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Shared Memory Systems 
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Modern systems often have hierarchical caches 
Each cache has exactly one parent but can have zero 
or more children 
Logically only a parent and its children can 
communicate directly 
Inclusion property is maintained between a parent 
and its children, i.e., 
  a ∈ Li  ⇒  a ∈ Li+1 

Because usually 
Li+1 >> Li 
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Cache-coherence problem 

Suppose CPU-1 updates A to 200.   
n    write-back:  memory and cache-2 have stale values 
n    write-through:  cache-2 has a stale value 
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CPU-Memory bus 
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200 
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Do these stale values matter? 
What is the view of shared memory for programming? 
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Cache-Coherent Memory 

A monolithic memory processes one request at 
a time; it can be viewed as processing 
requests instantaneously  
A memory with hierarchy of caches is said to 
be coherent, if functionally it behaves like the 
monolithic memory 

req res req res 

Monolithic Memory 

... 
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Maintaining Coherence 
In a coherent memory all loads and stores can 
be placed in a global order 
n  multiple copies of an address in various caches can 

cause this property to be violated 

This property can be ensured if: 
n  Only one cache at a time has the write permission 

for an address 
n  No cache can have a stale copy of the data after a 

write to the address has been performed 

⇒  cache coherence protocols are used 
    to maintain coherence 

http://www.csg.csail.mit.edu/6.175 L22-5 November 16, 2016 



Cache Coherence Protocols 
Write request:   
n  the address is invalidated in all other caches before 

the write is performed  
Read request:   
n  if a dirty copy is found in some cache then that value 

is written back to the memory and supplied to the 
reader. Alternatively the dirty value can be 
forwarded directly to the reader 

Such protocols are called Invalidation-based 
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State needed to maintain 
Cache Coherence 

MSI encoding  
I - cache doesn’t contain the address  
S- cache has the address but so may 

other caches; hence it can only be 
read 

M- only this cache has the address; 
hence it can be read and written 

 

S M 

I 

write-back 

store 

The states M, S, I can be thought of as an 
order M > S > I 
n  Upgrade: A cache miss causes transition from a 

lower state to a higher state 
n  Downgrade: A write-back or invalidation causes a 

transition from a higher state to a lower state 
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Cache Actions 
On a read miss (i.e., Cache state is I):   
n  In case some other cache has the address in state M 

then write back the dirty data to Memory 
n  Read the value from Memory and set the state to S  

On a write miss (i.e., Cache state is I or S):  
n  Invalidate the address in all other caches and in case 

some cache has the address in state M then write 
back the dirty data 

n  Read the value from Memory if necessary and set 
the state to M  

How do we know the state of other caches? 

Directory 
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Directory State Encoding 
Two-level (L1, M) system 

A directory is maintained at each cache to keep 
track of the state of its children’s caches 
n  m.child[ck][a]: the state of child ck for address a; At 

most one child can be in state M 
In case of cache hierarchy > 2, the directory also 
keeps track of the sibling information 
n  c.state[a]: M means c’s siblings do not have a copy of 

address a; S means they might 
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Directory state encoding  
transient states to deal with waiting for responses 

L1 
n  wait state is captured in mshr 

Directory in home memory  
n  m.waitc[ck][a] : Denotes if memory m is waiting for a 

response from its child ck 
w  No | Yes 

n   <[(M|S|I), (No | Yes)]>  
  Child’s state Waiting for downgrade response 
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A Directory-based Protocol  
an abstract view 
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Each cache has 2 pairs of queues  
n  (c2m, m2c) to communicate with the memory 
n  (p2m, m2p) to communicate with the processor 

Message format:  <cmd, src→dst, a, s, data> 

FIFO message passing between each (src→dst) pair 
except a Req cannot block a Resp 
Messages in one src→dst path cannot block messages 
in another src→dst path 

Req/Resp address state 
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Processing misses: 
Requests and Responses 

1 Up-req send (cache) 
2 Up-req proc, Up resp send (memory) 
3 Up-resp proc (cache) 
4 Dn-req send (memory) 
5 Dn-req proc, Dn resp send (cache) 
6 Dn-resp proc (memory) 
7 Dn-req proc, drop (cache) 
8 Voluntary Dn-resp (cache) 

Cache 
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Memory 
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CC protocol for blocking 
caches 

Extension to the Blocking L1 
design discussed in L17-18  
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Req method 
hit processing 
method Action req(MemReq r) if(mshr == Ready); 
  let a = r.addr; 
  let hit = contains(state, a); 
  if(hit) begin 
    let slot = getSlot(state, a); 
    let x = dataArray[slot]; 
    if(r.op == Ld) hitQ.enq(x); 
    else // it is store 
         if (isStateM(state[slot]) 
              dataArray[slot] <= r.data; 

         else begin missReq <= r; mshr <= SendFillReq; 
                    missSlot <= slot; end 
          end 
  else begin missReq <= r; mshr <= StartMiss; end // (1) 
endmethod 

PP 

P 

c2m 

m2c 
L1 

p2m m2p 

http://www.csg.csail.mit.edu/6.175 L22-14 November 16, 2016 



Start-miss and Send-fill 
rules 
rule startMiss(mshr == StartMiss); 
  let slot = findVictimSlot(state);  
  if(!isStateI(state[slot]))  
    begin // write-back (Evacuate) 
      let a = getAddr(state[slot]); 
      let d = (isStateM(state[slot])? dataArray[slot]: -); 
      state[slot] <= (I, _); 

      c2m.enq(<Resp, c->m, a, I, d>); end 
  mshr <= SendFillReq; missSlot <= slot; endrule  

Rdy -> StrtMiss -> SndFillReq -> WaitFillResp -> Resp -> Rdy 

rule sendFillReq (mshr == SendFillReq); 
  let upg = (missReq.op == Ld)? S : M; 
  c2m.enq(<Req, c->m, missReq.addr, upg, - >);   

  mshr <= WaitFillResp;  endrule  // (1) 
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Wait-fill rule and Proc 
Resp rule 
rule waitFillResp(mshr == WaitFillResp); 
  let <Resp, m->c, a, cs, d> = m2c.msg;  
  let slot = missSlot; 
  dataArray[slot] <=  

       (missReq.op == Ld)? d : missReq.data; 

  state[slot] <= (cs, a); 

  m2c.deq;  

  mshr <= Resp; 

endrule // (3) 

Rdy -> StrtMiss -> SndFillReq -> WaitFillResp -> Resp -> Rdy 

rule sendProc(mshr == Resp); 
  if(missReq.op == Ld) begin 
    c2p.enq(dataArray[slot]); end 
  mshr <= Ready; 

endrule  
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Parent Responds 
rule parentResp; 

let <Req,c->m,a,y,-> = c2m.msg;  
if((∀i≠c, isCompatible(m.child[i][a],y))  
   && (m.waitc[c][a]=No)) begin 
  let d = ((m.child[c][a]=I)? m.data[a]: -); 
  m2c.enq(<Resp, m->c, a, y, d); 
  m.child[c][a]:=y;  

  c2m.deq; 

end 
endrule 

IsCompatible(M, M) = False 
IsCompatible(M, S) = False 
IsCompatible(S, M) = False 
All other cases        = True 
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Parent (Downgrade) Requests 
rule dwn; 
  let <Req,c->m,a,y,-> = c2m.msg; 
  if (!isCompatible(m.child[i][a], y) &&    
        (m.waitc[i][a]=No))  

  begin 
    m.waitc[i][a] <= Yes;  

    m2c.enq(<Req, m->i, a, (y==M?I:S), - >);  
  end 
Endrule // (4) 

This rule will execute as long some child cache is 
not compatible with the incoming request  
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Parent receives Response 
rule dwnRsp; 
  let <Resp, c->m, a, y, data> = c2m.msg; 
  c2m.deq; 

  if(m.child[c][a]=M) m.data[a]<=data; 
  m.child[c][a]<=y; 

  m.waitc[c][a]<=No; 

endrule // (6) 
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Child Responds 
rule dng(mshr != Resp); 

  let <Req,m→c,a,y,-> = m2c.msg;  

  let slot = getSlot(state,a);  
  if(getCacheState(state[slot])>y) begin 
    let d = (isStateM(state[slot])? dataArray[slot]: -); 
    c2m.enq(<Resp, c->m, a, y, d>); 

    state[slot] := (y,a); 

  end 
  // the address has already been downgraded 

  m2c.deq; 
endrule // (5) and (7) 
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Child Voluntarily downgrades  

Rules 1 to 8 are complete - cover all possibilities 
and cannot deadlock or violate cache invariants 

rule startMiss(mshr == Ready); 
  let slot = findVictimSlot(state);  
  if(!isStateI(state[slot]))  
    begin // write-back (Evacuate) 
      let a = getAddr(state[slot]); 
      let d = (isStateM(state[slot])? dataArray[slot]: -); 
      state[slot] <= (I, _); 

      c2m.enq(<Resp, c->m, a, I, d>); 

   end              
endrule // (8) 
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Invariants for a CC-protocol 
design  

Directory state is always a conservative 
estimate of a child’s state 
n  E.g., if directory thinks that a child cache is in S 

state then the cache has to be in either I or S state 
For every request there is a corresponding 
response, though sometimes it is generated 
even before the request is processed 
Communication system has to ensure that 
n  responses cannot be blocked by requests  
n  a request cannot overtake a response for the same 

address 
At every merger point for requests, we will 
assume fair arbitration to avoid starvation 
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MSI protocol: some issues 
It never makes sense to have two outstanding 
requests for the same address from the same 
processor/cache 
It is possible to have multiple requests for the 
same address from different processors. Hence 
there is a need to arbitrate requests 
A cache needs to be able to evict an address in 
order to make room for a different address 

n Voluntary downgrade 

Memory system (higher-level cache) should be 
able to force a lower-level cache to downgrade 

n caches need to  keep track of the state of their 
children’s caches  
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