
1

6.175: Constructive Computer Architecture

Tutorial 7

Final Project Overview

Quan Nguyen
(Sometimes doesn’t lose a game of 2048)

Nov 18, 2016 T07-1 http://csg.csail.mit.edu/6.175

Part 1: Store Queue
•  Based on work of Lab 7
•  Resolve rule conflicts in Lab 7
•  Add store queue to blocking cache
•  Allow load hit under store miss

Nov 18, 2016 T07-2 http://csg.csail.mit.edu/6.175

2

Part 2: Cache Coherence

Nov 18, 2016 T07-3 http://csg.csail.mit.edu/6.175

•  Final target system

Message
Router

Parent Protocol Processor

L1 D
Cache

L1 D
Cache

Core 0 Core 1

Main Memory

L1 I
Cache

L1 I
Cache

Message
FIFOs

Cache Coherence:
Loads and Stores
•  Implement each unit

n  Message FIFO
n  Message router
n  L1 data cache
n  Parent protocol processor (PPP)

•  Test against simple unit testbench

Nov 18, 2016 T07-4 http://csg.csail.mit.edu/6.175

3

Cache Coherence:
Loads and Stores
•  Tandem Verification

n  Reference model for cache-coherent memory hierarchy:
monolithic memory

n  Debug interface passed to each core and D$
w  issue: called when request is sent to D$
w  commit: when request finishes processing, i.e. read/write D$

data array; check correctness of response and cache line value

Nov 18, 2016 T07-5 http://csg.csail.mit.edu/6.175

interface RefDMem;
 method Action issue(MemReq req);
 method Action commit(MemReq req, Maybe#(CacheLine) line,
 Maybe#(MemResp) resp);
endinterface

Cache Coherence:
Loads and Stores
•  Deficiency of tandem verification

n  Cannot check deadlock
•  Testing whole memory hierarchy

n  Feed random data cache requests
n  Detect bugs with tandem verification
n  Add cycle counter to detect deadlock

Nov 18, 2016 T07-6 http://csg.csail.mit.edu/6.175

4

Cache Coherence:
Loads and Stores
•  Integrating to the processor

n  Three-cycle core: provided
n  Six-stage pipeline: from Lab 7

•  Running multi-core programs
n  Similar to fork

Nov 18, 2016 T07-7 http://csg.csail.mit.edu/6.175

int main() {
 int coreid = getCoreId();

 if (coreid == 0) {
 return core0();
 } else {
 return core1();
 }
}

Cache Coherence:
Atomic Memory Instructions
•  Add load-reserved (lr) and store-

conditional (sc) to data cache
n  Only D$ and processor pipeline need to be

changed
•  Run more programs

Nov 18, 2016 T07-8 http://csg.csail.mit.edu/6.175

5

Cache Coherence:
Store Queue
•  Add store queue to cache

n  Similar to part 1
n  Atomic instruction has special behavior
n  Programming model is not SC
n  Introduce fence to flush store queue
n  Allow load hit under store miss

Nov 18, 2016 T07-9 http://csg.csail.mit.edu/6.175

Schedule
•  Part 1: tonight
•  Part 2: after Thanksgiving
•  Deadline December 14th
•  Presentation in class (Dec 14th)

n  What problems/bugs you encounter
n  How you resolve them

Nov 18, 2016 T07-10 http://csg.csail.mit.edu/6.175

6

Project Part 1:
Store Queue

Nov 18, 2016 T07-11 http://csg.csail.mit.edu/6.175

Problem with Lab 7
•  Memory stage rule conflicts with D$ rules

n  Memory stage is more urgent
n  Hurt performance: store miss processing is stalled

Nov 18, 2016 T07-12 http://csg.csail.mit.edu/6.175

// processor memory stage
rule doMemory;
 dCache.req(...);
endrule

// data cache
rule startMiss(status == StartMiss); endrule
rule sendFillReq(status == SendFillReq); endrule
rule waitFillResp (status == WaitFillResp); endrule
method Action req(MemReq r) if (status == Ready); endmethod

7

Resolving Conflicts
•  Add 1-element bypass FIFO, reqQ

n  No performance loss (dead cycles)
•  Request from processor placed in reqQ
•  Separate rule processes reqQ

Nov 18, 2016 T07-13 http://csg.csail.mit.edu/6.175

Adding Store Queue
•  Process new request: store queue or reqQ

n  reqQ.first == St → enq to store queue
w Also process store from store queue
w If not processing store queue, may deadlock

n  Store queue full

n  reqQ.first == Ld → process Ld
w Store in store queue will not issue

n  Structural hazard

n  No need for the “lockL1” EHR in lecture

Nov 18, 2016 T07-14 http://csg.csail.mit.edu/6.175

8

Load Hit Under Store Miss
•  Performance improvement of store queue is

limited
•  Make the cache somewhat non-blocking

n  Store miss: waiting for mem resp
w  Not accessing cache
w  Process a load at reqQ.first
w  If hit: resp to processor
w  If miss: keep it in reqQ

•  Load hit is disallowed under load miss
n  Load resp cannot go out-of-order

Nov 18, 2016 T07-15 http://csg.csail.mit.edu/6.175

