
1

Constructive Computer Architecture

Sequential Circuits - 2

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

http://csg.csail.mit.edu/6.175 L05-1 September 16, 2016

Content
So far we have seen modules with methods
which are called by rules outside the body

Now we will see examples where a module
may also contain rules

 gcd

A common way to implement large
combinational circuits is by folding where
registers hold the state from one iteration to
the next

 Implementing imperative loops

 Multiplication

http://csg.csail.mit.edu/6.175 L05-2 September 16, 2016

2

Programming with
rules: A simple example

Euclid’s algorithm for computing the
Greatest Common Divisor (GCD):

 15 6

 9 6 subtract

 3 6 subtract

 6 3 swap

 3 3 subtract

 0 3 subtract answer:

http://csg.csail.mit.edu/6.175 L05-3 September 16, 2016

Reg#(Bit#(32)) x <- mkReg(0);

Reg#(Bit#(32)) y <- mkReg(0);

rule gcd;

 if (x >= y) begin

 x <= x – y;

 end else if (x != 0) begin

 x <= y; y <= x;

 end

endrule

method Action start(Bit#(32) a, Bit#(32) b);

 x <= a; y <= b; endmethod

method Bit#(32) result; return y; endmethod

method Bool resultRdy; return x == 0; endmethod

method Bool busy; return x != 0; endmethod

GCD module
Euclidean Algorithm

A rule inside a module
may execute anytime

If x is 0 then the rule
has no effect

Start method should be called only if busy is False.

The result is available only when resultRdy is True.

http://csg.csail.mit.edu/6.175 L05-4 September 16, 2016

3

Circuits for GCD

x y

- >

x-y (s2) x>y (s3)

!=0

x!=0 (s1)

1 0 startEn 1 0

0 1 x>y(s3)

x-y(s2)

0 1 x!=0(s1)

x y

0 1

x>y(s3) x!=0(s1)

x y

startEn

b a

Busy

ResultRdy

Result

A

http://csg.csail.mit.edu/6.175 L05-5 September 16, 2016

Expressing a loop using
registers
int s = s0;
for (int i = 0; i < 32; i = i+1) {
 s = f(s);
 }
return s; C-code

sel

< 32

0

notDone

+1

i
en sel = start

en = start | notDone

s0 f

sel

s
en

We need two registers
to hold s and i values
from one iteration to
the next.
These registers are
initialized when the
computation starts and
updated every cycle
until the computation
terminates

http://csg.csail.mit.edu/6.175 L05-6 September 16, 2016

4

Expressing a loop in BSV

< 32

notDone

+1

sel

0

i
en

sel = start
en = start | notDone

f s0

sel

s
en

Reg#(Bit#(32)) s <- mkRegU();

Reg#(Bit#(6)) i <- mkReg(32);

rule step;

 if (i < 32) begin

 s <= f(s); i <= i+1;

 end

endrule

When a rule executes:
 all the registers are read

at the beginning of a
clock cycle

 computations to
evaluate the next value
of the registers are
performed

 Registers that need to
be updated are updated
at the end of the clock
cycle

Muxes are need to
initialize the registers

http://csg.csail.mit.edu/6.175 L05-7 September 16, 2016

Combinational 32-bit multiply
function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);

 Bit#(32) tp = 0;

 Bit#(32) prod = 0;

 for(Integer i = 0; i < 32; i = i+1)

 begin

 Bit#(32) m = (a[i]==0)? 0 : b;

 Bit#(33) sum = add32(m,tp,0);

 prod[i:i] = sum[0];

 tp = sum[32:1];

 end

 return {tp,prod};

endfunction

Combinational
circuit uses 31
add32 circuits

We can reuse the same add32 circuit if we store
the partial results in a register

http://csg.csail.mit.edu/6.175 L05-8 September 16, 2016

5

Multiply using registers
function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);

 Bit#(32) prod = 0;

 Bit#(32) tp = 0;

 for(Integer i = 0; i < 32; i = i+1)

 begin

 Bit#(32) m = (a[i]==0)? 0 : b;

 Bit#(33) sum = add32(m,tp,0);

 prod[i:i] = sum[0];

 tp = sum[32:1];

 end

 return {tp,prod};

endfunction

Need registers to hold a, b, tp, prod and i

Update the registers every cycle until we are done

Combinational
version

http://csg.csail.mit.edu/6.175 L05-9 September 16, 2016

Sequential Circuit for Multiply
 Reg#(Bit#(32)) a <- mkRegU();

 Reg#(Bit#(32)) b <- mkRegU();

 Reg#(Bit#(32)) prod <-mkRegU();

 Reg#(Bit#(32)) tp <- mkReg(0);

 Reg#(Bit#(6)) i <- mkReg(32);

 rule mulStep;

 if (i < 32) begin

 Bit#(32) m = (a[i]==0)? 0 : b;

 Bit#(33) sum = add32(m,tp,0);

 prod[i] <= sum[0];

 tp <= sum[32:1];

 i <= i+1;

 end

 endrule

state
elements

a rule to
describe

the
dynamic
behavior

So that the rule has
no effect until i is set
to some other value

similar to the
loop body in the
combinational
version

http://csg.csail.mit.edu/6.175 L05-10 September 16, 2016

6

Dynamic selection
requires a mux

a[i] a

i

a[0],a[1],a[2],…

a

>>

0

when the selection
indices are regular then
it is better to use a shift
operator (no gates!)

http://csg.csail.mit.edu/6.175 L05-11 September 16, 2016

Replacing repeated
selections by shifts
 Reg#(Bit#(32)) a <- mkRegU();

 Reg#(Bit#(32)) b <- mkRegU();

 Reg#(Bit#(32)) prod <-mkRegU();

 Reg#(Bit#(32)) tp <- mkReg(0);

 Reg#(Bit#(6)) i <- mkReg(32);

 rule mulStep if (i < 32);

 Bit#(32) m = (a[0]==0)? 0 : b;

 a <= a >> 1;

 Bit#(33) sum = add32(m,tp,0);

 prod <= {sum[0], prod[31:1]};

 tp <= sum[32:1];

 i <= i+1;

 endrule

http://csg.csail.mit.edu/6.175 L05-12 September 16, 2016

7

Circuit for Sequential
Multiply

bIn

b

a i

== 32

0

done

+1

prod

result (low)

[30:0]

aIn

<<

31:0

tp

s1 s1

s1

s2 s2 s2 s2

s1

s1 = start_en
s2 = start_en | !done

result (high)

31

0

 add

0

0

32:1

0

<<

http://csg.csail.mit.edu/6.175 L05-13 September 16, 2016

Circuit analysis
Number of add32 circuits has been reduced
from 31 to one, though some registers and
muxes have been added

The longest combinational path has been
reduced from 62 FAs to one add32 plus a few
muxes

The sequential circuit will take 31 clock cycles
to compute an answer

http://csg.csail.mit.edu/6.175 L05-14 September 16, 2016

8

A subtle problem

done

 ?

workQ

doneQ

 let x = workQ.first;

 workQ.deq;

 if (isDone(x)) begin

 doneQ.enq(x);

 end else begin

 workQ.enq(doStep(x));

 end

while(!isDone(x)) {
 x = doStep(x);
}

Double write problem for
previously shown FIFOs

doStep

Later we will design FIFOs
to permit simultaneous enq
and deq

http://csg.csail.mit.edu/6.175 L05-15 September 16, 2016

Pipelining Combinational
Functions

Lot of area and long combinational delay

Folded or multi-cycle version can save area
and reduce the combinational delay but
throughput per clock cycle gets worse

Pipelining: a method to increase the circuit
throughput by evaluating multiple inputs

xi xi-1 xi+1

3 different
datasets in
the pipeline

f0 f1 f2

http://csg.csail.mit.edu/6.175 L05-16 September 16, 2016

9

Inelastic vs Elastic pipeline

x

fifo1 inQ

f0 f1 f2

fifo2 outQ

x

sReg1 inQ

f0 f1 f2

sReg2 outQ

Inelastic: all pipeline stages move synchronously

Elastic: A pipeline stage can process data if its
input FIFO is not empty and output FIFO is not Full

Most complex processor pipelines are a combination of the two styles
http://csg.csail.mit.edu/6.175 L05-17 September 16, 2016

