
1

Constructive Computer Architecture:

Multirule systems and
Concurrent Execution of Rules

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

http://csg.csail.mit.edu/6.175September 26, 2016 L08-1

Rewriting Elastic pipeline
as a multirule system

x
fifo1inQ

f0 f1 f2

fifo2 outQ
rule stage1;
if(inQ.notEmpty && fifo1.notFull)
begin fifo1.enq(f0(inQ.first)); inQ.deq; end endrule

rule stage2;
if(fifo1.notEmpty && fifo2.notFull)
begin fifo2.enq(f1(fifo1.first)); fifo1.deq; end endrule

rule stage3;
if(fifo2.notEmpty && outQ.notFull)
begin outQ.enq(f2(fifo2.first)); fifo2.deq; end endrule

How does such a system function?

http://csg.csail.mit.edu/6.175September 26, 2016 L08-2

2

Bluespec Execution Model
Repeatedly:

Select a rule to execute
Compute the state updates
Make the state updates

One-rule-at-a-time-semantics: Any legal
behavior of a Bluespec program can be
explained by observing the state updates
obtained by applying only one rule at a time

Highly non-
deterministic;
User annotations
can be used in
rule selection

However, for performance we need to execute
multiple rules concurrently if possible

http://csg.csail.mit.edu/6.175September 26, 2016 L08-3

Multi-rule versus single rule
elastic pipeline

x
fifo1inQ

f1 f2 f3

fifo2 outQ

rule elasticPipeline;
if(inQ.notEmpty && fifo1.notFull)
begin fifo1.enq(f1(inQ.first)); inQ.deq; end

if(fifo1.notEmpty && fifo2.notFull)
begin fifo2.enq(f2(fifo1.first)); fifo1.deq; end

if(fifo2.notEmpty && outQ.notFull)
begin outQ.enq(f3(fifo2.first)); fifo2.deq; end

endrule

How are these two systems the same (or different)?

rule stage1;
if(inQ.notEmpty && fifo1.notFull)
begin fifo1.enq(f1(inQ.first)); inQ.deq; end endrule

rule stage2;
if(fifo1.notEmpty && fifo2.notFull)
begin fifo2.enq(f2(fifo1.first)); fifo1.deq; end endrule

rule stage3;
if(fifo2.notEmpty && outQ.notFull)
begin outQ.enq(f3(fifo2.first)); fifo2.deq; end endrule

http://csg.csail.mit.edu/6.175September 26, 2016 L08-4

3

Elastic pipeline
Do these systems see the same state changes?
 The single rule system – fills up the pipeline and then

processes a message at every pipeline stage for every
rule firing – no more than one slot in any fifo would be
filled unless the OutQ blocks

 The multirule system has many more possible states.
It can mimic the behavior of one-rule system but one
can also execute rules in different orders, e.g., stage1;
stage1; stage2; stage1; stage3; stage2; stage3; …
(assuming stage fifos have more than one slot)

When can some or all the rules in a multirule
system execute concurrently?

http://csg.csail.mit.edu/6.175September 26, 2016 L08-5

Can these rules execute in parallel?
(without violating the one-rule-at-a-time-semantics)

rule ra;
if (z>10)
x <= x+1;

endrule

rule rb;
if (z>20)
y <= y+2;

endrule

http://csg.csail.mit.edu/6.175September 26, 2016 L08-6

Example 1
rule ra;
if (z>10)
x <= y+1;

endrule

rule rb;
if (z>20)
y <= x+2;

endrule

Example 2
rule ra;
if (z>10)
x <= y+1;

endrule

rule rb;
if (z>20)
y <= y+2;

endrule

Example 3

4

some insight into

Concurrent rule execution

There are more intermediate states in the rule
semantics (a state after each rule step)
In the HW, states change only at clock edges

Rules

HW

Ri Rj Rk

clocks

rule

steps

Ri

Rj
Rk

http://csg.csail.mit.edu/6.175September 26, 2016 L08-7

Parallel execution
reorders reads and writes

In the rule semantics, each rule sees (reads)
the effects (writes) of previous rules
In the HW, rules only see the effects from
previous clocks, and only affect subsequent
clocks

Rules

HW clocks

rule

stepsreads writes reads writes reads writesreads writesreads writes

reads writes reads writes

http://csg.csail.mit.edu/6.175September 26, 2016 L08-8

5

Correctness

The compiler will schedule rules concurrently
only if the net state change is equivalent to
sequential rule execution (which is what our
theorem ensures)

Rules

HW

Ri Rj Rk

clocks

rule

steps

Ri

Rj
Rk

http://csg.csail.mit.edu/6.175September 26, 2016 L08-9

Evaluating or applying a rule
The state of the system s is defined
as the value of all its registers
An expression is evaluated by
computing its value on the current
state
An action defines the next value of
some of the state elements based on
the current value of the state
A rule is evaluated by evaluating the
corresponding action and
simultaneously updating all the
affected state elements

x y z ...

rule

x’ y’ z’ ...

Given action a and state S, let a(S) represent
the state after the application of action a

http://csg.csail.mit.edu/6.175September 26, 2016 L08-10

6

One-rule-at-a-time semantics
Given a program with a set of rules {rule ri ai}
and an initial state S0 , S is a legal state if and
only if there exists a sequence of rules rj1,….,
rjn such that S= ajn(…(aj1(S0))…)

http://csg.csail.mit.edu/6.175September 26, 2016 L08-11

Concurrent execution of
two rules

Concurrent execution of two rules, rule r1 a1
and rule r2 a2, means executing a rule whose
body looks like (a1; a2), that is a rule which is
a parallel composition of the actions of the two
rules with the following restrictions to preserve
the one-rule-at-a-time semantics:
 Either S. (a1; a2)(S) = a2(a1(S))

or S. (a1; a2)(S) = a1(a2(S))

http://csg.csail.mit.edu/6.175September 26, 2016 L08-12

7

Concurrent scheduling of
rules

rule r1 a1 to rule rn an can be scheduled
concurrently, preserving one-rule-at-a-time
semantics, if and only if there exists a
permutation (p1,…,pn) of (1,…,n) such that
 S. (a1;…;an)(S) = apn(…(ap1(S))

http://csg.csail.mit.edu/6.175September 26, 2016 L08-13

A compiler can determine if two
rules can be executed in parallel
without violating the one-rule-
at-a-time semantics

James Hoe, Ph.D., 2000

Construct a conflict matrix (CM) for rules

http://csg.csail.mit.edu/6.175September 26, 2016 L08-14

8

Extending CM to rules
CM between two rules is computed exactly the
same way as CM for the methods of a module

Given rule r1 a1 and rule r2 a2 such that
mcalls(a1)={g11,g12...g1n}
mcalls(a2)={g21,g22...g2m}

Compute
 Conflict(x,y) = if x and y are methods of the same

module then CM[x,y] else CF
 CM[r1,r2] = conflict(g11,g21) conflict(g11,g22) ...

 conflict(g12,g21) conflict(g12,g22) ...
…
 conflict(g1n,g21) conflict(g12,g22) ...

Conflict relation is not transitive
 r1 < r2, r2 < r3 does not imply r1 < r3

http://csg.csail.mit.edu/6.175September 26, 2016 L08-15

Using CMs for concurrent
scheduling of rules
Two rules that are conflict free can be scheduled
together without violating the one-rule-at-a-time
semantics. In general, we use the following
theorem

Theorem: Given a set of rules {rule ri ai}, if
there exists a permutation {p1, p2 … pn} of
{1..n} such that

 i < j. CM(api, apj) is CF or <
then the rules r1, r2 … rn can be scheduled
concurrently with the effect i, j. rpi < rpj

http://csg.csail.mit.edu/6.175September 26, 2016 L08-16

9

Example 2: Compiler Analysis
rule ra;
if (z>10)
x <= y+1;

endrule

rule rb;
if (z>20)
y <= x+2;

endrule

http://csg.csail.mit.edu/6.175September 26, 2016 L08-17

mcalls(ra) = {z.r, x.w, y.r}
mcalls(rb) = {z.r, y.w, x.r}

CM(ra, rb) =
conflict(z.r, z.r) conflict(z.r, y.w)

 conflict(z.r, x.r) conflict(x.w, z.r)
 conflict(x.w, y.w) conflict(x.w, x.r)
 conflict(y.r, z.r) conflict(y.r, y.w)
 Conflict(y.r, x.r)

Example 3: Compiler Analysis
rule ra;
if (z>10)
x <= y+1;

endrule

rule rb;
if (z>20)
y <= y+2;

endrule

mcalls(ra) = {z.r, x.w, y.r}
mcalls(rb) = {z.r, y.w, y.r}

http://csg.csail.mit.edu/6.175September 26, 2016 L08-18

CM(ra, rb) =
conflict(z.r, z.r) conflict(z.r, y.w)

 conflict(z.r, y.r) conflict(x.w, z.r)
 conflict(x.w, y.w) conflict(x.w, y.r)
 conflict(y.r, z.r) conflict(y.r, y.w)
 Conflict(y.r, y.r)

10

Multi-rule versus single rule
elastic pipeline

x
fifo1inQ

f1 f2 f3

fifo2 outQ

rule elasticPipeline;
if(inQ.notEmpty && fifo1.notFull)

begin fifo1.enq(f1(inQ.first)); inQ.deq; end
if(fifo1.notEmpty && fifo2.notFull)

begin fifo2.enq(f2(fifo1.first)); fifo1.deq; end
if(fifo2.notEmpty && outQ.notFull)

begin outQ.enq(f3(fifo2.first)); fifo2.deq; end
endrule

rule stage1;
if(inQ.notEmpty && fifo1.notFull)

begin fifo1.enq(f1(inQ.first)); inQ.deq; end endrule
rule stage2;

if(fifo1.notEmpty && fifo2.notFull)
begin fifo2.enq(f2(fifo1.first)); fifo1.deq; end endrule

rule stage3;
if(fifo2.notEmpty && outQ.notFull)

begin outQ.enq(f3(fifo2.first)); fifo2.deq; end endrule

If we do concurrent scheduling in the multirule system then
the multi-rule system behaves like the single rule system

http://csg.csail.mit.edu/6.175September 26, 2016 L08-19

Concurrency when the FIFOs do
not permit concurrent enq and deq

x
fifo1inQ

f1 f2 f3

fifo2 outQ
not

empty
not

empty
&

not full

not
empty

&
not full

not full

http://csg.csail.mit.edu/6.175September 26, 2016 L08-20

