
Constructive Computer Architecture

Cache Coherence

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

http://www.csg.csail.mit.edu/6.175 L22-1 November 16, 2016

Shared Memory Systems

M

 L1
 P

 L1
 P

 L1
 P

 L1
 P

 L2 L2
 L1
P

 L1
 P

Interconnect

Modern systems often have hierarchical caches
Each cache has exactly one parent but can have zero
or more children
Logically only a parent and its children can
communicate directly
Inclusion property is maintained between a parent
and its children, i.e.,
 a ∈ Li ⇒ a ∈ Li+1

Because usually
Li+1 >> Li

http://www.csg.csail.mit.edu/6.175 L22-2 November 16, 2016

Cache-coherence problem

Suppose CPU-1 updates A to 200.
n  write-back: memory and cache-2 have stale values
n  write-through: cache-2 has a stale value

cache-1 A 100

CPU-Memory bus

CPU-1 CPU-2

cache-2 A 100

memory A 100

200

200

Do these stale values matter?
What is the view of shared memory for programming?

http://www.csg.csail.mit.edu/6.175 L22-3 November 16, 2016

Cache-Coherent Memory

A monolithic memory processes one request at
a time; it can be viewed as processing
requests instantaneously
A memory with hierarchy of caches is said to
be coherent, if functionally it behaves like the
monolithic memory

req res req res

Monolithic Memory

...

http://www.csg.csail.mit.edu/6.175 L22-4 November 16, 2016

Maintaining Coherence
In a coherent memory all loads and stores can
be placed in a global order
n  multiple copies of an address in various caches can

cause this property to be violated

This property can be ensured if:
n  Only one cache at a time has the write permission

for an address
n  No cache can have a stale copy of the data after a

write to the address has been performed

⇒  cache coherence protocols are used
 to maintain coherence

http://www.csg.csail.mit.edu/6.175 L22-5 November 16, 2016

Cache Coherence Protocols
Write request:
n  the address is invalidated in all other caches before

the write is performed
Read request:
n  if a dirty copy is found in some cache then that value

is written back to the memory and supplied to the
reader. Alternatively the dirty value can be
forwarded directly to the reader

Such protocols are called Invalidation-based

http://www.csg.csail.mit.edu/6.175 L22-6 November 16, 2016

State needed to maintain
Cache Coherence

MSI encoding
I - cache doesn’t contain the address
S- cache has the address but so may

other caches; hence it can only be
read

M- only this cache has the address;
hence it can be read and written

S M

I

write-back

store

The states M, S, I can be thought of as an
order M > S > I
n  Upgrade: A cache miss causes transition from a

lower state to a higher state
n  Downgrade: A write-back or invalidation causes a

transition from a higher state to a lower state
http://www.csg.csail.mit.edu/6.175 L22-7 November 16, 2016

Cache Actions
On a read miss (i.e., Cache state is I):
n  In case some other cache has the address in state M

then write back the dirty data to Memory
n  Read the value from Memory and set the state to S

On a write miss (i.e., Cache state is I or S):
n  Invalidate the address in all other caches and in case

some cache has the address in state M then write
back the dirty data

n  Read the value from Memory if necessary and set
the state to M

How do we know the state of other caches?

Directory

http://www.csg.csail.mit.edu/6.175 L22-8 November 16, 2016

Directory State Encoding
Two-level (L1, M) system

A directory is maintained at each cache to keep
track of the state of its children’s caches
n  m.child[ck][a]: the state of child ck for address a; At

most one child can be in state M
In case of cache hierarchy > 2, the directory also
keeps track of the sibling information
n  c.state[a]: M means c’s siblings do not have a copy of

address a; S means they might

a

 a
 P

 L1
 P

 L1 L1

Interconnect

<S,I,I,I>

S
 P P

http://www.csg.csail.mit.edu/6.175 L22-9 November 16, 2016

Directory state encoding
transient states to deal with waiting for responses

L1
n  wait state is captured in mshr

Directory in home memory
n  m.waitc[ck][a] : Denotes if memory m is waiting for a

response from its child ck
w  No | Yes

n  <[(M|S|I), (No | Yes)]>
 Child’s state Waiting for downgrade response

http://www.csg.csail.mit.edu/6.175 L22-10 November 16, 2016

A Directory-based Protocol
an abstract view

interconnect PP

P

c2m

m2c
L1

p2m m2p

m PP

in out

PP

P

c2m

m2c
L1

p2m m2p

Each cache has 2 pairs of queues
n  (c2m, m2c) to communicate with the memory
n  (p2m, m2p) to communicate with the processor

Message format: <cmd, src→dst, a, s, data>

FIFO message passing between each (src→dst) pair
except a Req cannot block a Resp
Messages in one src→dst path cannot block messages
in another src→dst path

Req/Resp address state

http://www.csg.csail.mit.edu/6.175 L22-11 November 16, 2016

Processing misses:
Requests and Responses

1 Up-req send (cache)
2 Up-req proc, Up resp send (memory)
3 Up-resp proc (cache)
4 Dn-req send (memory)
5 Dn-req proc, Dn resp send (cache)
6 Dn-resp proc (memory)
7 Dn-req proc, drop (cache)
8 Voluntary Dn-resp (cache)

Cache
1,5,8 3,5,7

Memory

2,4 2,6

Cache
1,5,8 3,5,7

1
2 4

3

6

5

http://www.csg.csail.mit.edu/6.175 L22-12 November 16, 2016

CC protocol for blocking
caches

Extension to the Blocking L1
design discussed in L17-18

L22-13 http://www.csg.csail.mit.edu/6.175 November 16, 2016

Req method
hit processing
method Action req(MemReq r) if(mshr == Ready);
 let a = r.addr;
 let hit = contains(state, a);
 if(hit) begin
 let slot = getSlot(state, a);
 let x = dataArray[slot];
 if(r.op == Ld) hitQ.enq(x);
 else // it is store
 if (isStateM(state[slot])
 dataArray[slot] <= r.data;

 else begin missReq <= r; mshr <= SendFillReq;
 missSlot <= slot; end
 end
 else begin missReq <= r; mshr <= StartMiss; end // (1)
endmethod

PP

P

c2m

m2c
L1

p2m m2p

http://www.csg.csail.mit.edu/6.175 L22-14 November 16, 2016

Start-miss and Send-fill
rules
rule startMiss(mshr == StartMiss);
 let slot = findVictimSlot(state);
 if(!isStateI(state[slot]))
 begin // write-back (Evacuate)
 let a = getAddr(state[slot]);
 let d = (isStateM(state[slot])? dataArray[slot]: -);
 state[slot] <= (I, _);

 c2m.enq(<Resp, c->m, a, I, d>); end
 mshr <= SendFillReq; missSlot <= slot; endrule

Rdy -> StrtMiss -> SndFillReq -> WaitFillResp -> Resp -> Rdy

rule sendFillReq (mshr == SendFillReq);
 let upg = (missReq.op == Ld)? S : M;
 c2m.enq(<Req, c->m, missReq.addr, upg, - >);

 mshr <= WaitFillResp; endrule // (1)
http://www.csg.csail.mit.edu/6.175 L22-15 November 16, 2016

Wait-fill rule and Proc
Resp rule
rule waitFillResp(mshr == WaitFillResp);
 let <Resp, m->c, a, cs, d> = m2c.msg;
 let slot = missSlot;
 dataArray[slot] <=

 (missReq.op == Ld)? d : missReq.data;

 state[slot] <= (cs, a);

 m2c.deq;

 mshr <= Resp;

endrule // (3)

Rdy -> StrtMiss -> SndFillReq -> WaitFillResp -> Resp -> Rdy

rule sendProc(mshr == Resp);
 if(missReq.op == Ld) begin
 c2p.enq(dataArray[slot]); end
 mshr <= Ready;

endrule
http://www.csg.csail.mit.edu/6.175 L22-16 November 16, 2016

Parent Responds
rule parentResp;

let <Req,c->m,a,y,-> = c2m.msg;
if((∀i≠c, isCompatible(m.child[i][a],y))
 && (m.waitc[c][a]=No)) begin
 let d = ((m.child[c][a]=I)? m.data[a]: -);
 m2c.enq(<Resp, m->c, a, y, d);
 m.child[c][a]:=y;

 c2m.deq;

end
endrule

IsCompatible(M, M) = False
IsCompatible(M, S) = False
IsCompatible(S, M) = False
All other cases = True

http://www.csg.csail.mit.edu/6.175 L22-17 November 16, 2016

Parent (Downgrade) Requests
rule dwn;
 let <Req,c->m,a,y,-> = c2m.msg;
 if (!isCompatible(m.child[i][a], y) &&
 (m.waitc[i][a]=No))

 begin
 m.waitc[i][a] <= Yes;

 m2c.enq(<Req, m->i, a, (y==M?I:S), - >);
 end
Endrule // (4)

This rule will execute as long some child cache is
not compatible with the incoming request

http://www.csg.csail.mit.edu/6.175 L22-18 November 16, 2016

Parent receives Response
rule dwnRsp;
 let <Resp, c->m, a, y, data> = c2m.msg;
 c2m.deq;

 if(m.child[c][a]=M) m.data[a]<=data;
 m.child[c][a]<=y;

 m.waitc[c][a]<=No;

endrule // (6)

http://www.csg.csail.mit.edu/6.175 L22-19 November 16, 2016

Child Responds
rule dng(mshr != Resp);

 let <Req,m→c,a,y,-> = m2c.msg;

 let slot = getSlot(state,a);
 if(getCacheState(state[slot])>y) begin
 let d = (isStateM(state[slot])? dataArray[slot]: -);
 c2m.enq(<Resp, c->m, a, y, d>);

 state[slot] := (y,a);

 end
 // the address has already been downgraded

 m2c.deq;
endrule // (5) and (7)

http://www.csg.csail.mit.edu/6.175 L22-20 November 16, 2016

Child Voluntarily downgrades

Rules 1 to 8 are complete - cover all possibilities
and cannot deadlock or violate cache invariants

rule startMiss(mshr == Ready);
 let slot = findVictimSlot(state);
 if(!isStateI(state[slot]))
 begin // write-back (Evacuate)
 let a = getAddr(state[slot]);
 let d = (isStateM(state[slot])? dataArray[slot]: -);
 state[slot] <= (I, _);

 c2m.enq(<Resp, c->m, a, I, d>);

 end
endrule // (8)

http://www.csg.csail.mit.edu/6.175 L22-21 November 16, 2016

Invariants for a CC-protocol
design

Directory state is always a conservative
estimate of a child’s state
n  E.g., if directory thinks that a child cache is in S

state then the cache has to be in either I or S state
For every request there is a corresponding
response, though sometimes it is generated
even before the request is processed
Communication system has to ensure that
n  responses cannot be blocked by requests
n  a request cannot overtake a response for the same

address
At every merger point for requests, we will
assume fair arbitration to avoid starvation

http://www.csg.csail.mit.edu/6.175 L22-22 November 16, 2016

MSI protocol: some issues
It never makes sense to have two outstanding
requests for the same address from the same
processor/cache
It is possible to have multiple requests for the
same address from different processors. Hence
there is a need to arbitrate requests
A cache needs to be able to evict an address in
order to make room for a different address

n Voluntary downgrade

Memory system (higher-level cache) should be
able to force a lower-level cache to downgrade

n caches need to keep track of the state of their
children’s caches

http://www.csg.csail.mit.edu/6.175 L22-23 November 16, 2016

