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The use of magic memories (combinational reads) 
makes such design unrealistic 
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Magic Memory Model

Reads and writes are always completed in 
one cycle
 a Read can be done any time (i.e. combinational)
 If enabled, a Write is performed at the rising clock 

edge
(the write address and data must be stable at the clock edge)
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In a real DRAM the data will be available several 
cycles after the address is supplied
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Memory Hierarchy

size: RegFile <<  SRAM  <<  DRAM
latency: RegFile <<  SRAM  <<  DRAM
bandwidth: on-chip  >>  off-chip    

On a data access:
hit (data  fast memory)  low latency access
miss (data  fast memory)  long latency access (DRAM)

Small,
Fast Memory

SRAM

CPU
RegFile

Big, Slow Memory
DRAM

holds frequently used data
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Inside a Cache
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A cache line usually holds more than one word
 Spatial locality: if address x is referenced then  

addresses x+1, x+2 etc. are very likely to be referenced 
in the near future
 consider instruction streams, array and record accesses

 Larger data sets can be transported more efficiently
 Reduces the number of tag bits needed to identify a 

cache line
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Internal Cache Organization
Cache designs restrict where in cache a 
particular address can reside
 Direct mapped: An address can reside in exactly one 

location in cache. The cache location is typically 
determined by the lowest order address bits

 n-way Set associative: An address can reside in any 
of a set of n locations in the cache. The set is 
typically determine by the low order address bits
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Extracting cache tags & 
index

Processor requests are for a single word but cache 
line size is 2L words (typically L=2)
Processor uses word-aligned byte addresses, i.e. 
the two least significant bits of the address are 00
Suppose cache size =2(K+L+2) bytes
 Direct mapped cache:  Index=K; tag=32-(K+L+2)
 2-Way set-associative cache: Index=K-1; tag = 32-(K-

1+L+2) 
Need getIndex, getTag, getOffset functions 

tag              index    L  2

Cache size in bytes

Byte 
addresses
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Direct-Mapped Cache
The simplest implementation
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Direct Map Address Selection
higher-order vs. lower-order address bits

Tag Data BlockV
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Why higher-order bits as tag may be undesirable?
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Conflict Misses
In a direct map cache, a cache-line can be 
stored only if the cache slot corresponding to 
its address is not occupied (even if there are 
other unoccupied slots)
In a n-way set associate cache, a cache line 
can be stored in n different slots - reduces 
misses due to address conflicts 
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2-Way Set-Associative Cache

Tag Data BlockV
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High degree of 
associativity 
increases 
hardware 
complexity and 
access latency 
rapidly
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Loads
Search the cache for the processor 

generated address 

Found in cache 
a.k.a.  hit

Return a copy of 
the word from the 
cache-line

Not in cache
a.k.a. miss

Bring the missing cache-line 
from Main Memory 
May require writing back a 
cache-line to create space

…

Update cache and 
return word to processor
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Stores
On a write hit
 Write-back policy: write only to cache and update the 

next level memory when line is evacuated
 Write-through policy: write to both the cache and the 

next level memory
On a write miss 
 Allocate – because of multi-word lines we first fetch the 

line, and then update a word in it
 No allocate – cache is not affected, the Store is 

forwarded to memory
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Typically one uses either Write-back-Allocate policy 
or Write-through-No-allocate policy
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Replacement Policy
To bring in a new cache line, usually another 
cache line has to be thrown out. Which one?
 Direct mapped cache: No choice 
 N-way set associative cache:  Choice of policy  

 One that is not dirty, i.e., has not been modified. In I-
cache all lines are clean; 

 If there is still a choice of more than one then Least 
Recently Used (LRU)? Most Recently Used? Random?
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Blocking vs. Non-Blocking 
cache

Blocking cache:
 At most one outstanding miss
 Cache must wait for memory to respond
 Cache does not accept requests in the 

meantime
Non-blocking cache:
 Multiple outstanding misses
 Cache can continue to process requests while 

waiting for memory to respond to misses

We will first design a write-back, Write-miss allocate, 
Direct-mapped, blocking cache
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Blocking Cache Interface

interface Cache;
method Action req(MemReq r);
method ActionValue#(Data) resp;

method ActionValue#(MemReq) memReq;
method Action memResp(Line r);

endinterface

cache

req

resp

memReq

memResp

Processor DRAM or 
next level 
cache

hitQ

mReqQ

mRespQ

mshr

missReq

Miss_Status
Handling
Register
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Interface dynamics
The cache either gets a hit and responds 
immediately, or it gets a miss, in which case it 
takes several steps to process the miss
Reading the response dequeues it
Methods are guarded, e.g., cache may not be 
ready to accept a request because it is 
processing a miss
A mshr register keeps track of the state of the 
cache while it is processing a miss
typedef enum {Ready, StartMiss, SendFillReq, 

WaitFillResp} CacheStatus deriving (Bits, Eq);
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Blocking cache
state elements
RegFile#(CacheIndex, Line) dataArray <- mkRegFileFull;

RegFile#(CacheIndex, Maybe#(CacheTag))

tagArray <- mkRegFileFull;

RegFile#(CacheIndex, Bool) dirtyArray <- mkRegFileFull;

Fifo#(1, Data) hitQ <- mkBypassFifo;

Reg#(MemReq)     missReq <- mkRegU;

Reg#(CacheStatus) mshr <- mkReg(Ready);

Fifo#(2, MemReq) memReqQ <- mkCFFifo;

Fifo#(2, Line) memRespQ <- mkCFFifo;

CF Fifos are preferable 
because they provide better 
decoupling. An extra cycle 
here may not affect the 
performance by much

Tag and valid bits 
are kept together 
as a Maybe type
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Req method
hit processing
method Action req(MemReq r) if(mshr == Ready);

let idx = getIdx(r.addr); let tag = getTag(r.addr);

let wOffset = getOffset(r.addr);

let currTag = tagArray.sub(idx);

let hit = isValid(currTag)? 

fromMaybe(?,currTag)==tag : False; 

if(hit) begin

let x = dataArray.sub(idx);

if(r.op == Ld) hitQ.enq(x[wOffset]);

else begin x[wOffset]=r.data; 

dataArray.upd(idx, x);

dirtyArray.upd(idx, True); end

else begin missReq <= r; mshr <= StartMiss; end

endmethod
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Miss processing

mshr = StartMiss ==>
 if the slot is occupied by dirty data, initiate a write 

back of data
 mshr <= SendFillReq
mshr = SendFillReq ==>
 send the request to the memory 
 mshr <= WaitFillReq
mshr = WaitFillReq ==>
 Fill the slot when the data is returned from the 

memory and put the load response in the cache 
response FIFO

 mshr <= Ready

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready
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Rest of the slides contain 
miss handling rules
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Start-miss and Send-fill 
rules
rule startMiss(mshr == StartMiss);

let idx = getIdx(missReq.addr); 

let tag=tagArray.sub(idx); let dirty=dirtyArray.sub(idx);

if(isValid(tag) && dirty) begin // write-back

let addr = {fromMaybe(?,tag), idx, 4'b0};

let data = dataArray.sub(idx);

memReqQ.enq(MemReq{op: St, addr: addr, data: data});

end

mshr <= SendFillReq;

endrule

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

rule sendFillReq (mshr == SendFillReq);

memReqQ.enq(missReq);   mshr <= WaitFillResp;

endrule

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready
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Wait-fill rule
Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

rule waitFillResp(mshr == WaitFillResp);

let idx = getIdx(missReq.addr);

let tag = getTag(missReq.addr);

let data = memRespQ.first;

tagArray.upd(idx, Valid (tag));

if(missReq.op == Ld) begin

dirtyArray.upd(idx,False);dataArray.upd(idx, data);

hitQ.enq(data[wOffset]); end

else begin data[wOffset] = missReq.data;    

dirtyArray.upd(idx,True); dataArray.upd(idx, data);

end

memRespQ.deq; mshr <= Ready;

endrule

http://csg.csail.mit.edu/6.175October 31, 2016 L17-22



12

Rest of the methods
method ActionValue#(Data) resp;

hitQ.deq;

return hitQ.first;

endmethod

method ActionValue#(MemReq) memReq;

memReqQ.deq;

return memReqQ.first;

endmethod

method Action memResp(Line r);

memRespQ.enq(r);

endmethod

Memory side 
methods
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Functions to extract cache 
tag, index, word offset

tag              index    L  2

Cache size in bytes

Byte 
addresses

function CacheIndex getIndex(Addr addr) = truncate(addr>>4);
function Bit#(2) getOffset(Addr addr) = truncate(addr >> 2);
function CacheTag getTag(Addr addr)   = truncateLSB(addr);

truncate = truncateMSB
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