
1

6.175: Constructive Computer Architecture

Tutorial 4

Epochs and Scoreboards
Quan Nguyen
(Hopes to help you avoid epoch fails)

October 21, 2016 T04-1 http://csg.csail.mit.edu/6.175

https://xkcd.com/376/
(not that kind of epoch)

Outline
•  Epochs
•  Scoreboards and Bypass RFs
•  Branch Prediction

October 21, 2016 T04-2 http://csg.csail.mit.edu/6.175

2

Distributed Epoch Motivation
•  Want to redirect instruction stream as

soon as known
•  Create two epoch registers:

§  Decode (dEpoch)
§  Execute (eEpoch)

October 21, 2016 T04-3 http://csg.csail.mit.edu/6.175

Terminology
•  Each instruction has its idea of the:

§  Decode epoch (idEp)
§  Execute epoch (ieEp)

•  Decode needs to estimate execute’s
epoch (deEpoch)

•  Fetch has two registers too:
§  Decode (fdEp)
§  Execute (edEp)

October 21, 2016 T04-4 http://csg.csail.mit.edu/6.175

3

Inst1 and Inst2
•  Inst1 is an instruction causing redirection

§  branch, jump, etc.
•  Inst2 is a wrong-path instruction that also

produces a redirect
§  the decode stage doesn’t know it’s a wrong-

path instruction

•  Furthermore, decode redirects delayed
100 cycles (artificially)

October 21, 2016 T04-5 http://csg.csail.mit.edu/6.175

1-bit Distributed Epochs

October 21, 2016 T04-6 http://csg.csail.mit.edu/6.175

Execute d2e Decode f2d Fetch PC

eEp = 0 feEp = 0

fdEp = 0 dEp = 0

...

Inst1
deEp = 0

Delay: 0 cycle

Delay: 100 cycles

•  Decode redirects Inst1 (ieEp = idEp = 0)

4

1-bit Distributed Epochs

October 21, 2016 T04-7 http://csg.csail.mit.edu/6.175

Execute d2e Decode f2d Fetch PC

eEp = 0 feEp = 0

fdEp = 0 dEp = 1

...

Inst1
deEp = 0

Inst1 redirect, ieEp = 0

Delay: 0 cycle

Delay: 100 cycles

•  Decode redirects Inst1 (ieEp = idEp = 0)

1-bit Distributed Epochs

October 21, 2016 T04-8 http://csg.csail.mit.edu/6.175

Execute d2e Decode f2d Fetch PC

eEp = 0 feEp = 0 Delay: 0 cycle

fdEp = 0 dEp = 1 Delay: 100 cycles

...

deEp = 0
Inst1 redirect, ieEp = 0

•  Decode redirects Inst1 (ieEp = idEp = 0)
•  Execute redirects Inst1

Inst1

5

1-bit Distributed Epochs

October 21, 2016 T04-9 http://csg.csail.mit.edu/6.175

Execute d2e Decode f2d Fetch PC

eEp = 1 feEp = 1 Delay: 0 cycle

fdEp = 0 dEp = 1 Delay: 100 cycles

...
Inst1

deEp = 0
Inst1 redirect, ieEp = 0

•  Decode redirects Inst1 (ieEp = idEp = 0)
•  Execute redirects Inst1

1-bit Distributed Epochs

October 21, 2016 T04-10 http://csg.csail.mit.edu/6.175

Execute d2e Decode f2d Fetch PC

eEp = 1 feEp = 1 Delay: 0 cycle

fdEp = 0 dEp = 1 Delay: 100 cycles

...
Inst2

deEp = 0
Inst1 redirect, ieEp = 0

•  Decode redirects Inst1 (ieEp = idEp = 0)
•  Execute redirects Inst1
•  Correct-path Inst2 (ieEp = 1, idEp = 0) issues

6

1-bit Distributed Epochs

October 21, 2016 T04-11 http://csg.csail.mit.edu/6.175

Execute d2e Decode f2d Fetch PC

eEp = 1 feEp = 1 Delay: 0 cycle

fdEp = 0 dEp = 0 Delay: 100 cycles

...

Inst1 redirect, ieEp = 0
deEp = 1

•  Decode redirects Inst1 (ieEp = idEp = 0)
•  Execute redirects Inst1
•  Correct-path Inst2 (ieEp = 1, idEp = 0) issues

Inst2

1-bit Distributed Epochs

October 21, 2016 T04-12 http://csg.csail.mit.edu/6.175

Execute d2e Decode f2d Fetch PC

eEp = 1 feEp = 1 Delay: 0 cycle

fdEp = 0 dEp = 0 Delay: 100 cycles

...

Inst1 redirect, ieEp = 0
deEp = 1

•  Decode redirects Inst1 (ieEp = idEp = 0)
•  Execute redirects Inst1
•  Correct-path Inst2 (ieEp = 1, idEp = 0) issues
•  Execute redirects Inst2

Inst2

7

1-bit Distributed Epochs

October 21, 2016 T04-13 http://csg.csail.mit.edu/6.175

Execute d2e Decode f2d Fetch PC

eEp = 0 feEp = 0 Delay: 0 cycle

fdEp = 0 dEp = 0 Delay: 100 cycles

...
Inst2

Inst1 redirect, ieEp = 0
deEp = 1

•  Decode redirects Inst1 (ieEp = idEp = 0)
•  Execute redirects Inst1
•  Correct-path Inst2 (ieEp = 1, idEp = 0) issues
•  Execute redirects Inst2

1-bit Distributed Epochs

•  Decode redirects Inst1 (ieEp = idEp = 0)
•  Execute redirects Inst1
•  Correct-path Inst2 (ieEp = 1, idEp = 0) issues
•  Execute redirects Inst2
•  Inst1 redirect arrives at Fetch (ieEp == feEp)

n  change PC to a wrong value

October 21, 2016 T04-14 http://csg.csail.mit.edu/6.175

Execute d2e Decode f2d Fetch PC

eEp = 0 feEp = 0 Delay: 0 cycle

fdEp = 0 dEp = 0 Delay: 100 cycles

...

Inst1 redirect, ieEp = 0
deEp = 1

Inst2

8

Unbounded Global Epochs

•  Both Decode and Execute can redirect the PC
n  Execute redirect should never be overruled

•  Global epoch for each redirecting stage
n  eEpoch: incremented when redirect from Execute takes effect
n  dEpoch: incremented when redirect from Decode takes effect
n  Initially set all epochs to 0

October 21, 2016 T04-15 http://csg.csail.mit.edu/6.175

Execute d2e Decode f2d Fetch PC

miss
pred?

miss
pred?

redirect PC

redirect PC

eEpoch
dEpoch

...

Redirect

Execute stage

October 21, 2016 T04-16 http://csg.csail.mit.edu/6.175

Execute d2e Decode f2d Fetch PC

miss
pred?

miss
pred?

{pc, newpc}

{pc, newpc}

eEpoch
dEpoch

...

{…, ieEp, idEp} {pc, ppc, ieEp}

Is ieEp == eEpoch?
yes

no

Wrong path
instruction;
poison it

Current instruction is OK;
check the ppc prediction by execution,
signal a redirect message (by writing EHR)
on misprediction

Redirect

9

Decode Stage

October 21, 2016 T04-17 http://csg.csail.mit.edu/6.175

Execute d2e Decode f2d Fetch PC

miss
pred?

miss
pred?

{pc, newpc}

{pc, newpc}

eEpoch
dEpoch

...

{pc, ppc, ieEp, idEp} {..., ieEp}

Is ieEp == eEpoch && idEp == dEpoch ?
yes no

Wrong path
instruction; drop it

Current instruction is OK;
check the ppc prediction via BHT, signal a
redirect message (by writing EHR) on
misprediction

Redirect

Fetch stage:
Redirect PC, Change Epoch

October 21, 2016 T04-18 http://csg.csail.mit.edu/6.175

Execute d2e Decode f2d Fetch PC

miss
pred?

miss
pred?

{pc, newpc}

eEpoch
dEpoch

...

Redirect

•  If there is redirect message from Execute
n  Set PC to correct value, increment eEp

•  Else if there is redirect message from Decode
n  Set PC to correct value, increment dEp

•  We can always request IMem to fetch new instruction
n  New instruction will be tagged with current eEpoch and dEpoch
n  PC redirection overrides next-PC prediction
n  When PC redirects, new instruction must be killed at Decode stage

10

Observation

October 21, 2016 T04-19 http://csg.csail.mit.edu/6.175

eEpoch
dEpoch ... Execute ... Fetch Decode ...

At cycle t, there are nt instructions between Fetch and Execute: It (1 … nt)
•  It(1) at fetch, It(nt) at exectue, It(mt) at decode
Invariant:
•  eEpoch = It(1).ieEp ≥ It(2).ieEp ≥ ... ≥ It(nt).ieEp ≥ eEpoch – 1
•  dEpoch = It(1).idEp ≥ It(2).idEp ≥ ... ≥ It(mt).idEp ≥ dEpoch – 1
Proved by induction on t
•  At cycle t, both Decode and Execute redirect
•  It(nt).ieEp = eEpoch → eEpoch = It(1).ieEp = It(2).ieEp = ... = It(nt).ieEp
•  It(mt).idEp = dEpoch → dEpoch = It(1).idEp = It(2).idEp = ... = It(mt).idEp
•  eEpoch ← eEpoch + 1 (invariants still hold at cycle t+1)

It(mt) It(nt) It(1)

1-bit Global Epochs
•  The max difference of values of one type

of epoch is 1
n  Only need 1 bit to encode each epoch
n  Increment epoch → flip epoch

October 21, 2016 T04-20 http://csg.csail.mit.edu/6.175

11

4-stage Pipeline: Code Sketch

October 21, 2016 T04-21 http://csg.csail.mit.edu/6.175

module mkProc(Proc);
 // stage 1: Fetch
 // stage 2: Decode & read register
 // stage 3: Execute & access memory
 // stage 4: Commit (write register file)
 Ehr#(2, Addr) pc <- mkEhr(?);
 IMemory iMem <- mkIMemory;
 ...
 Fifo#(2, Fetch2Decode) f2d <- mkCFFifo;
 Fifo#(2, Decode2Execute) d2e <- mkCFFifo;
 Fifo#(2, Execute2Commit) e2c <- mkCFFifo;
 Reg#(Bool) eEpoch <- mkReg(False);
 Reg#(Bool) dEpoch <- mkReg(False);
 Ehr#(2, Maybe#(ExeRedirect)) exeRedirect <- mkEhr(Invalid);
 Ehr#(2, Maybe#(DecRedirect)) decRedirect <- mkEhr(Invalid);
 BTB#(16) btb <- mkBTB;
 BHT#(1024) bht <- mkBHT;

Execute Stage

October 21, 2016 T04-22 http://csg.csail.mit.edu/6.175

rule doExecute;
 d2e.deq; let x = d2e.first;
 if(x.ieEp == eEpoch) begin
 let eInst = exec(...);
 if(eInst.mispredict)
 exeRedirect[0] <= Valid ({pc: x.pc,
 newpc: eInst.addr});
 ...
 end
 else e2c.enq(Exec2Commit{poisoned: True, ...});
 // wrong path instruction, poison it
endrule

BHT training will be in lab 6

12

Decode Stage

October 21, 2016 T04-23 http://csg.csail.mit.edu/6.175

rule doDecode;
 f2d.deq; let x = f2d.first;
 if(x.ieEp == eEpoch && x.idEp == dEpoch) begin
 let stall = ...; // check scoreboard for stall
 if(!stall) begin
 if(x.iType == Br) begin
 let bht_ppc = ...; // BHT prediction
 if(bht_ppc != x.ppc)
 decRedirect[0] <= Valid ({pc: x.pc,
 newpc: bht_ppc});
 end
 ...
 d2e.enq(Decode2Execute{ieEp: x.ieEp, ...});
 end
 end
 // else: wrong path instruction, killed
endrule

Fetch Stage

October 21, 2016 T04-24 http://csg.csail.mit.edu/6.175

rule doFetch;
 let inst = iMem.req(pc[0]);
 let ppc = btb.predPc(pc[0]);
 pc[0] <= ppc;
 f2d.enq(Fetch2Decode{pc: pc[0], ppc: ppc, inst: inst,
 ieEp: eEpoch, idEp: dEpoch});
endrule

rule cononicalizeRedirect;
 if(exeRedirect[1] matches tagged Valid .r) begin
 pc[1] <= r.newpc; btb.update(r.pc, r.newpc);
 eEpoch <= !eEpoch;
 end else if(decRedirect[1] matches tagged Valid .r) begin
 pc[1] <= r.newpc; btb.update(r.pc, r.newpc);
 dEpoch <= !dEpoch;
 end
 exeRedirect[1] <= Invalid; decRedirect[1] <= Invalid;
endrule

13

Scoreboarding
•  CDC 6600 (1965)

n  Parallel Operation in the Control Data 6600
•  Capture RAW hazards
•  Stepping stone towards out-of-order

machines

October 21, 2016 T04-25 http://csg.csail.mit.edu/6.175

Normal Register File
module mkRFile(RFile);
 Vector#(32, Reg#(Data)) rfile <- replicateM(mkReg(0));

 method Action wr(RIndx rindex, Data data);

 if (rindex != 0) (rfile[rindex]) <= data;

 endmethod

 method Data rd1(RIndx rindx) = rfile[rindx];
 method Data rd2(RIndx rindx) = rfile[rindx];
endmodule

{rd1, rd2} < wr

October 21, 2016 http://csg.csail.mit.edu/6.175 T04-26

14

Bypass Register File using EHR
module mkBypassRFile(RFile);
 Vector#(32, Ehr#(2, Data)) rfile <-

 replicateM(mkEhr(0));

 method Action wr(RIndx rindex, Data data);

 if (rindex != 0) (rfile[rindex])[0] <= data;

 endmethod

 method Data rd1(RIndx rindx) = (rfile[rindx])[1];
 method Data rd2(RIndx rindx) = (rfile[rindx])[1];
endmodule

wr < {rd1, rd2}

October 21, 2016 http://csg.csail.mit.edu/6.175 T04-27

Bypass Register File
with external bypassing
module mkBypassRFile(BypassRFile);
 RFile rf <- mkRFile;
 Fifo#(1, Tuple2#(RIndx, Data))
 bypass <- mkBypassSFifo;
 rule move;
 begin rf.wr(bypass.first); bypass.deq end;
 endrule

 method Action wr(RIndx rindx, Data data);
 if(rindex!=0) bypass.enq(tuple2(rindx, data));

 endmethod

 method Data rd1(RIndx rindx) =

 return (!bypass.search1(rindx)) ? rf.rd1(rindx)

 : bypass.read1(rindx);
 method Data rd2(RIndx rindx) =

 return (!bypass.search2(rindx)) ? rf.rd2(rindx)

 : bypass.read2(rindx);

endmodule
wr < {rd1, rd2}

rf

move

rd

October 21, 2016 http://csg.csail.mit.edu/6.175 T04-28

15

Scoreboard implementation
using searchable Fifos
function Bool isFound
 (Maybe#(RIndx) dst, Maybe#(RIndx) src);
 return isValid(dst) && isValid(src) &&
 (fromMaybe(?,dst)==fromMaybe(?,src));
endfunction

module mkCFScoreboard(Scoreboard#(size));

 SFifo#(size, Maybe#(RIndx), Maybe#(RIndx))

 f <- mkCFSFifo(isFound);

 method insert = f.enq;

 method remove = f.deq;

 method search1 = f.search1;

 method search2 = f.search2;

endmodule

October 21, 2016 http://csg.csail.mit.edu/6.175 T04-29

•  Will see code in Lab 6

Branch Prediction

October 21, 2016 T04-30 http://csg.csail.mit.edu/6.175

16

Advanced Branch Predictor
•  BHT cannot predict very accurately

n  Use combinations from many predictors

•  Global branch history
n  taken/not taken for previous branches

•  Local branch history
n  taken/not taken for previous occurrences of the same

branch

•  Tournament branch predictor
n  Use both global and local history
n  Alpha 21264 (The Alpha 21264 Microprocessor and

The Alpha 21264 Microprocessor Architecture)
October 21, 2016 T04-31 http://csg.csail.mit.edu/6.175

Tournament Predictor

•  10-bit PC: index 1024 x 10-bit local history table

•  10-bit local history
n  Index 1024 x 3-bit BHT: prediction 1

•  12-bit global history
n  Index 4096 x 2-bit BHT: prediction 2
n  Index 4096 x 2-bit BHT: select between predictions 1, 2

October 21, 2016 T04-32 http://csg.csail.mit.edu/6.175

“The Alpha 21264
Microprocessor
Architecture”

17

TAGE Branch Predictors
•  A case for partially TAgged GEometric history length

branch prediction

October 21, 2016 T04-33 http://csg.csail.mit.edu/6.175

Other Predictors
•  Perceptron-based predictors

n  Classification problem in machine learning
n  Recent implementation: Samsung Exynos M1

(HotChips 2016)
•  Championship Branch Predictor

October 21, 2016 T04-34 http://csg.csail.mit.edu/6.175

18

Return Address Stack
•  Use a stack to store return addresses from

function call
n  Function call: push
n  Function return: pop

•  Not a “call stack”, only contains return addresses
•  Instruction to return from function call

n  JALR: rd = x0, rs1 = x1 (ra)

•  Instruction to initiate function call
n  JAL: rd = x1
n  JALR: rd = x1

October 21, 2016 T04-35 http://csg.csail.mit.edu/6.175

Credits
•  Considerable previous material adapted

from last year’s tutorials by Sizhuo Zhang
and Andy Wright

October 21, 2016 T03-36 http://csg.csail.mit.edu/6.175

