
1 

Constructive Computer Architecture 
 

Virtual Memory:  
From Address Translation to 
Demand Paging 

 
 
Arvind 
Computer Science & Artificial Intelligence Lab. 
Massachusetts Institute of Technology 
 

November 9, 2015 http://csg.csail.mit.edu/6.175 L20-1 

Modern Virtual Memory Systems 
Illusion of a large, private, uniform store 

Protection & Privacy 
n  Each user has one private and one 

or more shared address spaces 
  page table ≡ name space 

 
Demand Paging 
n  Provides the ability to run 

programs larger than the primary 
memory 

n  Hides differences in machine 
configurations 

The price of VM is address translation 
on each memory reference 

OS 

useri 

VA PA mapping 
TLB 

Swapping Store 

Primary 
Memory 

November 9, 2015 http://csg.csail.mit.edu/6.175 L20-2 



2 

Names for Memory Locations 

Machine language address 
n  as specified in machine code 

Virtual address 
n  ISA specifies translation of machine code address 

into virtual address of program variable (sometime 
called effective address) 

Physical address 
n  operating system specifies mapping of virtual 

address into name for a physical memory location 

physical 
address 

virtual 
address 

machine 
language 
address 

Address 
Mapping ISA 

Physical 
Memory 
(DRAM) 

November 9, 2015 http://csg.csail.mit.edu/6.175 L20-3 

Processor generated address can be 
interpreted as a pair <page number, offset> 

A page table contains the physical address 
of the base of each page 

Paged Memory Systems 

Page tables make it possible to store the pages of a 
program non-contiguously 

0 
1 
2 
3 

Address Space 
of User-1 

Page Table  
of User-1 

0 
1 
2 
3 

1 
0 

2 

3 

page number      offset 

November 9, 2015 http://csg.csail.mit.edu/6.175 L20-4 



3 

Private Address Space per 
User 

VA1 User 1 

Page Table  

VA1 User 2 

Page Table  

Ph
ys

ic
al

 
M

em
or

y 

free 

OS 
pages 

free 

Each user has a page table which contains               
an entry for each user page 
System has a “Page” Table that has an entry for     
each user (not shown) 
There is a PT Base register which points to the page 
table of the current user 
OS resets the PT Base register whenever the user 
changes; requires consulting the System Page Table 

November 9, 2015 http://csg.csail.mit.edu/6.175 L20-5 

    VPN         offset 

Suppose all Pages and Page 
Tables reside in memory 

PT User 1  

PT User 2  

System PT Base PTB Useri 

+ 

 Translation: 
n  PPA = Mem[PT Base + VPA]  
n  PA = PPA + offset 

All links shown are physical; no VA to PA 
translation 
On user switch 
n  PT Base Reg := System PT Base + new User ID 

System PT 

PT Base Reg 

It requires 
two DRAM 
accesses to 
access one 
data word or 
instruction! 

November 9, 2015 http://csg.csail.mit.edu/6.175 L20-6 



4 

VM Implementation Issues 
How to reduce memory access overhead 

What if all the pages can’t fit in DRAM  
n  What if the user page table can’t fit in DRAM  
n  What if the System page table can’t fit in DRAM  

A good VM design needs to be fast and space efficient 

November 9, 2015 http://csg.csail.mit.edu/6.175 L20-7 

Page Table Entries and 
Swap Space 

VPN Offset 
Virtual address 

PT Base Reg 

VPN 

Data word 

Data Pages 

Offset 

DRAM has to be backed up by 
swap space on disk because all 
the pages of all the users cannot 
fit in DRAM 
Page Table Entry (PTE) contains: 
n  A bit to indicate if a page exists 
n  PPN (physical page number) for a 

memory-resident page 
n  DPN (disk page number) for a 

page on the disk 
n  Protection and usage bits 

 

PPN 
PPN 

DPN 
PPN 

PPN 
PPN 

Page Table 

DPN 

PPN 

DPN 
DPN 

DPN 
PPN 

November 9, 2015 http://csg.csail.mit.edu/6.175 L20-8 



5 

Translation Lookaside 
Buffers (TLB) 

VPN          offset 

physical address 
PPN       offset 

virtual address 

V R W D    tag        PPN 

hit? 
 


Exception? 

Mode = Kernel/User 

Op = Read/Write Protection 
Check 

TLB 

Keep some of the (VPA,PPA) translations in a cache (TLB) 
n  No need to put (VPA, DPA) in TLB 

Every instruction fetch and data access needs address 
translation and protection checks  
TLB miss causes one or more accesses to the page table 

November 9, 2015 http://csg.csail.mit.edu/6.175 L20-9 

TLB Designs 
Typically 32-128 entries, usually fully associative 
n  Each entry maps a large page, hence less spatial 

locality across pages è more likely that two entries 
conflict 

n  Sometimes larger TLBs (256-512 entries) are 4-8 way 
set-associative 

TLB Reach: Size of largest virtual address space 
that can be simultaneously mapped by TLB 
Example: 64 TLB entries, 4KB pages, one page per entry 

                    TLB Reach = 

Replacement policy?  
Switching users is expensive because TLB has to 
be flushed  

64 entries * 4 KB = 256 KB 

Store User IDs in TLB entries 

Random, FIFO, LRU, ... 

November 9, 2015 http://csg.csail.mit.edu/6.175 L20-10 



6 

Handling a TLB Miss 
Software (MIPS, Alpha) 
n  TLB miss causes an exception and the operating 

system walks the page tables and reloads TLB 
n  A privileged “untranslated”  addressing mode is used 

for PT walk 
Hardware (SPARC v8, x86, PowerPC, RISC-V) 
n  A memory management unit (MMU) walks the page 

tables and reloads the TLB 
n  If a missing (data or PT) page is encountered during 

the TLB reloading, MMU gives up and signals a Page-
Fault exception for the original instruction   

November 9, 2015 http://csg.csail.mit.edu/6.175 L20-11 

Handling a Page Fault 
When the referenced page is not in DRAM: 
n  The missing page is located (or created) 
n  It is brought in from disk, and page table is 

updated 
   Another job may be run on the CPU while the 

first job waits for the requested page to be read 
from disk 

n  If no free pages are left, a page is swapped out 
   approximate LRU replacement policy   

Since it takes a long time (msecs) to transfer 
a page, page faults are handled completely 
in software (OS) 

November 9, 2015 http://csg.csail.mit.edu/6.175 L20-12 



7 

Address Translation: 
putting it all together 

Virtual Address 

TLB 
Lookup 

Page Table 
Walk 

Update TLB Page Fault 
(OS loads page) 

Protection 
Check 

Physical 
Address 

(to cache) 

miss hit 


      the  page is  
∉ memory           ∈ memory denied permitted 

Protection 
Fault 

hardware 
hardware or software 
software 

SEGFAULT 
Where? 

Resume the instruction 
November 9, 2015 http://csg.csail.mit.edu/6.175 L20-13 

Size of Linear Page Table 
With 32-bit addresses, 4-KB pages & 4-byte PTEs 
n  220 PTEs, i.e, 4 MB page table per user 
n  4 GB of swap space needed to back up the full virtual 

address space 
Larger Pages can reduce the overhead but cause 
n  Internal fragmentation (part of memory in a page is not 

used) 
n  Larger page-fault penalty (more time to read from disk) 

What about 64-bit virtual address space? 
n  Even 1MB pages would require 244  8-byte PTEs (35 TB!) 

However, Page Tables are sparsely populated 
and hence hierarchical organization can help 

November 9, 2015 http://csg.csail.mit.edu/6.175 L20-14 



8 

Hierarchical Page Table 

Level 1  
Page Table 

Level 2 
Page Tables  

Data Pages 

page in primary memory  
page in secondary memory 

Root of the 
Page Table 

p1 

offset 

p2 

Virtual Address 

(Processor 
Register) 

PTE of a nonexistent page 

p1          p2          offset 
0 11 12 21 22 31 

10-bit 
L1 index 

10-bit  
L2 index 

November 9, 2015 http://csg.csail.mit.edu/6.175 L20-15 

A PTE in DRAM contains DRAM or DISK addresses 
 
 
 
A PTE in DISK contains only DISK addresses 
 
⇒  a page of a PT can be swapped out only 
      if none its PTE’s point to pages in the  
      primary memory 
 
Why? 

Swapping a Page of a Page 
Table 

Don’t want to cause a page fault 
during translation when the data 
is in memory 

Hierarchical page tables permit parts of the page table to 
kept in the swap space 

November 9, 2015 http://csg.csail.mit.edu/6.175 L20-16 



9 

Caching vs. Demand Paging 

CPU cache primary 
memory 

secondary 
memory 

Caching           Demand paging 
cache slot    page frame 
cache line (~32 bytes)   page (~4K bytes) 
cache miss rate (1% to 20%)  page miss rate (<0.001%) 
cache hit (~1 cycle)   page hit (~100 cycles) 
cache miss (~100 cycles)  page miss (~5M cycles) 
miss is handled in hardware  miss is handled mostly  
                                                  in software 

primary 
memory CPU 

November 9, 2015 http://csg.csail.mit.edu/6.175 L20-17 

Address Translation in CPU 
Pipeline 

Software handlers need a restartable exception on 
page fault or protection violation 
Handling a TLB miss needs a hardware or software 
mechanism to refill TLB  
Need mechanisms to cope with the additional latency 
of a TLB: 
n    slow down the clock 
n    pipeline the TLB and cache access 
n    virtual address caches 
n    parallel TLB/cache access 

PC 
Inst 
TLB 

Inst. 
Cache D Decode E M 

Data 
TLB 

Data 
Cache W + 

TLB miss? Page Fault? 
Protection violation? 

TLB miss? Page Fault? 
Protection violation? 

√ 

November 9, 2015 http://csg.csail.mit.edu/6.175 L20-18 


