dekker, but use atomic fetch-and-
add implemented by lr.w/sc.w
Core ID is not printed
Sample output:

Nov 25, 2015 T08-19http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_incrementers.riscv.vmh ----
Benchmark mc_incrementers

core0 had 1000 successes out of xxx tries
core1 had 1000 successes out of xxx tries
shared_count = 2000
Cycles (core 0) = xxx
Insts (core 0) = xxx
Cycles (core 1) = xxx
Insts (core 1) = xxx
Cycles  (total) = xxx
Insts (total) = xxx
Return 0
PASSED



Some Reminders
Use CF regfile and scoreboard
 Compiler creates a conflict in my 

implementation with bypass regfile and 
pipelined scoreboard

Signup for project meeting
 Half-page progress report
Project deadline: 3:00pm Dec 9
Final presentation (10min)

Nov 25, 2015 T08-20http://csg.csail.mit.edu/6.175


