
1

Constructive Computer Architecture

Realistic Memories and
Caches

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

http://csg.csail.mit.edu/6.175October 31, 2016 L17-1

Multistage Pipeline

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

d2e

re
di

re
ct

fE
po

ch

eEpoch

nap e2c

scoreboard

The use of magic memories (combinational reads)
makes such design unrealistic

http://csg.csail.mit.edu/6.175October 31, 2016 L17-2

2

Magic Memory Model

Reads and writes are always completed in
one cycle
 a Read can be done any time (i.e. combinational)
 If enabled, a Write is performed at the rising clock

edge
(the write address and data must be stable at the clock edge)

MAGIC
RAM

ReadData

WriteData

Address

WriteEnable
Clock

In a real DRAM the data will be available several
cycles after the address is supplied

http://csg.csail.mit.edu/6.175October 31, 2016 L17-3

Memory Hierarchy

size: RegFile << SRAM << DRAM
latency: RegFile << SRAM << DRAM
bandwidth: on-chip >> off-chip

On a data access:
hit (data fast memory) low latency access
miss (data fast memory) long latency access (DRAM)

Small,
Fast Memory

SRAM

CPU
RegFile

Big, Slow Memory
DRAM

holds frequently used data

http://csg.csail.mit.edu/6.175October 31, 2016 L17-4

3

Inside a Cache

http://csg.csail.mit.edu/6.175

cache line
tag data

Data from locations
100, 101, ...

Data
Byte

Data
Byte

Data
Byte

100

304

6848

A cache line usually holds more than one word
 Spatial locality: if address x is referenced then

addresses x+1, x+2 etc. are very likely to be referenced
in the near future
 consider instruction streams, array and record accesses

 Larger data sets can be transported more efficiently
 Reduces the number of tag bits needed to identify a

cache line
October 31, 2016 L17-5

Internal Cache Organization
Cache designs restrict where in cache a
particular address can reside
 Direct mapped: An address can reside in exactly one

location in cache. The cache location is typically
determined by the lowest order address bits

 n-way Set associative: An address can reside in any
of a set of n locations in the cache. The set is
typically determine by the low order address bits

http://csg.csail.mit.edu/6.175October 31, 2016 L17-6

4

Extracting cache tags &
index

Processor requests are for a single word but cache
line size is 2L words (typically L=2)
Processor uses word-aligned byte addresses, i.e.
the two least significant bits of the address are 00
Suppose cache size =2(K+L+2) bytes
 Direct mapped cache: Index=K; tag=32-(K+L+2)
 2-Way set-associative cache: Index=K-1; tag = 32-(K-

1+L+2)
Need getIndex, getTag, getOffset functions

tag index L 2

Cache size in bytes

Byte
addresses

http://csg.csail.mit.edu/6.175October 31, 2016 L17-7

Direct-Mapped Cache
The simplest implementation

Tag Data BlockV

=

OffsetTag Index

t k b

t

HIT Data Word or Byte

2k

lines

Cache line number

req address

http://csg.csail.mit.edu/6.175October 31, 2016 L17-8

5

Direct Map Address Selection
higher-order vs. lower-order address bits

Tag Data BlockV

=

OffsetIndex

tk b

t

HIT Data Word or Byte

2k

lines

Tag

Why higher-order bits as tag may be undesirable?

http://csg.csail.mit.edu/6.175October 31, 2016 L17-9

Conflict Misses
In a direct map cache, a cache-line can be
stored only if the cache slot corresponding to
its address is not occupied (even if there are
other unoccupied slots)
In a n-way set associate cache, a cache line
can be stored in n different slots - reduces
misses due to address conflicts

http://csg.csail.mit.edu/6.175October 31, 2016 L17-10

6

2-Way Set-Associative Cache

Tag Data BlockV

=

Block
Offset

Tag Index

t k

b

hit

Tag Data BlockV

Data
Word
or Byte

=

t

http://csg.csail.mit.edu/6.175

High degree of
associativity
increases
hardware
complexity and
access latency
rapidly

October 31, 2016 L17-11

Loads
Search the cache for the processor

generated address

Found in cache
a.k.a. hit

Return a copy of
the word from the
cache-line

Not in cache
a.k.a. miss

Bring the missing cache-line
from Main Memory
May require writing back a
cache-line to create space

…

Update cache and
return word to processor

http://csg.csail.mit.edu/6.175October 31, 2016 L17-12

7

Stores
On a write hit
 Write-back policy: write only to cache and update the

next level memory when line is evacuated
 Write-through policy: write to both the cache and the

next level memory
On a write miss
 Allocate – because of multi-word lines we first fetch the

line, and then update a word in it
 No allocate – cache is not affected, the Store is

forwarded to memory

http://csg.csail.mit.edu/6.175

Typically one uses either Write-back-Allocate policy
or Write-through-No-allocate policy

October 31, 2016 L17-13

Replacement Policy
To bring in a new cache line, usually another
cache line has to be thrown out. Which one?
 Direct mapped cache: No choice
 N-way set associative cache: Choice of policy

 One that is not dirty, i.e., has not been modified. In I-
cache all lines are clean;

 If there is still a choice of more than one then Least
Recently Used (LRU)? Most Recently Used? Random?

http://csg.csail.mit.edu/6.175October 31, 2016 L17-14

8

Blocking vs. Non-Blocking
cache

Blocking cache:
 At most one outstanding miss
 Cache must wait for memory to respond
 Cache does not accept requests in the

meantime
Non-blocking cache:
 Multiple outstanding misses
 Cache can continue to process requests while

waiting for memory to respond to misses

We will first design a write-back, Write-miss allocate,
Direct-mapped, blocking cache

http://csg.csail.mit.edu/6.175October 31, 2016 L17-15

Blocking Cache Interface

interface Cache;
method Action req(MemReq r);
method ActionValue#(Data) resp;

method ActionValue#(MemReq) memReq;
method Action memResp(Line r);

endinterface

cache

req

resp

memReq

memResp

Processor DRAM or
next level
cache

hitQ

mReqQ

mRespQ

mshr

missReq

Miss_Status
Handling
Register

http://csg.csail.mit.edu/6.175October 31, 2016 L17-16

9

Interface dynamics
The cache either gets a hit and responds
immediately, or it gets a miss, in which case it
takes several steps to process the miss
Reading the response dequeues it
Methods are guarded, e.g., cache may not be
ready to accept a request because it is
processing a miss
A mshr register keeps track of the state of the
cache while it is processing a miss
typedef enum {Ready, StartMiss, SendFillReq,

WaitFillResp} CacheStatus deriving (Bits, Eq);

http://csg.csail.mit.edu/6.175October 31, 2016 L17-17

Blocking cache
state elements
RegFile#(CacheIndex, Line) dataArray <- mkRegFileFull;

RegFile#(CacheIndex, Maybe#(CacheTag))

tagArray <- mkRegFileFull;

RegFile#(CacheIndex, Bool) dirtyArray <- mkRegFileFull;

Fifo#(1, Data) hitQ <- mkBypassFifo;

Reg#(MemReq) missReq <- mkRegU;

Reg#(CacheStatus) mshr <- mkReg(Ready);

Fifo#(2, MemReq) memReqQ <- mkCFFifo;

Fifo#(2, Line) memRespQ <- mkCFFifo;

CF Fifos are preferable
because they provide better
decoupling. An extra cycle
here may not affect the
performance by much

Tag and valid bits
are kept together
as a Maybe type

http://csg.csail.mit.edu/6.175October 31, 2016 L17-18

10

Req method
hit processing
method Action req(MemReq r) if(mshr == Ready);

let idx = getIdx(r.addr); let tag = getTag(r.addr);

let wOffset = getOffset(r.addr);

let currTag = tagArray.sub(idx);

let hit = isValid(currTag)?

fromMaybe(?,currTag)==tag : False;

if(hit) begin

let x = dataArray.sub(idx);

if(r.op == Ld) hitQ.enq(x[wOffset]);

else begin x[wOffset]=r.data;

dataArray.upd(idx, x);

dirtyArray.upd(idx, True); end

else begin missReq <= r; mshr <= StartMiss; end

endmethod

http://csg.csail.mit.edu/6.175October 31, 2016 L17-19

Miss processing

mshr = StartMiss ==>
 if the slot is occupied by dirty data, initiate a write

back of data
 mshr <= SendFillReq
mshr = SendFillReq ==>
 send the request to the memory
 mshr <= WaitFillReq
mshr = WaitFillReq ==>
 Fill the slot when the data is returned from the

memory and put the load response in the cache
response FIFO

 mshr <= Ready

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

http://csg.csail.mit.edu/6.175

Rest of the slides contain
miss handling rules

October 31, 2016 L17-20

11

Start-miss and Send-fill
rules
rule startMiss(mshr == StartMiss);

let idx = getIdx(missReq.addr);

let tag=tagArray.sub(idx); let dirty=dirtyArray.sub(idx);

if(isValid(tag) && dirty) begin // write-back

let addr = {fromMaybe(?,tag), idx, 4'b0};

let data = dataArray.sub(idx);

memReqQ.enq(MemReq{op: St, addr: addr, data: data});

end

mshr <= SendFillReq;

endrule

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

rule sendFillReq (mshr == SendFillReq);

memReqQ.enq(missReq); mshr <= WaitFillResp;

endrule

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

http://csg.csail.mit.edu/6.175October 31, 2016 L17-21

Wait-fill rule
Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

rule waitFillResp(mshr == WaitFillResp);

let idx = getIdx(missReq.addr);

let tag = getTag(missReq.addr);

let data = memRespQ.first;

tagArray.upd(idx, Valid (tag));

if(missReq.op == Ld) begin

dirtyArray.upd(idx,False);dataArray.upd(idx, data);

hitQ.enq(data[wOffset]); end

else begin data[wOffset] = missReq.data;

dirtyArray.upd(idx,True); dataArray.upd(idx, data);

end

memRespQ.deq; mshr <= Ready;

endrule

http://csg.csail.mit.edu/6.175October 31, 2016 L17-22

12

Rest of the methods
method ActionValue#(Data) resp;

hitQ.deq;

return hitQ.first;

endmethod

method ActionValue#(MemReq) memReq;

memReqQ.deq;

return memReqQ.first;

endmethod

method Action memResp(Line r);

memRespQ.enq(r);

endmethod

Memory side
methods

http://csg.csail.mit.edu/6.175October 31, 2016 L17-23

Functions to extract cache
tag, index, word offset

tag index L 2

Cache size in bytes

Byte
addresses

function CacheIndex getIndex(Addr addr) = truncate(addr>>4);
function Bit#(2) getOffset(Addr addr) = truncate(addr >> 2);
function CacheTag getTag(Addr addr) = truncateLSB(addr);

truncate = truncateMSB

http://csg.csail.mit.edu/6.175October 31, 2016 L17-24

