Constructive Computer Architecture

Realistic Memories and
Caches

Arvind

Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

October 31, 2016

http://csg.csail.mit.edu/6.175

L17-1

Multistage Pipeline

L
u% Register File
TIA yY L
. §)
@ »le2c
PC Decode _,A Execute >
A > > d2e _1 ’_'
3 ’f
Inst T IY Data
Memory scoreboard Memory

The use of magic memories (combinational reads)

October 31, 2016

makes such design unrealistic
http://csg.csail.mit.edu/6.175

L17-2

Magic Memory Model

WriteEnable

C|Iock l

Address ———
MAGIC

WriteData —— RAM

——— ReadData

Reads and writes are always completed in
one cycle
= a Read can be done any time (i.e. combinational)

» If enabled, a Write is performed at the rising clock
edge

(the write address and data must be stable at the clock edge)

In a real DRAM the data will be available several
cycles after the address is supplied

http://csg.csail.mit.edu/6.175 L17-3

October 31, 2016

Memory Hierarchy
CPU Fastsrl\r/I]::lr;ory pr——— Big, Slow Memory
RegFile SRAM DRAM
holds frequently used data
size: RegFile << SRAM << DRAM
latency: RegFile << SRAM << DRAM

bandwidth: on-chip =>> off-chip

On a data access:

hit (data € fast memory) = low latency access
miss (data ¢ fast memory) = long latency access (DRAM)

October 31, 2016

http://csg.csail.mit.edu/6.175 L17-4

Inside a Cache

& cacheline
tag data
r 1 [\

Data| Dataj R

100 lsyielgytel | | ------- . Data from locations
D);ti “— 100, 101, ...

304 |gyte

6848

@ A cache line usually holds more than one word

= Spatial locality: if address x is referenced then
addresses x+1, x+2 etc. are very likely to be referenced
in the near future

+ consider instruction streams, array and record accesses

= Larger data sets can be transported more efficiently

= Reduces the number of tag bits needed to identify a
cache line

October 31, 2016 http://csg.csail.mit.edu/6.175 L17-5

Internal Cache Organization

@ Cache designs restrict where in cache a

particular address can reside

= Direct mapped: An address can reside in exactly one
location in cache. The cache location is typically
determined by the lowest order address bits

= N-way Set associative: An address can reside in any
of a set of n locations in the cache. The set is
typically determine by the low order address bits

October 31, 2016 http://csg.csail.mit.edu/6.175 L17-6

Extracting cache tags &
Index

‘ tag ‘ index ‘ L ’2 l_‘ Byte
‘ Y / addresses
Cache size in bytes

@ Processor requests are for a single word but cache
line size is 2t words (typically L=2)
@ Processor uses word-aligned byte addresses, i.e.
the two least significant bits of the address are 00
@ Suppose cache size =2K++2) pytes
= Direct mapped cache: Index=K; tag=32-(K+L+2)
m 2-Way set-associative cache: Index=K-1; tag = 32-(K-
1+L+2)
@ Need getlndex, getTag, getOffset functions

October 31, 2016 http://csg.csail.mit.edu/6.175 L17-7

Direct-Mapped Cache
The simplest implementation

che line number

A
[|

| Tag | Index |Offset| req address
- P I P
t ,k
V) Tag Data Block
2k
lines
HIT Data Word or Byte

October 31, 2016 http://csg.csail.mit.edu/6.175 L17-8

Direct Map Address Selection

higher-order vs. lower-order address bits

| Index | . Tag | Offset |
i 1| I
V) Tag Data Block

e SHE TR =TT =HETE k
i i e e prre e

lines

HIT Data Word or Byte

Why higher-order bits as tag may be undesirable?

October 31, 2016 http://csg.csail.mit.edu/6.175 L17-9

Conflict Misses

@ In a direct map cache, a cache-line can be
stored only if the cache slot corresponding to
its address is not occupied (even if there are
other unoccupied slots)

4 In a n-way set associate cache, a cache line
can be stored in n different slots - reduces
misses due to address conflicts

October 31, 2016 http://csg.csail.mit.edu/6.175 L17-10

2-Way Set-Associative Cache

Tag Index Block
Offset b

- p | High degree o

k associativity
V| Tag |Data Block V, Tag Data Block | increases
hardware
complexity and
CBE g R | access latency

el

rapidly

Data
Word
or Byte

‘ﬂ — hit
http://csg.csail.mit.edu/6.175 L17-11

October 31, 2016

Loads

Search the cache for the processor
generated address

Found in cache Not in cache

a.k.a. hit a.k.a. miss
Return a copy of Bring the missing cache-line
the word from the from Main Memory
cache-line May require writing back a

cache-line to create space

Update cache and

return word to processor
October 31, 2016 http://csg.csail.mit.edu/6.175 L17-12

Stores

@ On a write hit
= Write-back policy: write only to cache and update the
next level memory when line is evacuated

= Write-through policy: write to both the cache and the
next level memory

On a write miss

= Allocate — because of multi-word lines we first fetch the
line, and then update a word in it

= No allocate — cache is not affected, the Store is
forwarded to memory

Typically one uses either Write-back-Allocate policy
or Write-through-No-allocate policy

October 31, 2016

http://csg.csail.mit.edu/6.175 L17-13

Replacement Policy

@ To bring in a new cache line, usually another
cache line has to be thrown out. Which one?
= Direct mapped cache: No choice
= N-way set associative cache: Choice of policy

+ One that is not dirty, i.e., has not been modified. In I-
cache all lines are clean;

+ If there is still a choice of more than one then Least
Recently Used (LRU)? Most Recently Used? Random?

October 31, 2016 http://csg.csail.mit.edu/6.175 L17-14

Blocking vs. Non-Blocking

cache

@ Blocking cache:
= At most one outstanding miss
» Cache must wait for memory to respond
= Cache does not accept requests in the
meantime
Non-blocking cache:
= Multiple outstanding misses

s Cache can continue to process requests while
waiting for memory to respond to misses

We will first design a write-back, Write-miss allocate,
Direct-mapped, blocking cache

October 31, 2016 http://csg.csail.mit.edu/6.175 L17-15

Blocking Cache Interface

req :] missReq —
memReq
mshr | LmReaQ | = pray or
Processof] next level
cache N cache
AA'SS_STQTUS resp hth ‘ | mReSpQ memReSp
Handling —] |
Register

interface Cache;
method Action req(MemReq r);
method ActionValue#(Data) resp;

method ActionValue#(MemReq) memReq;
method Action memResp(Line r);

endinterface

October 31, 2016 http://csg.csail.mit.edu/6.175 L17-16

Interface dynamics

@ The cache either gets a hit and responds
immediately, or it gets a miss, in which case it
takes several steps to process the miss

@ Reading the response dequeues it

@ Methods are guarded, e.g., cache may not be
ready to accept a request because it is
processing a miss

@ A mshr register keeps track of the state of the

cache while it is processing a miss
typedef enum {Ready, StartMiss, SendFillReq,
WaitFillResp} CacheStatus deriving (Bits, EQ);

October 31, 2016 http://csg.csail.mit.edu/6.175 L17-17

Blocking cache
state elements

B RegFile#(Cachelndex, Line) dataArray <- mkRegFileFull;
RegFile#(Cachelndex, Maybe#(CacheTag))

tagArray <- mkRegFileFull;
RegFile#(Cachelndex, Bool) dirty <- mkRegFileFull;
Tag and valid bits

Fifo#(1, Data) hitQ <- mkBypassFifo; |qre kept together
Reg#(MemReq) missReq <- mkRegU; as a Maybe type
Reg#(CacheStatus) mshr <- mkReg(Ready):

CF Fifos are preferable
mkCFET§6” becausg they provide better
decoupling. An extra cycle
here may not affect the
performance by much

Fifo#(2, MemReq) memReqgQ <-
Fifo#(2, Line) memRespQ <- mkCFFifo;

October 31, 2016 http://csg.csail.mit.edu/6.175 L17-18

Reqg method
hit processing

method Action reqg(MemReq r) if(mshr == Ready);
let 1dx = getldx(r.addr); let tag = getTag(r.addr);
let wOffset = getOffset(r.addr);
let currTag = tagArray.sub(idx);
let hit = isvValid(currTag)?
fromMaybe(?,currTag)==tag : False;
if(hit) begin
let x = dataArray.sub(idx);
if(r.op == Ld) hitQ.enq(x[wOffset]);
else begin x[wOffset]:r.data;f//””/
dataArray.upd(idx, Xx);
dirtyArray.upd(idx, True); end
else begin missReq <= r; mshr <= StartMiss; end
endmethod

October 31, 2016 http://csg.csail.mit.edu/6.175 L17-19

Miss processing

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

® mshr = StartMiss ==>

» if the slot is occupied by dirty data, initiate a write
back of data

s mshr <= SendFillReq

® mshr = SendFillReq ==>
= send the request to the memory
s mshr <= WaitFillReq
® mshr = WaitFillReq ==>
= Fill the slot when the data is returned from the

memory and put the load response in the cache
response FIFO

= mshr <= Ready

Rest of the slides contain
miss handling rules

October 31, 2016 http://csg.csail.mit.edu/6.175 L17-20

Start-miss and Send-fill
rules

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready ‘

rule startMiss(mshr == StartMiss);
let idx = getldx(missReq.addr);
let tag=tagArray.sub(idx); let dirty=dirtyArray.sub(idx);
if(isvalid(tag) && dirty) begin // write-back
let addr = {fromMaybe(?,tag), idx, 4"b0};
let data = dataArray.sub(idx);
memReqQ.eng(MemReq{op: St, addr: addr, data: data});
end

mshr <= SendFillReq;
endrule
Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

rule sendFillReq (mshr == SendFillReq);
memReqQ.enqg(missReq); mshr <= WaitFillResp;

endrule
October 31, 2016 http://csg.csail.mit.edu/6.175 L17-21

Wait-fill rule

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

rule waitFillResp(mshr == WaitFillResp);

let 1dx = getldx(missReq.addr);

let tag = getTag(missReq.addr);

let data = memRespQ.first;

tagArray.upd(idx, Valid (tag));

if(missReq.op == Ld) begin
dirtyArray.upd(idx,False);dataArray.upd(idx, data);
hitQ.enq(data[wOffset]); end

else begin data[wOffset] = missReq.data;
dirtyArray.upd(idx,True); dataArray.upd(idx, data);

end
memRespQ.deq; mshr <= Ready;
endrule
October 31, 2016 http://csg.csail.mit.edu/6.175 L17-22

11

Rest of the methods

method ActionValue#(Data) resp;
hitQ.deq;
return hitQ.first;

endmethod

—

method ActionValue#(MemReq) memReq;
memReqQ.deq;
return memReqQ.first;

endmethod Memory side
—
methods

method Action memResp(Line r);
memRespQ.enq(r);
endmethod

October 31, 2016 http://csg.csail.mit.edu/6.175 L17-23

Functions to extract cache
tag, index, word offset

‘ tag ‘ index ‘ L’Z L_gﬁ_, Byte
‘ Y ' addresses
Cache size in bytes

Function Cachelndex getlndex(Addr addr) = truncate(addr>>4);
Function Bit#(2) getOffset(Addr addr) truncate(addr >> 2);
function CacheTag getTag(Addr addr) truncatelLSB(addr);

truncate = truncateMSB

October 31, 2016 http://csg.csail.mit.edu/6.175 L17-24

12

