
6.175: Constructive Computer Architecture

Tutorial 8

Project Part 2: Coherence

Quan Nguyen
(Will try to stay coherent)

Dec 2, 2016 T08-1 http://csg.csail.mit.edu/6.175

Debugging Techniques
•  Deficiency about $display()

n  Everything shows up together

•  Distinct log file for each module: write to file
n  Also see src/unit_test/sc-test/Tb.bsv

Dec 2, 2016 T08-2 http://csg.csail.mit.edu/6.175

Ehr#(2, File) file <- mkEhr(InvalidFile);
Reg#(Bool) opened <- mkReg(False);

rule doOpenFile(!opened);
 let f <- $fopen("a.txt", "w");
 if (f == InvalidFile) $finish;
 file[0] <= f; opened <= True;
endrule

rule doPrint;
 $fwrite(file[1], "Hello world\n");
endrule

Writing to InvalidFile
will cause segfault.

Use EHR if the logic

will call $fwrite() in
the first cycle

Debugging Techniques
•  Deficiency about cycle counter

n  Rule for printing cycle may be scheduled before/after
the rule we are interested in

n  Don’t want to create a counter in each module

•  Use simulation time
n  $display(“%t: evict cache line”, $time);

n  $time() returns Bit#(64) representing time
n  In SceMi simulation, $time() outputs: 10, 30, ...

Dec 2, 2016 T08-3 http://csg.csail.mit.edu/6.175

Debugging Techniques
•  Add sanity checks
•  Example 1

n  Parent is handling upgrade request
n  No other child has incompatible state
n  Parent decides to send upgrade response
n  Check: parent is not waiting for any child (waitc)

•  Example 2
n  D$ receives upgrade response from memory
n  Check: must be in WaitFillResp state
n  Process the upgrade response
n  Check: if in I state, then data in response must be valid, otherwise

data must be invalid (data field is Maybe type in the lab)

Dec 2, 2016 T08-4 http://csg.csail.mit.edu/6.175

Coherence Protocol:
Differences From Lecture
•  In lecture: address type for byte address

n  Implementation: only uses cache line address
n  (addr >> 6) for 64-byte cache line

•  In lecture: parent reads data in zero cycles
n  Implementation: read from memory, long latency

•  In lecture: voluntary downgrade rule
n  No need in implementation

•  In lecture: Parent directory tracks states for all address
n  32-bit address space → huge directory
n  Implementation: usually parent is an L2 cache, so only track

address in L2 cache
n  But we don’t have an L2 cache

Dec 2, 2016 T08-5 http://csg.csail.mit.edu/6.175

Coherence Protocol:
Differences From Lecture
•  Workaround for large directory

n  For each child, only tracks addresses in its L1 D$

n  To get MSI state for address a in core i

Dec 2, 2016 T08-6 http://csg.csail.mit.edu/6.175

Vector#(CoreNum, Vector#(CacheRows, Reg#(CacheTag)))
 tags <- replicateM(replicateM(mkRegU));
Vector#(CoreNum, Vector#(CacheRows, Reg#(MSI))
 states <- replicateM(replicateM(mkReg(I)));

MSI s = tags[i][getIndex(a)] == getTag(a) ? states[i][getIndex(a)] : I;

Load-Reserve (lr.w) and Store-
Conditional (sc.w)
•  New state in D$

n  Reg#(Maybe#(CacheLineAddr)) la <- mkReg(Invalid);

n  Cache line address reserved by lr.w

•  Load-reserved: lr.w rd, 0(rs1)
n  rd <= mem[rs1]

n  Make reservation: la <= Valid(getLineAddr(rs1));

•  Store-conditional: sc.w rd, rs2, 0(rs1)
n  Check la: la invalid or addresses don’t match: rd <= 1
n  Otherwise: get exclusive permission (upgrade to M)

w  Check la again
w  If address match: mem[rs1] <= rs2; rd <= 0
w  Otherwise: rd <= 1
w  If cache hit, no need to check again (address already match)

n  Always clear reservation: la <= Invalid
Dec 2, 2016 T08-7 http://csg.csail.mit.edu/6.175

Load-Reserve (lr.w) and Store-
Conditional (sc.w)
•  Cache line eviction

n  Due to replacement, invalidation request ...
n  May lose track of reserved cache line

w  Then clear reservation

n  Compare evicted cache line with la
w  If match: la <= invalid

n  This is how an LR/SC pair ensures atomicity

Dec 2, 2016 T08-8 http://csg.csail.mit.edu/6.175

Reference Memory Model
•  Debug interface returned by reference model is passed

into every D$

n  D$ calls the into debug interface refDMem
n  Reference model will for coherence violations

•  Reference model: src/ref

Dec 2, 2016 T08-9 http://csg.csail.mit.edu/6.175

interface RefDMem;
 method Action issue(MemReq req);
 method Action commit(MemReq req,
 Maybe#(CacheLine) line, Maybe#(MemResp) resp);
endinterface

module mkDCache#(CoreID id)(
 MessageGet fromMem, MessagePut toMem,
 RefDMem refDMem, DCache ifc);

Reference Memory Model
•  issue(MemReq req)

n  Called when req issued to D$
n  in req() method of D$
n  Give program order to reference model

•  commit(MemReq req, Maybe#(CacheLine) line, Maybe#(MemResp) resp);

n  Called when req() finishes processing (commit)
n  line: cache line accessed by req, set to Invalid if unknown
n  resp: response to the core, set to Invalid if no repsonse

•  When commit() is called, reference model checks whether:
n  req can be committed
n  line value is correct (not checked if Invalid)
n  resp is correct

Dec 2, 2016 T08-10 http://csg.csail.mit.edu/6.175

Adding Store Queue
•  New behavior for memory requests

n  Ld: can start processing when store queue is not empty
n  St: enqueue to store queue
n  Lr, Sc: wait for store queue to be empty
n  Fence: wait for all previous requests to commit (i.e. store

queue must be empty)
w  Ordering memory accesses

•  Issuing stores from store queue to process
n  Only stall when there is a Ld request

Dec 2, 2016 T08-11 http://csg.csail.mit.edu/6.175

Multicore Programs
•  Run programs on 2-core system
•  Single-thread programs

n  Found in programs/assembly, programs/benchmarks
n  core 1 starts looping forever at the very beginning

•  Multithread programs
n  Find them in programs/mc_bench
n  startup code (crt.S): allocate 128KB local stack for each core
n  main() function: fork based on core id

Dec 2, 2016 T08-12 http://csg.csail.mit.edu/6.175

int main() {
 int coreid = getCoreId();
 if (coreid == 0) { return core0(); }
 else { return core1(); }
}

Multicore Programs:
mc_print
•  Easiest one
•  Two cores print “0” and “1” respectively
•  Sample output:

n  (no cycle/inst count printed)

Dec 2, 2016 T08-13 http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_print.riscv.vmh ----
01
PASSED

Multicore Programs:
mc_hello
•  Core 0 passes each character of a string to core 1
•  Core 1 prints each character it receives
•  Sample output:

n  (no cycle/inst count printed)

Dec 2, 2016 T08-14 http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_hello.riscv.vmh ----
Hello World!
This message has been written to a software FIFO by core 0 and read and printed by
core 1.
PASSED

Multicore Programs:
mc_produce_consume
•  Larger version of mc_hello
•  Core 1 passes each element of an array to core 0
•  Core 0 checks the data
•  Sample output:

Dec 2, 2016 T08-15 http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_produce_consume.riscv.vmh ----
Benchmark mc_produce_consume
Cycles (core 0) = xxx
Insts (core 0) = xxx
Cycles (core 1) = xxx
Insts (core 1) = xxx
Cycles (total) = xxx
Insts (total) = xxx
Return 0
PASSED

Instruction counts may vary due to
variation in busy waiting time, so IPC
is not a good performance metric.
Execute time is a better metric.

Multicore Programs:
mc_{median,vvadd,multiply}
•  Data parallel: fork-join style
•  Core 0 calculates first half results
•  Core 1 calculates second half results
•  Sample output:

Dec 2, 2016 T08-16 http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_median.riscv.vmh ----
Benchmark mc_median
Cycles (core 0) = xxx
Insts (core 0) = xxx
Cycles (core 1) = xxx
Insts (core 1) = xxx
Cycles (total) = xxx
Insts (total) = xxx
Return 0
PASSED

Multicore Programs:
mc_dekker
•  Two cores contend for a mutex (Dekker’s algorithm)
•  After getting into critical section

n  increment/decrement shared counter, print core ID

•  Sample output:

Dec 2, 2016 T08-17 http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_dekker.riscv.vmh ----
Benchm1ark mc_1dekker1
100110...000
Core 0 decrements counter by 600
Core 1 increments counter by 900
Final counter value = 300
Cycles (core 0) = xxx
Insts (core 0) = xxx
Cycles (core 1) = xxx
Insts (core 1) = xxx
Cycles (total) = xxx
Insts (total) = xxx
Return 0
PASSED

For implementation with store
queue, a fence is inserted in
mc_dekker.

Multicore Programs:
mc_spin_lock
•  Similar to mc_dekker, but use spin lock implemented by

lr.w/sc.w

•  Sample output:

Dec 2, 2016 T08-18 http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_spin_lock.riscv.vmh ----
Bench1mark mc1_spin_l1ock
10101...000
Core 0 increments counter by 300
Core 1 increments counter by 600
Final counter value = 900
Cycles (core 0) = xxx
Insts (core 0) = xxx
Cycles (core 1) = xxx
Insts (core 1) = xxx
Cycles (total) = xxx
Insts (total) = xxx
Return 0
PASSED

Multicore Programs:
mc_incrementers
•  Similar to mc_dekker, but use atomic fetch-and-add

implemented by lr.w/sc.w
•  Core ID is not printed
•  Sample output:

Dec 2, 2016 T08-19 http://csg.csail.mit.edu/6.175

---- ../../programs/build/mc_bench/vmh/mc_incrementers.riscv.vmh ----
Benchmark mc_incrementers

core0 had 1000 successes out of xxx tries
core1 had 1000 successes out of xxx tries
shared_count = 2000
Cycles (core 0) = xxx
Insts (core 0) = xxx
Cycles (core 1) = xxx
Insts (core 1) = xxx
Cycles (total) = xxx
Insts (total) = xxx
Return 0
PASSED

Some Reminders
•  Use CF regfile and scoreboard

n  Compiler creates a conflict in Sizhuo’s implementation
with bypass regfile and pipelined scoreboard

•  Sign up for project meeting
•  Project deadline: 3:00pm Dec 14
•  Final presentation (10min)

Dec 2, 2016 T08-20 http://csg.csail.mit.edu/6.175

