
1

Constructive Computer Architecture

Interrupts/Exceptions/Faults

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

http://csg.csail.mit.edu/6.175November 7, 2016 L19-1

Hardware Software
Interactions

Modern processors cannot function without some resident
programs (“services”), which are shared by all users
Usually such programs need some special registers which
are not visible to the users
Therefore all ISAs have extensions to deal with these
special registers
Furthermore, these special registers cannot be
manipulated by user programs; therefore user/privileged
mode is needed to use these instructions

application application

Operating system

Hardware

Application binary
interface (ABI)

Supervisor binary
interface (SBI)

http://csg.csail.mit.edu/6.175November 7, 2016 L19-2

2

Interrupts
altering the normal flow of control

An external or internal event that needs to be processed by
another (system) program. The event is usually unexpected or
rare from program’s point of view.

program

HI1

HI2

HIn

interrupt
handler

Ii-1

Ii

Ii+1

http://csg.csail.mit.edu/6.175November 7, 2016 L19-3

Asynchronous Interrupts
caused by an external event

External event
 input/output device service-request/response
 timer expiration
 power disruptions, hardware failure

After the processor decides to process the
interrupt
 It stops the current program at instruction Ii, completing

all the instructions up to Ii-1 (Precise interrupt)
 It saves the PC of instruction Ii in a special register
 It disables interrupts and transfers control to a

designated interrupt handler running in the privilege
mode
 Privileged/user mode to prevent user programs from causing harm

to other users or OS

http://csg.csail.mit.edu/6.175November 7, 2016 L19-4

3

Synchronous Interrupts
caused by the execution of instruction

The instruction cannot be completed
 undefined opcode, privileged instructions
 arithmetic overflow, FPU exception
 misaligned memory access
 virtual memory exceptions: page faults,

TLB misses, protection violations
System call: Deliberately used by the
programmer to invoke a kernel service

http://csg.csail.mit.edu/6.175November 7, 2016 L19-5

exception

trap

Either the faulting condition is fixed, the
instruction is emulated by the exception
handler, or the program is aborted
The pipeline must undo any partial execution
and record the cause of the exception

Architectural features for
Interrupt Handling

Special registers
 mepc holds pc of the instruction that causes the interrupt
 mcause indicates the cause of the interrupt
 mscratch holds the pointer to HW-thread local storage for

saving context before handling the interrupt
 mstatus

Special instructions
 ERET (environment return) to return from an exception/fault

handler program using mepc. It restores the previous interrupt
state, mode, cause register, …

 Instruction to manipulate and move CSRs into GPRs
 need a way to mask further interrupts at least until mepc can

be saved

In RISC-V mepc, mcause and mstatus are some
of the Control and Status Registers (CSRs)

RISC-V has four modes; we deal with
only user and machine modes
http://csg.csail.mit.edu/6.175November 7, 2016 L19-6

4

Interrupt Handling

System calls
A system call instruction causes an interrupt when
it reaches the execute stage
 decoder recognizes a SCALL instruction
 current pc is stored in mepc
 mcause is set to the value defined for system calls
 the processor is switched to privileged mode and disables

interrupts; previous privilege level is saved in mstatus
 PC is redirected to the Exception handler which is

available in the mtvec for the user mode
 The effective meaning of the SCALL instruction is defined

by the kernel; a convention
 Register a7 contains the desired function,
 register a0,a1,a2 contain the arguments,
 result is returned in register a0

Single-cycle implementation: next few slides
http://csg.csail.mit.edu/6.175

Processor can’t
function without
the cooperation
of the software

November 7, 2016 L19-7

Single-Cycle RISC-V
rule doExecute;
let inst = iMem.req(pc);
let dInst = decode(inst, csrf.getStatus);
let rVal1 = rf.rd1(fromMaybe(?, dInst.src1));
let rVal2 = rf.rd2(fromMaybe(?, dInst.src2));
let eInst = exec(dInst, rVal1, rVal2, pc, ?);
if(eInst.iType == Ld)

eInst.data <- dMem.req(MemReq{op: Ld, addr:
eInst.addr, data: ?});

else if(eInst.iType == St)
let d <- dMem.req(MemReq{op: St, addr:

eInst.addr, data: eInst.data});
if (isValid(eInst.dst))

rf.wr(fromMaybe(?, eInst.dst), eInst.data);
… setting special registers …
… next address calculation …

endrule endmodule
http://csg.csail.mit.edu/6.175November 7, 2016 L19-8

5

Type: Decoded Instruction
typedef struct {
IType iType;
AluFunc aluFunc;
BrFunc brFunc;
Maybe#(RIndx) dst;
Maybe#(RIndx) src1;
Maybe#(RIndx) src2;
Maybe#(Data) imm;
Maybe#(CsrIndx) csr;

} DecodedInst deriving(Bits, Eq);

typedef enum {Unsupported, NoPermit, Alu, Ld, St, J,
Jr, Br,..., Syscall, ERet} IType deriving(Bits, Eq);

http://csg.csail.mit.edu/6.175November 7, 2016 L19-9

Decode
function DecodedInst decode(Data inst, Status status);

DecodedInst dInst = ?; ...
opSystem: begin
case (funct3) ...
fnPRIV: begin // privilege inst
dInst.iType = (case(inst[31:20])
fn12SCALL: Syscall; // sys call
// ERET can only be executed under privilege mode
fn12ERET: isPrivMode(status) ? Eret : NoPermit;
...
default: Unsupported;

endcase);
dInst.dst = Invalid; dInst.src1 = Invalid;
dInst.src2 = Invalid; dInst.imm = Invalid;
dInst.aluFunc = ?; dInst.brFunc = NT;

end ... endcase end
...
return dInst;

endfunction
http://csg.csail.mit.edu/6.175November 7, 2016 L19-10

6

Set special registers
if (eInst.iType==Syscall)
begin

csrf.setStatus(statusPushKU(csrf.getStatus));
csrf.setCause(32’h08); // cause for System call
csrf.setEpc(pc);

end else
if (eInst.iType==ERet) begin

cop.setStatus(statusPopKU(cop.getStatus));
end

http://csg.csail.mit.edu/6.175November 7, 2016 L19-11

Redirecting PC
if (eInst.iType==Syscall)

pc <= csrf.getTvec;
else if (eInst.iType==ERet)

pc <= cop.getEpc;
else

pc <= eInst.brTaken ? eInst.addr : pc + 4;

http://csg.csail.mit.edu/6.175November 7, 2016 L19-12

Speed is usually not the paramount concern in
hardware handling of interrupts

7

Software for interrupt
handling

Hardware transfers control to the common
software interrupt handler (CH) which:

1. Saves all GPRs into the memory pointed by
mscratch

2. Passes mcause, mepc, stack pointer to the IH
(a C function) to handle the specific interrupt

3. On the return from the IH, writes the return
value to mepc

4. Loads all GPRs from the memory
5. Execute ERET, which does:

 set pc to mepc
 pop mstatus (mode, enable) stack

http://csg.csail.mit.edu/6.175November 7, 2016 L19-13

IH

IH

IH

CH
1
2
3
4
5

GPR

Common Interrupt
Handler- SW
tvec: # fixed entry point for each mode

for user mode the address is 0x100
j common_handler # One level of indirection

common_handler: # Common wrapper for all IH
get the pointer to HW-thread local stack
csrrw sp, mscratch, sp # swap sp and mscratch
save x1, x3 ~ x31 to stack (x2 is sp, save later)
addi sp, sp, -128
sw x1, 4(sp)
sw x3, 12(sp)
...
sw x31, 124(sp)
save original sp (now in mscratch) to stack
csrr s0, mscratch # store mscratch to s0
sw s0, 8(sp)

http://csg.csail.mit.edu/6.175November 7, 2016 L19-14

Not BSV code

8

Common handler- SW cont.
Setting up and calling IH_Dispacher
Common_handler:
... # we have saved all GPRs to stack
call C function to handle interrupt
csrr a0, mcause # arg 0: cause
csrr a1, mepc # arg 1: epc
mv a2, sp # arg 2: sp – pointer to all saved GPRs
jal ih_dispatcher # call C function
return value is the PC to resume
csrw mepc, a0
restore mscratch and all GPRs
addi s0, sp, 128; csrw mscratch, s0
lw x1, 4(sp); lw x3, 12(sp); ...; lw x31, 124(sp)
lw x2, 8(sp) # restore sp at last
eret # finish handling interrupt

http://csg.csail.mit.edu/6.175November 7, 2016 L19-15

IH Dispatcher
long ih_dispatcher(long cause, long epc, long *regs) {
// regs[i] refers to GPR xi stored in stack
if(cause == 0x08)
return syscall_ih(cause, epc, regs);

else if(cause == 0x02)
return illegal_ih(cause, epc, regs);

else ... // other causes
}

http://csg.csail.mit.edu/6.175November 7, 2016 L19-16

9

Syscall Interrupt Handler
long syscall_ih(long cause, long epc, long *regs) {

// figure out the type of SCALL (stored in a7/x17)
// args are in a0/x10, a1/x11, a2/x12
long type = regs[17]; long arg0 = regs[10];
long arg1 = regs[11]; long arg2 = regs[12];
if(type == SysPrintChar) { ... }
else if(type == SysPrintInt) { ... }
else if(type == SysExit) { ... }
else ...
// SCALL finshes, we need to resume to epc + 4
return epc + 4;

}

http://csg.csail.mit.edu/6.175November 7, 2016 L19-17

Another Example: SW emulation
of MULT instruction

Suppose there is no hardware multiplier. With proper
exception handlers we can implement unsupported
instructions in SW
MUL returns the low 32-bit result of rs1*rs2 into rd
MUL is decoded as an unsupported instruction and will
throw an Illegal Instruction exception
HW Jump to the same CH as in handling SCALL
SW handles the exception in illegal_inst_ih() function
 illegal_inst_ih() checks the opcode and function code of

MUL to call the emulated multiply function
Control is resumed to epc + 4 after emulation is done
(ERET)

mul rd, rs1, rs2

http://csg.csail.mit.edu/6.175November 7, 2016 L19-18

10

Illegal Instruction IH
long illegal_inst_ih(long cause, long epc, long *regs)
{ uint32_t inst = *((uint32_t*)epc); // fetch inst

// check opcode & function codes
if((inst & MASK_MUL) == MATCH_MUL) {
// is MUL, extract rd, rs1, rs2 fields
int rd = (inst >> 7) & 0x01F;
int rs1 = ...; int rs2 = ...;
// emulate regs[rd] = regs[rs1] * regs[rs2]
emulate_multiply(rd, rs1, rs2, regs);
return epc + 4; // done, resume at epc+4

} else abort();
}

http://csg.csail.mit.edu/6.175November 7, 2016 L19-19

Exception Handling
in pipelined machines

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

External
Interrupts

Ex
D

PC
D

Ex
E

PC
E

Ex
M

PC
M

C
au

se
EP

C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

Commit
Point

1. An instruction may cause multiple exceptions; which
one should we process?
2. When multiple instructions are causing exceptions;
which one should we process first?

from the earliest stage

from the oldest instruction
http://csg.csail.mit.edu/6.175November 7, 2016 L19-20

