
1

Constructive Computer Architecture:

Branch Prediction:
Direction Predictors

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

http://csg.csail.mit.edu/6.175 L16-1October 26, 2016

Multiple Predictors: BTB +
Branch Direction Predictors

Suppose we maintain a table of how a particular Br has
resolved before. At the decode stage we can consult this
table to check if the incoming (pc, ppc) pair matches
our prediction. If not redirect the pc

Need
next PC

immediately

Instr type,
PC relative

targets
available

Simple
conditions,

register targets
available

Complex
conditions
available

Next Addr
Pred

tight
loop

P
C Decode Reg

Read Execute
Write
Back

mispred
insts

must be
filtered

Br Dir
Pred

correct
mispred

correct
mispred

http://csg.csail.mit.edu/6.175 L16-2October 26, 2016

2

Branch Prediction Bits
Remember how the branch was resolved previously

• Assume 2 BP bits per instruction
• Use saturating counter

O
n ¬

taken

O

n taken

1 1 Strongly taken

1 0 Weakly taken

0 1 Weakly ¬taken

0 0 Strongly ¬taken

Direction prediction changes only after two successive
bad predictions

http://csg.csail.mit.edu/6.175 L16-3

?

October 26, 2016

Two-bit versus one-bit
Branch prediction

Consider the branch instruction needed to
implement a loop
 with one bit, the prediction will always be set

incorrectly on loop exit
 with two bits the prediction will not change on loop

exit

A little bit of hysteresis is good in changing predictions

http://csg.csail.mit.edu/6.175 L16-4October 26, 2016

3

Branch History Table (BHT)

4K-entry BHT, 2 bits/entry, ~80-90% correct
direction predictions

0 0
Fetch PC

Branch?

Opcode offset
Instruction

k

BHT Index

2k-entry
BHT,
2 bits/entry

Taken/¬Taken?

Target PC

+

from
Fetch

At the Decode stage, if the instruction is a
branch then BHT is consulted using the pc;
if BHT shows a different prediction than the
incoming ppc, Fetch is redirected

http://csg.csail.mit.edu/6.175 L16-5October 26, 2016

Exploiting Spatial Correlation
Yeh and Patt, 1992

History register, H, records the direction of the last N
branches executed by the processor and the predictor
uses this information to predict the resolution of the next
branch

if (x[i] < 7) then
y += 1;

if (x[i] < 5) then
c -= 4;

If first condition is false then so is second condition

http://csg.csail.mit.edu/6.175 L16-6October 26, 2016

4

Two-Level Branch Predictor
Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~95% correct)

00

kFetch PC

Taken/¬Taken?

Shift in Taken/¬Taken
results of each branch

2-bit global branch
history shift register

Four
2k, 2-bit
Entry
BHT

http://csg.csail.mit.edu/6.175 L16-7October 26, 2016

Where does BHT fit in the
processor pipeline?

BHT can only be used after instruction decode

We still need the next instruction address
predictor (e.g., BTB) at the fetch stage

Predictor training: On a pc misprediction,
information about redirecting the pc has to be
passed to the fetch stage. However for
training the branch predictors information has
to be passed even when there is no
misprediction

http://csg.csail.mit.edu/6.175 L16-8October 26, 2016

5

Multiple predictors in a
pipeline

At each stage we need to take two decisions:
 Whether the current instruction is a wrong path

instruction. Requires looking at epochs
 Whether the prediction (ppc) following the current

instruction is good or not. Requires consulting the
prediction data structure (BTB, BHT, …)

Fetch stage must correct the pc unless the
redirection comes from a known wrong path
instruction
Redirections from Execute stage are always
correct, i.e., cannot come from wrong path
instructions, and cannot be ignored

http://csg.csail.mit.edu/6.175 L16-9October 26, 2016

Dropping vs poisoning an
instruction

Once an instruction is determined to be on the
wrong path, the instruction is either dropped or
poisoned
Drop: If the wrong path instruction has not
modified any book keeping structures (e.g.,
Scoreboard) then it is simply removed
Poison: If the wrong path instruction has
modified book keeping structures then it is
poisoned and passed down for book keeping
reasons (say, to remove it from the scoreboard)
Subsequent stages know not to update any
architectural state for a poisoned instruction

http://csg.csail.mit.edu/6.175 L16-10October 26, 2016

6

re
ci

re
ct

N-Stage pipeline – BTB only
assume unbounded epochs

Executed2eDecodef2dFetchPC

miss
pred?

fEp

At Execute:
 (correct pc?) if (ieEp < eEp) then mark the instruction as poisoned
 (correct ppc?) if (correct pc) & mispred then increase eEp
 For every control instruction send <pc, newPc, taken, mispred, ...> to

Fetch for training and redirection
At Fetch:
 msg from Execute: train BTB with <pc, newPc, taken, mispred> and if

msg from Execute indicates misprediction then set pc, increase fEp

attached to
every fetched
instruction

{pc, ppc, ieEp}

eEp
{pc, newPc, taken
mispredict, ...}

BTB

...

http://csg.csail.mit.edu/6.175 L16-11October 26, 2016

N-Stage pipeline:
Two predictors

Both Decode and Execute can redirect the PC; Execute
redirect should never be overruled
Use separate epochs for each redirecting stage
 eEp for Execute redirections and dEp for Decode redirections

Keep epoch shadows at earlier stages
 feEp and deEp are estimates of eEp at Fetch and Decode,

respectively. deEp is updated by the incoming eEp
 fdEp is Fetch’s estimates of dEp

Executed2eDecodef2dFetchPC

miss
pred?

miss
pred?

redirect PC

redirect PC

eEpeR
ec

ir
ec

t

fdEp dEp

dR
ec

ir
ec

t

...

http://csg.csail.mit.edu/6.175 L16-12October 26, 2016

feEp
deEp

Initially all
epochs are 0

7

Decode stage
Redirection logic

Executed2eDecodef2dFetchPC

miss
pred?

miss
pred?

deEp
eEpfeEp eR

ec
ir
ec

t

fdEp dEp

dR
ec

ir
ec

t
...

{..., ieEp}{pc, ppc, ieEp, idEp}

{pc, newPc, taken
mispredict, ...}

{pc, newPc,
ieEp, ...}

Is ieEp = deEp ?

Is idEp = dEp ?

yes no

yes no

http://csg.csail.mit.edu/6.175 L16-13October 26, 2016

N-Stage pipeline: Two predictors
Redirection logic

Executed2eDecodef2dFetchPC

miss
pred?

miss
pred?

deEp
eEpfeEp eR

ec
ir
ec

t

fdEp dEp

dR
ec

ir
ec

t

...

At execute:
 (correct pc?) if (ieEp < eEp) then poison the instruction
 (correct ppc?) if (correct pc) & mispred then increase eEp;
 For every non-poisoned control instruction send <pc, newPc, taken, mispred, ...> to

Fetch for training and redirection
At fetch:
 msg from execute: train btb & if (mispred) set pc, increase feEp,
 msg from decode: if (no redirect message from Execute)

if (ieEp=feEp) then set pc, increase fdEp
else drop it

At decode: …

{..., ieEp}{pc, ppc, ieEp, idEp}

{pc, newPc, taken
mispredict, ...}

{pc, newPc,
ieEp,...}

make sure that the msg from Decode
is not from a wrong path instruction

http://csg.csail.mit.edu/6.175 L16-14October 26, 2016

8

One bit epoch does not work

Executed2eDecodef2dFetchPC

miss
pred?

miss
pred?

deEp
eEpfeEp eR

ec
ir
ec

t

fdEp dEp

dR
ec

ir
ec

t
...

{..., ieEp}{pc, ppc, ieEp, idEp}

{pc, newPc, taken
mispredict, ...}

{pc, newPc,
ieEp, ...}

http://csg.csail.mit.edu/6.175 L16-15

The decode redirect which it issues in eEp should only
kill instructions in the same eEp in Fetch
Suppose a message has red eEpoch and sits for a long
time in dRedirect then by the time Fetch reads it eEpoch
may have changed to green and again to red. In such a
situation the message in dRedirect should be discarded
For one-bit epoch solution see Khan, Wright and Zhang

October 26, 2016

Discussion
The number of entries in BTB is small both
because of the need for fast access and the need
to store the target address (small and fat)
The number entries in BHT is large (thin and tall)
We can keep the history bits for branches in the
BTB also to improve performance; alternatively
we can set the branches to be always-taken
Jumps through registers (JALR) are problematic
and perhaps should not be kept in the BTB

L16-16http://csg.csail.mit.edu/6.175October 26, 2016

9

Uses of Jump Register (JALR)
Switch statements (jump to address of
matching case)

Dynamic function call (jump to run-time
function address)

Subroutine returns (jump to return address)

http://csg.csail.mit.edu/6.175 L16-17October 26, 2016

Subroutine Return Stack
A small structure to accelerate JR
for subroutine returns is typically
much more accurate than BTBs

pc of fb call

pc of fc call

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

pc of fd call k entries
(typically k=8-16)

Pop return address
when subroutine
return decoded

Push call address
when function call
executed

http://csg.csail.mit.edu/6.175 L16-18

Don’t keep these instructions in BTB
October 26, 2016

10

Multiple Predictors: BTB +
BHT + Ret Predictors

Multiple predictors are common; one of the PowerPCs has all
the three predictors
Performance analysis is quite difficult – depends upon the
sizes of various tables and program behavior
The system must work even if every prediction is wrong

Need
next PC

immediately

Instr type,
PC relative

targets
available

Simple
conditions,

register targets
available

Complex
conditions
available

Next Addr
Pred

tight
loop

P
C Decode Reg

Read Execute
Write
Back

mispred
insts

must be
filtered

Br Dir
Pred, RAS

correct
JR pred

correct
mispred

http://csg.csail.mit.edu/6.175 L16-19October 26, 2016

