
Constructive Computer Architecture

FFT: An example of complex
combinational circuits

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

September 22, 2014 http://csg.csail.mit.edu/6.175

Lecture from 6.s195 taught in Fall 2013

L0x-1

Contributors to the course
material

Arvind, Rishiyur S. Nikhil, Joel Emer,
Muralidaran Vijayaraghavan
Staff and students in 6.375 (Spring 2013),
6.S195 (Fall 2012), 6.S078 (Spring 2012)
n  Asif Khan, Richard Ruhler, Sang Woo Jun, Abhinav

Agarwal, Myron King, Kermin Fleming, Ming Liu, Li-
Shiuan Peh

External
n  Prof Amey Karkare & students at IIT Kanpur
n  Prof Jihong Kim & students at Seoul Nation University
n  Prof Derek Chiou, University of Texas at Austin
n  Prof Yoav Etsion & students at Technion

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-2

Contents

FFT and IFFT: Another complex combinational
circuit and its folded implementations
n  FFT: Converts signals from time domain to frequency

domain
n  IFFT: Converts signals from frequency domain to

time domain
n  Two calculations are identical- the same hardware

can be used
New BSV concepts
n  structure type
n  overloading

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-3

Combinational IFFT
in0

…

in1

in2

in63

in3

in4

Bfly4

Bfly4

Bfly4

x16

Bfly4

Bfly4

Bfly4

…

Bfly4

Bfly4

Bfly4

…

out0

…

out1

out2

out63

out3

out4

Perm
ute

Perm
ute

Perm
ute

All numbers are complex
and represented as two
sixteen bit quantities.
Fixed-point arithmetic is
used to reduce area,
power, ...

*

*

*

*

+

-

-

+

+

-

-

+

*j
t2

t0

t3

t1

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-4

4-way Butterfly Node

function Vector#(4,Complex) bfly4
 (Vector#(4,Complex) t, Vector#(4,Complex) x);

t’s (twiddle coefficients) are mathematically
derivable constants for each bfly4 and depend
upon the position of bfly4 the in the network
FFT and IFFT calculations differ only in the use
of Twiddle coefficients in various butterfly
nodes

*

*

*

*

+

-

-

+

+

-

-

+

*i

x0
x1

x2

x3

t0
t1

t2

t3

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-5

BSV code: 4-way Butterfly
function Vector#(4,Complex#(s)) bfly4
 (Vector#(4,Complex#(s)) t, Vector#(4,Complex#(s)) x);

 Vector#(4,Complex#(s)) m, y, z;

 m[0] = x[0] * t[0]; m[1] = x[1] * t[1];
 m[2] = x[2] * t[2]; m[3] = x[3] * t[3];

 y[0] = m[0] + m[2]; y[1] = m[0] – m[2];
 y[2] = m[1] + m[3]; y[3] = i*(m[1] – m[3]);

 z[0] = y[0] + y[2]; z[1] = y[1] + y[3];
 z[2] = y[0] – y[2]; z[3] = y[1] – y[3];

 return(z);
endfunction

Polymorphic code:
works on any type
of numbers for
which *, + and -
have been defined

*

*

*

*

+

-

-

+

+

-

-

+

*i

m y z

Note: Vector does not mean storage; just
a group of wires with names

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-6

Language notes: Sequential
assignments

Sometimes it is convenient to reassign a variable
(x is zero every where except in bits 4 and 8):

This will usually result in introduction of muxes in
a circuit as the following example illustrates:

• Bit#(32) x = 0;
• let y = x+1;
• if(p) x = 100;
• let z = x+1;

x

0

100
p

+1

+1

z

y

• Bit#(32) x = 0;
• x[4] = 1; x[8] = 1;

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-7

Complex Arithmetic
Addition
n  zR = xR + yR

n  zI = xI + yI

Multiplication
n  zR = xR * yR - xI * yI

n  zI = xR * yI + xI * yR

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-8

Representing complex
numbers as a struct
typedef struct{
 Int#(t) r;
 Int#(t) i;
} Complex#(numeric type t) deriving (Eq,Bits);

Notice the Complex type is parameterized by the size of

Int chosen to represent its real and imaginary parts

If x is a struct then its fields can be selected by writing x.r

and x.i

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-9

BSV code for Addition
typedef struct{
 Int#(t) r;
 Int#(t) i;
} Complex#(numeric type t) deriving (Eq,Bits);

function Complex#(t) cAdd
 (Complex#(t) x, Complex#(t) y);
 Int#(t) real = x.r + y.r;
 Int#(t) imag = x.i + y.i;
 return(Complex{r:real, i:imag});
endfunction

What is the type of this + ?

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-10

Overloading (Type classes)
The same symbol can be used to represent
different but related operators using Type
classes
A type class groups a bunch of types with
similarly named operations. For example, the
type class Arith requires that each type
belonging to this type class has operators +,-,
*, / etc. defined
We can declare Complex type to be an
instance of Arith type class

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-11

Overloading +, *
instance Arith#(Complex#(t));
function Complex#(t) \+
 (Complex#(t) x, Complex#(t) y);
 Int#(t) real = x.r + y.r;
 Int#(t) imag = x.i + y.i;
 return(Complex{r:real, i:imag});
endfunction

function Complex#(t) *
 (Complex#(t) x, Complex#(t) y);
 Int#(t) real = x.r*y.r – x.i*y.i;
 Int#(t) imag = x.r*y.i + x.i*y.r;
 return(Complex{r:real, i:imag});
endfunction
…
endinstance

The context allows the compiler to pick the
appropriate definition of an operator

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-12

Combinational IFFT

in0

…

in1

in2

in63

in3

in4

Bfly4

Bfly4

Bfly4

x16

Bfly4

Bfly4

Bfly4

…

Bfly4

Bfly4

Bfly4

…

out0

…

out1

out2

out63

out3

out4

Perm
ute

Perm
ute

Perm
ute

stage_f function

repeat stage_f
three times

function Vector#(64, Complex#(n)) stage_f
 (Bit#(2) stage, Vector#(64, Complex#(n)) stage_in);

function Vector#(64, Complex#(n)) ifft
 (Vector#(64, Complex#(n)) in_data);

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-13

BSV Code: Combinational
IFFT
function Vector#(64, Complex#(n)) ifft
 (Vector#(64, Complex#(n)) in_data);

//Declare vectors
 Vector#(4,Vector#(64, Complex#(n))) stage_data;

 stage_data[0] = in_data;
 for (Bit#(2) stage = 0; stage < 3; stage = stage + 1)
 stage_data[stage+1] = stage_f(stage,stage_data[stage]);
return(stage_data[3]);
endfunction

The for-loop is unfolded and stage_f
is inlined during static elaboration

Note: no notion of loops or procedures during execution

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-14

BSV Code: Combinational
IFFT- Unfolded
function Vector#(64, Complex#(n)) ifft
 (Vector#(64, Complex#(n)) in_data);

//Declare vectors
 Vector#(4,Vector#(64, Complex#(n))) stage_data;

 stage_data[0] = in_data;
 for (Bit#(2) stage = 0; stage < 3; stage = stage + 1)
 stage_data[stage+1] = stage_f(stage,stage_data[stage]);

return(stage_data[3]);
endfunction

Stage_f can be inlined now; it could have been inlined
before loop unfolding also.

Does the order matter?

stage_data[1] = stage_f(0,stage_data[0]);
stage_data[2] = stage_f(1,stage_data[1]);
stage_data[3] = stage_f(2,stage_data[2]);

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-15

BSV Code for stage_f
function Vector#(64, Complex#(n)) stage_f
 (Bit#(2) stage, Vector#(64, Complex#(n)) stage_in);
Vector#(64, Complex#(n)) stage_temp, stage_out;
 for (Integer i = 0; i < 16; i = i + 1)
 begin
 Integer idx = i * 4;
 Vector#(4, Complex#(n)) x;
 x[0] = stage_in[idx]; x[1] = stage_in[idx+1];
 x[2] = stage_in[idx+2]; x[3] = stage_in[idx+3];
 let twid = getTwiddle(stage, fromInteger(i));
 let y = bfly4(twid, x);
 stage_temp[idx] = y[0]; stage_temp[idx+1] = y[1];
 stage_temp[idx+2] = y[2]; stage_temp[idx+3] = y[3];
 end
 //Permutation
 for (Integer i = 0; i < 64; i = i + 1)
 stage_out[i] = stage_temp[permute[i]];
 return(stage_out);
endfunction

twid’s are
mathematically

derivable
constants

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-16

Higher-order functions:
Stage functions f1, f2 and f3
function f0(x)= stage_f(0,x);

function f1(x)= stage_f(1,x);

function f2(x)= stage_f(2,x);

What is the type of f0(x) ?

function Vector#(64, Complex) f0
 (Vector#(64, Complex) x);

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-17

Suppose we want to reduce
the area of the circuit

in0

…

in1

in2

in63

in3

in4

Bfly4

Bfly4

Bfly4

x16

Bfly4

Bfly4

Bfly4

…

Bfly4

Bfly4

Bfly4

…

out0

…

out1

out2

out63

out3

out4

Perm
ute

Perm
ute

Perm
ute

Reuse the same circuit three times
to reduce area

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-18

f g

Reusing a combinational
block

we expect:
 Throughput to
 Area to

f f g

decrease – less parallelism

The clock needs to run faster for the
same throughput

decrease – reusing a block

Introduce state
elements to hold
intermediate
values

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-19

Folded IFFT: Reusing the stage
combinational circuit

in0

…

in1

in2

in63

in3

in4

out0

…

out1

out2

out63

out3

out4

…

Bfly4

Bfly4

Perm
ute

Stage
Counter

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-20

Input and Output FIFOs
If IFFT is implemented as a sequential circuit it
may take several cycles to process an input
Sometimes it is convenient to think of input
and output of a combinational function being
connected to FIFOs

FIFO operations:
n  enq – when the FIFO is not full
n  deq, first – when the FIFO is not empty
n  These operations can be performed only when the

guard condition is satisfied

inQ outQ

IFFT

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-21

Folded implementation
rules

rule foldedEntry if (stage==0);
 sReg <= f(stage, inQ.first()); stage <= stage+1;
 inQ.deq();
endrule
rule foldedCirculate if (stage!=0)&(stage<(n-1));
 sReg <= f(stage, sReg); stage <= stage+1;
endrule
rule foldedExit if (stage==n-1);
 outQ.enq(f(stage, sReg)); stage <= 0;
endrule

x

sReg

inQ

f

outQ stage

D
is

jo
in

t
fir

in
g

co
nd

iti
on

s

Each rule has some
additional implicit
guard conditions
associated with FIFO
operations

notice stage is a dynamic
parameter now!

no
for-
loop

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-22

Folded implementation
expressed as a single rule

rule folded-pipeline (True);
 let sxIn = ?;
 if (stage==0)
 begin sxIn= inQ.first(); inQ.deq(); end
 else sxIn= sReg;
 let sxOut = f(stage,sxIn);
 if (stage==n-1) outQ.enq(sxOut);
 else sReg <= sxOut;
 stage <= (stage==n-1)? 0 : stage+1;
endrule

x

sReg

inQ

f

outQ stage

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-23

Shared Circuit

The Twiddle constants can be expressed in a
table or in a case or nested case expression

stage

 getTwiddle0

getTwiddle1

getTwiddle2

twid
The rest of
stage_f, i.e.
Bfly-4s and

permutations
(shared)

sx

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-24

Pipelining Combinational
IFFT

Lot of area and long combinational delay
Folded or multi-cycle version can save area
and reduce the combinational delay but
throughput per clock cycle gets worse
Pipelining: a method to increase the circuit
throughput by evaluating multiple IFFTs

in0

…

in1

in2

in63

in3

in4

Bfly4

Bfly4

Bfly4

x16

Bfly4

Bfly4

Bfly4

…

Bfly4

Bfly4

Bfly4

…

out0

…

out1

out2

out63

out3

out4

Perm
ute

Perm
ute

Perm
ute

IFFTi IFFTi-1 IFFTi+1

3 different datasets
in the pipeline

Next
lecture

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-25

Design comparison

inQ outQ

f2 f1 f3
Combinational

C

inQ outQ

f2 f1 f3
Pipeline

P

inQ outQ

f
Folded

F

Clock? Area? Throughput? Clock: C < P ≈ F Area: F < C < P Throughput: F < C < P

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-26

Area estimates
Tool: Synopsys Design Compiler

Comb. FFT
n  Combinational area: 16536
n  Noncombinational area: 9279

Folded FFT
n  Combinational area: 29330
n  Noncombinational area: 11603

Pipelined FFT
n  Combinational area: 20610
n  Noncombinational area: 18558

Explanation: Because of constant propagation
optimization, each bfly4 gets reduced by 60% when
twiddle factors are specified. Folded design disallows this
optimization because of the sharing of bfly4’s

Why is folded
implementation
not smaller?

Are the results
surprising?

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-27

Syntax: Vector of Registers
Register
n  suppose x and y are both of type Reg. Then
 x <= y means x._write(y._read())

Vector of Int
n  x[i] means sel(x,i)
n  x[i] = y[j] means x = update(x, i, sel(y,j))

Vector of Registers
n  x[i] <= y[j] does not work. The parser thinks it means

(sel(x,i)._read)._write(sel(y,j)._read), which will
not type check

n  (x[i]) <= y[j] parses as
sel(x,i)._write(sel(y,j)._read), and works correctly

Don’t ask me why

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-28

Optional: Superfolded FFT

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-29

Superfolded IFFT: Just one
Bfly-4 node!
in0

…

in1

in2

in63

in3

in4

out0

…

out1

out2

out63

out3

out4

Bfly4

Perm
ute

Index == 15?

Index:
0 to 15

64, 2-w
ay

M
uxes

4, 16-w
ay

M
uxes

4, 16-w
ay

D
eM

uxes

Stage
0 to 2

f will be invoked for 48 dynamic values of stage; each
invocation will modify 4 numbers in sReg
after 16 invocations a permutation would be done on
the whole sReg

Optional

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-30

Superfolded IFFT:
stage function f
function Vector#(64, Complex) stage_f
 (Bit#(2) stage, Vector#(64, Complex) stage_in);
 Vector#(64, Complex#(n)) stage_temp, stage_out;
 for (Integer i = 0; i < 16; i = i + 1)
 begin Bit#(2) stage
 Integer idx = i * 4;
 let twid = getTwiddle(stage, fromInteger(i));
 let y = bfly4(twid, stage_in[idx:idx+3]);
 stage_temp[idx] = y[0]; stage_temp[idx+1] = y[1];
 stage_temp[idx+2] = y[2]; stage_temp[idx+3] = y[3];
 end
 //Permutation
 for (Integer i = 0; i < 64; i = i + 1)
 stage_out[i] = stage_temp[permute[i]];
return(stage_out);
endfunction

Bit#(2+4) (stage,i)

should be done only when i=15

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-31

Code for the Superfolded
stage function
Function Vector#(64, Complex) f
 (Bit#(6) stagei, Vector#(64, Complex) stage_in);
 let i = stagei `mod` 16;
 let twid = getTwiddle(stagei `div` 16, i);
 let y = bfly4(twid, stage_in[i:i+3]);

 let stage_temp = stage_in;
 stage_temp[i] = y[0];
 stage_temp[i+1] = y[1];
 stage_temp[i+2] = y[2];
 stage_temp[i+3] = y[3];

 let stage_out = stage_temp;
 if (i == 15)
 for (Integer i = 0; i < 64; i = i + 1)
 stage_out[i] = stage_temp[permute[i]];
 return(stage_out);
endfunction

One Bfly-4 case

September 22, 2014 http://csg.csail.mit.edu/6.175 L0x-32

