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Content

4 So far we have seen modules with methods
which are called by rules outside the body

# Now we will see examples where a module
may also contain rules
= gcd

# A common way to implement large
combinational circuits is by folding where
registers hold the state from one iteration to
the next
= Implementing imperative loops
= Multiplication
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answer: @ subtract

rules: A simple example

Euclid’s algorithm for computing the
Greatest Common Divisor (GCD):

subtract
subtract

swap
subtract

http://csg.csail.mit.edu/6.175

L05-3

GCD module

Euclidean Algorithm

FReg# (Bit#(32)) x <-
Reg# (Bit# (32)) y <-
rule gcd;
if (x >= y) begin
X <= X — y;
end else if (x !=
x <=vy;, y <= x;
end
endrule

mkReqg (0) ;
mkReg (0) ;

0) begin

A rule inside a module
may execute anytime

If x is O then the rule
has no effect

method Action start (Bit#(32) a, Bit#(32) b);

x <= a; y <= b;

method Bit# (32) result; return y;

method Bool resultRdy; return x ==
|

method Bool busy;

0;
return x != 0

’

endmethod
endmethod
endmethod
endmethod

# Start method should be called only if busy is False.
# The result is available only when resultRdy is True.
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Circuits for GCD
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Expressing a loop using
registers

ints = s0;

for (inti=0; i<
s = f(s);

b

return s;

32;i=i+1){

C-code

notDone
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We need two registers
to hold s and i values
from one iteration to
the next.

These registers are
initialized when the
computation starts and
updated every cycle
until the computation
terminates

sel = start
en = start | notDone
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4% When a rule executes:
= all the registers are read
at the beginning of a

clock cycle

= computations to
evaluate the next value
of the registers are
performed

= Registers that need to
be updated are updated
at the end of the clock
cycle

4 Muxes are need to
initialize the registers
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Expressing a loop in BSV

Reg# (Bit# (32))
Reg# (Bit# (6))
rule step;

s <- mkReqgU({() ;
i <- mkReg(32);
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if (i < 32) begin
s <= f(s); i <= i+1;
end
endrule
| f] sO
__/
sel

> s |

sel = start
en = start | notDone

notDone
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Combinational 32-bit multiply

function Bit# (64) mul32 (Bit# (32) a, Bit#(32) b):;
Bit#(32) tp = 0;
Bit#(32) prod = 0;
for (Integer 1 = 0; 1 < 32; 1 = i+1) Combinational
begin circuit uses 31
Bit#(32) m (a[1]1==0)2 0 : b; add32 circuits
Bit#(33) sum = add32(m,tp,0);
prod[i:i] = sum[O0];
tp = sum[32:17];
end
return {tp,prod};
endfunction

We can reuse the same add32 circuit if we store
the partial results in a register
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Multiply using registers

function Bit# (64) mul32 (Bit#(32) a, Bit#(32) b);
Bit#(32) prod = 0;
Bit#(32) tp 0;
for (Integer =
begin
Bit#(32) m (afi}==0)2-0-+-b3
Bit#(33) sum = add32 (m, tp,0);

0; 1 < 32; 1 = i+1)

-

prod[i:i] = sum[0]; . .
tp = sum[32:1]; Combinational
end version
return {tp,prod};
endfunction

Need registers to hold a, b, tp, prod and i

Update the registers every cycle until we are done
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Sequential Circuit for Multiply
Reg# (Bit# (32)) a <- mkRegU () ; B
Reg# (Bit# (32)) b <- mkRegU();
Reg# (Bit# (32)) prod <-mkReqU () ; L state
Reg# (Bit#(32)) tp <- mkReg(0); elements
Reg# (Bit#(6)) 1 <- mkReg(32);
rule mulStep; o
if (1 < 32) begin
Bit#(32) m = (a[1]==0)2 0
Bit#(33) sum = add32 (m,tp,0); a rule to
prod[i] <= sum[0]; L describe
tp <= sum[32:1]; the
i <= i+1; dynamic
end behavior
endrule - —
Isc;?;kt])z;s/ if:ihe So that the r‘l.ch.a.has
combinational no effect until i is set
version to some other value
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Dynamic selection

requires a mux

i

© —— ali]

L=

when the selection
indices are regular then
it is better to use a shift
operator (no gates!)

L] 0 al0],all]l,al2],..
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Replacing repeated
selections by shifts

Reg# ( (32))
Reg# ( (32))
Reg# (Bit# (32))
Reg# ( (32))
Regt ( (6))

rule mulStep if (i < 32);

a <= a > 1;

a <- mkReqgU();

b <- mkRegU() ;
prod <-mkReqgU() ;
tp <- mkReg (0);
i <- mkReg(32);

Bit#(32) m = (a[0]==0)7

N oF

Bit#(33) sum = add32(m,tp,0);
prod <= {sum[0], prod[31:1]};

tp <= sum([32:1];
i <= i+1;
endrule
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Circuit for Sequential
Multiply

aln

©
sl
Sl b e |
31:0
==32
done result (high) result (low)
sl = start_en
s2 = start_en | !done
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Circuit analysis

4 Number of add32 circuits has been reduced
from 31 to one, though some registers and
muxes have been added

@ The longest combinational path has been
reduced from 62 FAs to one add32 plus a few
muxes

# The sequential circuit will take 31 clock cycles
to compute an answer
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A subtle problem

/while(!isDone(x)) {\
x = doStep(x);
b

. %

doStep

workQ

done
S doneQ

let x = workQ.first;

workQ.deq;

if (isDone (x))
doneQ.eng(x) ;

end else begin
workQ.enqg (doStep (x)) ;

begin Double write problem for

previously shown FIFOs

Later we will design FIFOs

end ey e
to permit simultaneous enq
and deq
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Pipelining Combinational
Functions

Xi+1 Xj Xi-1
3 different
_ @ — 1 datasets in
the pipeline

# Lot of area and long combinational delay

# Folded or multi-cycle version can save area
and reduce the combinational delay but
throughput per clock cycle gets worse

# Pipelining: a method to increase the circuit
throughput by evaluating multiple inputs
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inQ

sReg1l

a

inQ

Inelastic vs Elastic pipeline

@@

sReg2 outQ

Inelastic: all pipeline stages move synchronously

@a

fifol

@a

fifo2 outQ

Elastic: A pipeline stage can process data if its

input FIFO is not empty and output FIFO is not Full
Most complex processor pipelines are a combination of the two styles
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