Constructive Computer Architecture:

Multirule systems and
Concurrent Execution of Rules

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology /1

September 26, 2016 http://csg.csail.mit.edu/6.175 L08-1

Rewriting Elastic pipeline
as a multirule system

— O

inQ fifol fifo2 outQ

rule stagel;
if(inQ.notEmpty && fifol.notFull)
begin fifol.enq(fO(inQ.first)); inQ.deq; end endrule
rule stage2;
if(fifol.notEmpty && Fifo2.notFull)
begin fifo2.enq(fl(fifol.first)); fifol.deq; end endrule
rule stage3;
if(fifo2.notEmpty && outQ.notFull)
begin outQ.enq(f2(fifo2.first)); fifo2.deq; end endrule

#® How does such a system function?

September 26, 2016 http://csg.csail.mit.edu/6.175 LO8-2

September 26, 2016 http://csg.csail.mit.edu/6.175 LO8-3

Bluespec Execution Model

Repeatedly:
@ Select a rule to execute

User annotations
@ Compute the state updates can be used in
@ Make the state updates rule selection

Highly non-
deterministic;

One-rule-at-a-time-semantics: Any legal
behavior of a Bluespec program can be
explained by observing the state updates
obtained by applying only one rule at a time

However, for performance we need to execute
multiple rules concurrently if possible

Multi-rule versus single rule
elastic pipeline

rule elasticPipeline; I@ I@ |® I
if(inQ.notEmpty && Ffifol.notFull) e L el Tritod outh
begin fifol_enq(Ff1(inQ.first)); inQ.deq; end
if(fifol.notEmpty && Fifo2.notFull)
begin fifo2.enq(f2(fifol.first)); fifol.deq; end
if(fifo2.notEmpty && outQ.notFull)
begin outQ.enq(f3(Ffifo2.first)); fifo2.deq; end
endrule

rule stagel;
if(inQ.notEmpty && fifol.notFull)
begin fifol.enq(f1(inQ.first)); inQ.deq; end endrule
rule stage2;
if(fifol.notEmpty && Fifo2_notFull)
begin fifo2.enq(f2(fifol.first)); fifol.deq; end endrule
rule stage3;
if(fifo2.notEmpty && outQ.notFull)
begin outQ.enq(f3(fifo2.first)); fifo2.deq; end endrule

How are these two systems the same (or different)?

September 26, 2016 http://csg.csail.mit.edu/6.175 LO8-4

Elastic pipeline

Do these systems see the same state changes?

= The single rule system — fills up the pipeline and then
processes a message at every pipeline stage for every
rule firing — no more than one slot in any fifo would be

filled unless the OutQ blocks

s The multirule system has many more possible states.
It can mimic the behavior of one-rule system but one
can also execute rules in different orders, e.g., stagel;

stagel; stage2; stagel; stage3; stage2; stage3; ...
(assuming stage fifos have more than one slot)

® When can some or all the rules in a multirule

system execute concurrently?

September 26, 2016

http://csg.csail.mit.edu/6.175

LO8-5

Can these rules execute in parallel?

(without violating the one-rule-at-a-time-semantics)
Example 1 Example 2 Example 3
rule ra; rule ra; rule ra;
it (z>10) if (z>10) if (z>10)
X <= X+1; X <= y+1; X <= y+1;
endrule endrule endrule
rule rb; rule rb; rulle rb;
it (z>20) if (z>20) if (z>20)
y <= y+2; y <= X+2; y <= y+2;
endrule endrule endrule

September 26, 2016

http://csg.csail.mit.edu/6.175

LO8-6

some insight into
Concurrent rule execution

b I
Rules seel Aeeel Nl .|RJ.|...|R".| A A Aeeel oA oA slees | e K|
; steps
//T
HW | | .R.u.(| Elocks
Ri
!

@® There are more intermediate states in the rule
semantics (a state after each rule step)

#® In the HW, states change only at clock edges

September 26, 2016 http://csg.csail.mit.edu/6.175 LO8-7

Parallel execution
reorders reads and writes

‘
Rules rule
Ireads vvrite§I reads Write§|reads Writeslreads WritesI reads write%I steps
— ~_ o p
ot g \\\‘ / ““»\f\
yegl e v 4 ¥ Ta
Ireads writesl reads writeg|
> >
IHW 1 clocks

@ In the rule semantics, each rule sees (reads)
the effects (writes) of previous rules

@ In the HW, rules only see the effects from

previous clocks, and only affect subsequent
clocks

September 26, 2016 http://csg.csail.mit.edu/6.175 LO8-8

Correctness

i i rule
RUlES ool Aoeel oA A4 geee B0 g g doeel 4 A e 1A
] - steps
HW | | Elocks
@ The compiler will schedule rules concurrently
only if the net state change is equivalent to
sequential rule execution (which is what our
theorem ensures)
September 26, 2016 http://csg.csail.mit.edu/6.175 L08-9

Evaluating or applying a rule

@ The state of the system s is defined

as the value of all its registers)*(‘ 3*/‘ 3 ‘

state Wiy

#® An action defines the next value of

some of the state elements based on

l—
|«

H«

@ An expression is evaluated by
computing its value on the current .

the current value of the state X’) y,‘ 7’

@ A rule is evaluated by evaluating the
corresponding action and
simultaneously updating all the
affected state elements

Given action a and state S, let a(S) represent
the state after the application of action a

September 26, 2016 http://csg.csail.mit.edu/6.175

L08-10

One-rule-at-a-time semantics

@ Given a program with a set of rules {rule r; a;}
and an initial state S, , S is a legal state if and
only if there exists a sequence of rules rj,,....,
Iin such that S= a;,(...(j:(Sp))---)

September 26, 2016 http://csg.csail.mit.edu/6.175 L08-11

Concurrent execution of
two rules

@ Concurrent execution of two rules, rule r; a;
and rule r, a,, means executing a rule whose
body looks like (a;; a,), that is a rule which is
a parallel composition of the actions of the two
rules with the following restrictions to preserve
the one-rule-at-a-time semantics:

= Either VS. (a;; a,)(S) = a,(a,(S))
or VS. (a1; a2)(S) = a;(ax(S))

September 26, 2016 http://csg.csail.mit.edu/6.175 L08-12

Concurrent scheduling of
rules

® rule r; a, to rule r, a, can be scheduled
concurrently, preserving one-rule-at-a-time
semantics, if and only if there exists a
permutation (p,,...,p,) of (1,...,n) such that
» VS, (a5;.:8,)(8) = apn(--(ap(S))

September 26, 2016 http://csg.csail.mit.edu/6.175

L08-13

A compiler can determine if two
rules can be executed in parallel
without violating the one-rule-
at-a-time semantics

James Hoe, Ph.D., 2000

Construct a conflict matrix (CM) for rules

&

September 26, 2016 http://csg.csail.mit.edu/6.175

L08-14

Extending CM to rules

@ CM between two rules is computed exactly the
same way as CM for the methods of a module
@ Given rule rl al and rule r2 a2 such that
mcalls(al)={gl1,912...g1ln}
mcalls(a2)={g21,922...g2m}
® Compute
= Conflict(x,y) = if x and y are methods of the same
module then CM[x,y] else CF
s CM[rl,r2] = conflict(gll,921) n conflict(g11l,922) ...
n conflict(gl2,921) n conflict(g12,922) ...

n conflict(gln,g21) n conflict(g12,922) ...
@ Conflict relation is not transitive
s rl <r2,r2 <r3does notimply rl <r3

September 26, 2016 http://csg.csail.mit.edu/6.175 L08-15

Using CMs for concurrent
scheduling of rules

Two rules that are conflict free can be scheduled
together without violating the one-rule-at-a-time
semantics. In general, we use the following
theorem

Theorem: Given a set of rules {rule r; a;}, if
there exists a permutation {p,, p, ... p» of
{1..n} such that

Vi<j.CM(ay, a,) is CF or <
then the rules ry, r, ... r, can be scheduled
concurrently with the effect V i, j. ry; < r

September 26, 2016 http://csg.csail.mit.edu/6.175 L08-16

'Example 2: Compiler Analysis

rule ra; mcalls(ra) = {z.r, Xx.w, y.r}
it (z>10) mcalls(rb) = {z.r, y.w, X.r}
X <= y+1;

endrule CM(ra, rb) =

conflict(z.r, z.r) n conflict(z.r, y.w)
rule rb; N conflict(z.r, x.r) n conflict(x.w, z.r)
if (z>20) N conflict(x.w, y.w) n conflict(x.w, x.r)
y <= X+2; N conflict(y.r, z.r) n conflict(y.r, y.w)
endrule N Conflict(y.r, x.r)

September 26, 2016 http://csg.csail.mit.edu/6.175 L08-17

Example 3: Compiler Analysis

rule ra: mcalls(ra) = {z.r, x.w, y.r}
if (z>10) mcalls(rb) = {z.r, y.w, y.r}
X <= y+1; CM(ra, rb) =
endrule

conflict(z.r, z.r) n conflict(z.r, y.w)

N conflict(z.r, y.r) n conflict(x.w, z.r)
rule rb; A conflict(x.w, y.w) ~ conflict(x.w, y.r)
it (z2>20) ~ conflict(y.r, z.r) n conflict(y.r, y.w)
y <= y+2Z; A Conflict(y.r, y.r)
endrule

September 26, 2016 http://csg.csail.mit.edu/6.175 L08-18

Multi-rule versus single rule
elastic pipeline

U g e= = -
rule elasticPipeline; I@ I@ I@ I
if(inQ.notEmpty && Fifol.notFull) %

begin fifol.enq(fL(inQ.Ffirst)); inQ.deq; end 2 fon TR o
if(Fifol.notEmpty && Fifo2.notFull)
begin fifo2.enq(f2(fifol.first)); fifol.deq; end
if(fifo2.notEmpty && outQ.notFull)
begin outQ.enq(f3(fifo2.first)); fifo2.deq; end
endrule

rule stagel;
iT(inQ.notEmpty && fTifol.notFull)
begin fifol.enq(f1(inQ.first)); inQ.deq; end endrule
rule stage?2;
if(fifol.notEmpty && Fifo2.notFull)
begin fifo2.enq(f2(fifol.first)); fifol.deq; end endrule
rule stage3;
if(fifo2.notEmpty && outQ.notFull)
begin outQ.enq(f3(fifo2.first)); fifo2.deq; end endrule

If we do concurrent scheduling in the multirule system then
the multi-rule system behaves like the single rule system
September 26, 2016 http://csg.csail.mit.edu/6.175 L08-19

Concurrency when the FIFOs do
not permit concurrent enq and deq

ORI 8

X
inQ fifol fifo2 outQ
not not not not full
empty empty empty
& &
not full not full

September 26, 2016 http://csg.csail.mit.edu/6.175 L08-20

